
Rapid and Parallel Content Screening for Detecting
Transformed Data Exposure

Xiaokui Shu, Jing Zhang, Danfeng (Daphne) Yao, Wu-Chun Feng
Department of Computer Science, Virginia Tech

Blacksburg, VA 24060
E-mail: {subx, zjing14, danfeng, feng}@cs.vt.edu

Abstract—The leak of sensitive data on computer systems
poses a serious threat to organizational security. Organizations
need to identify the exposure of sensitive data by screening
the content in storage and transmission, i.e., to detect sensitive
information being stored or transmitted in the clear. However,
detecting the exposure of sensitive information is challenging
due to data transformation in the content. Transformations
(such as insertion, deletion) result in highly unpredictable leak
patterns. Existing automata-based string matching algorithms
are impractical for detecting transformed data leaks because of
its formidable complexity when modeling the required regular
expressions. We design two new algorithms for detecting long and
inexact data leaks. Our system achieves high detection accuracy
in recognizing transformed leaks compared with the state-of-the-
art inspection methods. We parallelize our prototype on graphics
processing unit and demonstrate the strong scalability of our data
leak detection solution analyzing big data.

I. INTRODUCTION

The number of leaked records on personal computers and
organization networks increases dramatically in the last years
from 95 million in 2010 to 822 million in 2013 [1]. A typical
approach to minimize the exposure of sensitive data is to
identify all occurrences of cleartext sensitive data in storages
or communications. The detection system alerts administrators
of any sensitive data exposure discovered in file systems or
supervised network channels. Leaks can then be identified
according to the sensitive data storage and sharing policy.
Different from pattern matching techniques employed in anti-
virus and intrusion detection systems, data leak detection im-
poses new security requirements and algorithmic challenges:

1) Data transformation. The exposed data in the content
may be transformed or modified by users or applications,
so it may no longer be identical to the original sensitive
data, e.g., insertions of metadata or formatting tags,
substitutions of characters, and data truncation. Thus,
the detection algorithm needs to recognize variations of
sensitive data patterns.

2) Scalability. The heavy workload of data leak screening is
due to long sensitive data patterns and the large amount
of content. Sensitive data (e.g., customer information,
documents, source code) can be of arbitrary length (e.g.,
megabytes). Some types of contents may need to be
scanned in a timely manner (e.g., traffic scanning).

Automata-based string matching are widely used in anti-
virus and network intrusion detection systems (NIDS) where
the patterns to search for are static or can be characterized by

regular expressions [2]. Automata are not designed to support
unpredictable and arbitrary pattern variations. In data leak
detection scenarios, the transformation of leaked data (in the
description of regular expression) is unknown to the detection
method. Creating comprehensive automata models covering
all possible variations of a pattern is infeasible, because of
the unrealistic high complexity. Therefore, automata approach
cannot be used for detecting long and transformed data leaks.

Existing data leak detection approaches are largely based on
set intersection [3]–[8]. Set intersection performed between
the content fragment set and sensitive data fragment set
tells the amount of sensitive data fragments appearing in
the content1. However, set intersection is orderless, i.e., the
order information of fragments is abandoned. Thus, set-based
detection generates undesirable false alerts. In addition, set
intersection cannot effectively measure the likelihood of a leak
when partial data is leaked. Therefore, none of the existing
techniques is adequate for detecting transformed data leaks.

The key of our solution to the detection of transformed data
leaks is a new sequence alignment algorithm. The alignment
is between the sampled sensitive data sequence and the
sampled content being inspected. The alignment produces a
score indicating the amount of sensitive data contained in the
content. Our alignment-based solution measures the order of
n-grams. It also handles arbitrary variations of patterns without
an explicit specification of all possible variation patterns.

In order to deal with the scalability issue, we design a pair
of algorithms to perform alignment. Our solution consists of
a comparable sampling algorithm and a sampling oblivious
alignment algorithm. Our sampling algorithm samples both
content and sensitive data sequences. It satisfies the compara-
ble sampling property that the similarity of two sequences is
preserved through sampling, and the samples are meaningful
to be aligned. Our solution aligns sampled sequences to infer
the similarity between the original sequences before sampling.
The special sampling oblivious property differentiates our
algorithm from existing ones. Experiments show that our
solution achieves accurate detection with low false positive
and false negative rates. It substantially outperforms the set
intersection method in terms of detection accuracy.

We design the pair of algorithms to be efficiently paral-
lelized. We parallelize our prototype on a GPU, which achieves

1Typical units in a set are n-grams of a string, which preserves local features
of a string and tolerates discrepancies.

Original
sensitive data

Content
containing D’

Transformed
sensitive data

D’

D

CD’

D modified by a
user or program

Unencrypted CD’ in
storage or
transmission

Sample Align

CD’

D

Sensitivity
score

Alignment on
sampled sequences

Data Leak Screening

Fig. 1. A schematic drawing showing the two types of sequences in our model, their relations, and the workflow of our detection.

nearly 50 times of speedup over the simple CPU version.
Our prototype reaches 400Mbps analysis throughput. This
performance potentially supports the rapid security scanning of
storage and communication required by a sizable organization.

II. MODELS AND OVERVIEW

In our data leak detection model, we analyze two types of
sequences: sensitive data sequence and content sequence.
• Content sequence is the sequence to be examined for

leaks. The content may be data extracted from file sys-
tems on personal computers, workstations, and servers; or
payloads extracted from supervised network channels2.

• Sensitive data sequence is the information (customers’
records, proprietary documents, etc.) that needs to be
protected and cannot be exposed to unauthorized parties.

Both the content and the sensitive data sequences are known
to the analysis system. A data leak is detected when the
detection system finds a piece of sensitive data in the content
sequence (Fig. 1), but the appearance is not allowed in the
sensitive data storage and sharing policy. We assume that the
analysis system is secure and trustworthy. Thus, the sensitive
data sequence is secure during the data leak analysis. The two
assumptions can be removed when our alignment is realized
with secure multi-party computation techniques [9]. We do not
aim at detecting stealthy data leaks that an attacker encrypts
the sensitive data by herself before leaking it.

A. Technical Challenges

High detection specificity. In our data-leak detection model,
high specificity refers to the ability to distinguish true leaks
from coincidental matches, which can cause false alarms.
Existing set-based detection is orderless, where the order of
matched patterns (n-grams) is ignored. Orderless detection can
result in false positives as shown below.

Sensitive data abcdefg
3-grams of the sensitive data abc, bcd, cde, def, efg
Content stream (false positive) ...efg...cde...abc...

Pervasive and localized modification. Sensitive data could be
modified before it is leaked out. The modification can occur

2Such channels are widely used for advanced NIDS where MITM (man-
in-the-middle) SSL sessions are employed to handle encryption.

throughout a sequence (pervasive modification). The modifi-
cation can also only affect a local region (local modification).
We describe some modification examples:
• Character replacement, e.g., WordPress replaces every

space character with a + in HTTP POST requests.
• String insertion: HTML tags inserted throughout a docu-

ment for formatting or embedding objects.
• Data truncation or partial data leak, e.g., one page of a

two-page sensitive document is transmitted.

B. Overview of Our Approach
Our work presents an efficient sequence comparison tech-

nique needed for analyzing a large amount of content for
sensitive data exposure. A diagram illustrating our workflow
is shown in Fig. 1. Our detection approach consists of a
special sampling algorithm and a corresponding alignment
algorithm working on preprocessed n-grams of sequences.
The pair of algorithms computes a quantitative similarity
score between sensitive data and content. Local alignment,
as opposed to global alignment, is used to identify similar
sequence segments, enabling the detection of partial data leaks.

Our workflow includes EXTRACTION, PREPROCESSING,
SAMPLING, ALIGNMENT, and DECISION operations. The EX-
TRACTION operation collects the content sequences. The PRE-
PROCESSING operation prepares the sequences of n-grams for
both the content and sensitive data. The SAMPLING operation
generates samples from the preprocessed sensitive data and
content sequences. The ALIGNMENT operation performs local
alignment between the two sampled sequences to compute
their similarity. Finally, the DECISION operation confirms and
reports leaks according to the sensitive data sharing policy.

III. COMPARABLE SAMPLING

In this section, we formally define the new sampling require-
ment needed in data leak detection and present our solution.

Definition 1. (Subsequence-preserving sampling) if string x
is a substring of string y (denoted by x ⊆ y), then x′ is also a
substring of y′ (x′ ⊆ y′), where x′ is a sampled subsequence
of x, and y′ is a sampled subsequence of y.

In Definition 1, subsequence (with gaps) is a generalization
of substring and allows gaps between characters, e.g., lo-e
is a subsequence of flower (- indicates a gap).

The subsequence-preserving requirement in Definition 1
ensures the sample sequences of two identical strings are
comparable no matter where the sampling starts or ends. We
relax the identical relation to a similarity relation. If the sample
sequences of two similar strings are comparable, we denote the
sampling algorithm as a comparable sampling.

We present our comparable sampling algorithm. The advan-
tage of our algorithm is its context-aware selection, i.e., the
selection decision of an item depends on how it compares with
its surrounding items according to a selection function. As a
result, our sampling algorithm yields comparable samples.

Our comparable sampling algorithm takes in S, an input
list of items. Each item is an n-gram preprocessed from the
original sensitive data or content. It outputs T , a sampled list
of the same length; the sampled list contains null values, which
correspond to items that are not selected. The null regions
in T can be aggregated, and T is turned into a compact
representation L. Each item in L contains the value of the
sampled item and the length of the null region between the
current sampled item and the preceding one.
T is initialized as an empty list, i.e., a list of null items. We

use a small sliding window w on S and a selection function f
to decide what items that appear in w should be selected into
T . The selection decision regarding an item is made based
on not only the value of that item, but also the values of its
neighboring items in w. Therefore, unlike a random sampling
method where a selection decision is stochastic, our method
satisfies the comparable sampling requirements.

In Algorithm 1, without loss of generality, we describe
our sampling method with a specific selection function f =
min(w,N). f takes in an array w and returns the N smallest
items in w. All items (n-grams) are preprocessed with min-
wise independent hashes (e.g., Rabin’s fingerprint [10]) in our
approach. Therefore, f deterministically selects items. The
selection results at each sliding window position determine
what items are chosen to the sampled list. The parameters N
and |w| determine the sampling rate. The directional collec-
tion difference operation collectionDiff in Algorithm 1
(lines 10 and 11) is similar to the set difference operation,
except that it does not eliminate duplicates.
T output by Algorithm 1 takes the same space as S does.

Null items can be aggregated, and T is turned into L.
We have proved that Algorithm 1 is subsequence preserving.

The proof is constructed in four cases: i) two strings are
identical, ii) and iii) one is a prefix or suffix of the other, or
iv) one is a substring of the other (but not a prefix or suffix).
The complexity of sampling using the min(w,N) selection
function is O(n log |w|) where n is the size of the input, |w|
is the size of the window. The sampling rate α ∈ [N

|w| , 1]

approximates N
|w| for random inputs. The detailed proof and

discussion are omitted due to the space limit.

IV. SAMPLING OBLIVIOUS ALIGNMENT

In this section, we describe the requirements for a sample-
based alignment algorithm and present our solution.

We design a specialized alignment algorithm that runs on
compact sampled sequences La and Lb to infer the similarity

Algorithm 1 A subsequence-preserving sampling algorithm
with min as the selection function.
Input: an array S of items, a size |w| for a sliding window w, a

selection function f(w,N) that selects N smallest items from a
window w, i.e., f = min(w,N)

Output: a sampled array T with subsequence-preserving property
1: initialize T as an empty array of size |S|
2: w ← read(S, |w|)
3: let w.head and w.tail be indices in S corresponding to the

higher-indexed end and lower-indexed end of w, respectively
4: collection mc ← min(w,N)
5: while w is within the boundary of S do
6: mp ← mc

7: move w toward high index by 1
8: mc ← min(w,N)
9: if mc 6= mp then

10: item en ← collectionDiff(mc,mp)
11: item eo ← collectionDiff(mp,mc)
12: if en < eo then
13: write value en to T at w.head’s position
14: else
15: write value eo to T at w.tail’s position
16: end if
17: end if
18: end while

between the original sensitive data sequence Sa and the origi-
nal content sequence Sb. It needs to satisfy a new requirement
sampling oblivion, i.e., the result of an alignment on sampled
sequences La and Lb should be consistent with the alignment
result on the original Sa and Sb.

Regular local alignment without the sampling oblivion
property may give inaccurate alignment on sampled sequences.
However, because values of unselected items are unknown to
the alignment, the decision of match or mismatch cannot be
made solely on them during the alignment. We observe that
leaked data region is usually consecutive, e.g., spans at least
dozens of bytes. Thus, our algorithm infers the comparison
outcomes between null regions based on i) the comparison
outcomes between items surrounding null regions and ii) sizes
of null regions. For example, given two sampled sequences
a--b and A--B, if a == A and b == B, then the two
values in the positions of the null regions are likely to match.

We develop our alignment algorithm with dynamic pro-
gramming. A string alignment problem is divided into three
prefix alignment subproblems: the current two items (from
two sequences) are aligned with each other, or one of them is
aligned with a gap. In our algorithm, comparison outcomes
between null regions are inferred based on their non-null
neighboring values and their sizes/lengths. The comparison re-
sults include match, mismatch and gap, and they are rewarded
(match) or penalized (mismatch or gap) differently for sampled
items or null regions according to a weight function fw().

We present the recurrence relation of our dynamic program
alignment algorithm in Algorithm 2. For the i-th item Li in
a sampled sequence L (the compact form), the field Li.value
denotes the value of the item and a new field Li.span denotes
the size of null region between that item and the preceding
non-null item. Our alignment algorithm computes a non-
negative score matrix H of size |La|-by-|Lb| for the input

Algorithm 2 Recurrence relation in dynamic programming.
Input: A weight function fw, visited cells in H matrix that are

adjacent to H(i, j): H(i−1, j−1), H(i, j−1), and H(i−1, j),
and the i-th and j-th items La

i ,Lb
j in two sampled sequences La

and Lb, respectively.
Output: H(i, j)

1: hup.score← fw(La
i , -, H(i− 1, j))

2: hleft.score← fw(-,Lb
j , H(i, j − 1))

3: hdia.score← fw(La
i ,Lb

j , H(i− 1, j − 1))

4: hdia.nullrow ←
{

0, if La
i = Lb

j

H(i− 1, j).nullrow + La
i .span + 1, else

5: hdia.nullcol ←
{

0, if La
i = Lb

j

H(i, j − 1).nullcol + Lb
j .span + 1, else

6: H(i, j)← arg max
h.score

{
hup, hleft, hdia

}
7: H(i, j).score← max {0, H(i, j).score}

sequence La and Lb and returns the maximum alignment score
with respect to a weight function. Each cell H(i, j) has a score
field H(i, j).score and two extra fields recording sizes of
neighboring null regions, namely nullrow and nullcol. nullrow
and nullcol fields for all three cell candidates hup, hleft, hdia

are initialized as 0.
Our weight function fw() takes three inputs: the two items

being aligned (e.g., La
i from sensitive data sequence and Lb

j

from content sequence) and a reference cell c (one of the three
visited adjacent cells H(i−1, j−1), H(i, j−1), or H(i−1, j)),
and outputs a score of an alignment configuration. One of La

i

and Lb
j may be a gap (−) in the alignment. The computation

is based on the penalty given to mismatch and gap conditions
and reward given to match condition. fw() in Algorithm 2
differs from the typical weight function in Smith-Waterman
algorithm [11] in its ability to infer comparison outcomes for
null regions. This inference is done accordingly to the values
of their adjacent non-null neighboring items. The details of
fw() are omitted due to the space limit.

The complexity of Algorithm 2 is O(|La||Lb|), where |La|
and |Lb| are lengths of compact representations of the two
sampled sequences. If the length of the sensitive data is fixed,
the complexity deduces to O(|Lb|). Our alignment over two
sampled sequences achieves a speedup in the order of O(α2),
where α ∈ (0, 1) is the sampling rate. Details of the analysis
are omitted due to the space limit.

V. EVALUATION ON DETECTION ACCURACY

We evaluate the accuracy of our solution with several large
datasets under real-world data leak scenarios3. We implement
a single-threaded prototype (referred to as AlignDLD system)
and a collection intersection method as a baseline. Both sys-
tems are written in C++, compiled using g++ 4.7.1 with flag
-O3. We also provide two parallel versions of our prototype
in Section VI for performance demonstration.
• AlignDLD: our sample-and-align data leak detection

method with sampling parameters N = 10 and |w| =
100. 3-grams and 32-bit Rabin’s fingerprints4 are used.

3We only present the most important experiments due to the space limit.
4Rabin’s fingerprint is used for unbiased sampling (Section III).

• Coll-Inter: a data leak detection system based on col-
lection intersection5, which is widely adopted by com-
mercial tools such as GlobalVelocity and GoCloudDLP.
8-grams and 64-bit Rabin’s fingerprints are used, which
is standard with collection intersection.

A. Experiment Setup

We reproduce four leaking scenarios in a virtual network
environment using VirtualBox. The network traffic content is
monitored at the virtual gateway of the virtual network.

1) Web leak: a user publishes sensitive data on the Internet
via typical publishing services, e.g., WordPress,

2) FTP: a user transfers unencrypted sensitive files to an
FTP server on the Internet,

3) Backdoor: a malicious program, i.e., Glacier, on the
user’s machine exfiltrates sensitive data,

4) Spyware: a Firefox extension FFsniFF [12] exfil-
trates sensitive information via web forms.

We test several datasets listed below. The first two are used
for both sensitive data and content sequences. The last two are
only used as content. Due to the space limit, we only present
two accuracy experiments using A. Enron dataset in this paper.

A. Enron dataset (2.6GB) consists of 517,424 real emails
from 150 users [13],

B. Source-code includes 288 source code files from gzip,
procps, net-tools, tar, and rsync projects,

C. HTTP headers (12MB) contains critical URL information
in HTTP requests. We collect the data from 20 users’
Internet surfing (30 minutes for each user),

D. MiscNet (500MB) is an Internet traffic dump containing
various kinds of Internet traffic, e.g., web surfing, video,
email, instant messaging, downloading, etc.

For evaluation purposes, we explain our accuracy measures.
If a real leak is detected, it is a true positive. If a non-leak
traffic content is detected as a leak, it is a false positive.
Detection rate or recall is TP

TP + FN . False positive rate is FP
FP + TP .

We define the sensitivity S ∈ [0, 1] of the content sequence
in Formula 1. It indicates the similarity of sensitive data D
and content CD′ with respect to their sequences Sa and Sb
after PREPROCESS. ξ is the maximum score in the alignment,
and r is the reward for one-unit match in the alignment.

S =
ξ

r ×min (|Sa|, |Sb|)
(1)

B. Detecting Modified Leaks

We present the detection results against modified leaks in
this subsection. We run AlignDLD and Coll-Inter on three
types of data leaks listed below.

1) Content without any leak, i.e., the content does not
contain any sensitive data.

2) Content with unmodified leak, i.e., sensitive data appear-
ing in the content is not modified.

3) Content with modified leaks caused by WordPress,
which substitutes every space with “+” in the content.

5Set and collection intersections are used interchangeably in this paper.

0

0.2

0.4

0.6

0.8

1

0.00 0.20 0.40 0.60 0.80 1.00

N
o

rm
al

iz
e

d
 F

re
q

u
e

n
cy

Sensitivity

Coll-Inter [leak w/o modification]

Coll-Inter [leak w/ WordPress]

Coll-Inter [content w/o leak]

(a) AlignDLD (our method)

(b) Collection Intersection (Coll-Inter, baseline)

Best Threshold

0.2

Recall
Leak w/ WordPress

100%

False Positive
Content w/o leak

0.8%

Best Threshold

0.14

Recall
Leak w/ WordPress

63.8%

False Positive
Content w/o leak

8.9%

0

0.2

0.4

0.6

0.8

1

0.00 0.20 0.40 0.60 0.80 1.00

N
o

rm
al

iz
e

d
 F

re
q

u
e

n
cy

Sensitivity

AlignDLD [leak w/o modification]
AlignDLD [leak w/ WordPress]
AlignDLD [content w/o leak]

Fig. 2. Detection comparison of leak through WordPress using AlignDLD
(a) and collection intersection (b). Solid lines show the sensitivity distribution
of the modified leaks via WordPress.

The content and sensitive data in this experiment are se-
lected emails from A. Enron dataset. The content without leak
consists of 950 randomly chosen Enron emails, and the sen-
sitive data consists of 50 randomly chosen ones. We compute
the sensitivities of the content according to Equation 1.

We evaluate and compare AlignDLD and Coll-Inter. We
present the distributions of all sensitivity values in Fig. 2.
The table to the right of each figure summarizes the detection
accuracy under the best threshold. Both methods perform as
expected in the scenarios of no-leak (dotted lines on the left)
and unmodified leak (dashed lines on the right).

The solid lines in Figure 2 represent the detection results of
leaks with WordPress modifications. Our AlignDLD method
in Fig. 2 (a) gives much higher sensitivity scores to the trans-
formed data leak than the Coll-Inter method. With a threshold
of 0.2, all the email messages with transformed leaks are
detected, i.e., it achieves 100% recall. The false positive rate is
low. In contrast, the collection intersection method in Fig. 2 (b)
has a significant overlap between messages with no leak and
messages with transformed leaks. Its accuracy is much lower
than that of our method, e.g., 63.8% recall and a 10 times
higher false positive rate. Further analysis on false positives
caused by coincidental matches (dotted lines on the left) is
omitted due to the space limit.

C. Partial Data Leaks

In data truncation or partial data leak scenarios, consecutive
portions of the sensitive data are leaked. In this experiment, a
content sequence contains a portion of sensitive text. The total
length of the sensitive text is 1KB. The size of the leaked
portion in the content ranges from 32 bytes to 1KB. Each
content sequence is 1KB long with random padding.

0%

20%

40%

60%

80%

100%

<= 0.60 0.65 0.70 0.75 0.80

R
e

ca
ll

Sensitivity Threshold

1000B

500B

250B

128B

64B

32B

Fig. 3. The detection success rate of AlignDLD in partial data leaks under
various detection thresholds.

We measure the unit sensitivity S̃ ∈ [0, 1] on segments
of content sequences. Unit sensitivity S̃ is the normalized
per-element sensitivity value for the aligned portion of two
sequences. It is defined in Equation 2, where ξ̃ is the maximum
local alignment score obtained between aligned segments S̃a
and S̃b, which are sequence segments of sensitive data D
and content CD′ . The higher S̃ is, the better the detection
is. Threshold l is a predefined length describing the shortest
segment to invoke the measure. l = 16 in our experiments.

S̃ =
ξ̃

r ×min (|S̃a|, |S̃b|)
where min (|S̃a|, |S̃b|) ≥ l (2)

The detection results of AlignDLD are shown in Figure 3.
Content with longer sensitive text is easier to detection as
expected. Nevertheless, our method detects content with
short truncated leaks as small as 32 bytes with high
accuracy. The detection rate decreases with higher thresholds.
We observe that high thresholds (e.g., > 0.6) are not necessary
for detection when 8-byte shingles are used; false positives
caused by coincidental matches are low in this setup. These
experiments show that our detection is resilient to partial data
leaks or data truncation.

VI. PARALLELIZATION AND EVALUATION

In order to achieve high analysis throughput, we parallelize
our algorithms on CPU as well as on general-purpose GPU
platforms. The multithreading CPU version and the GPU ver-
sions are implemented to demonstrate the strong scalability6

and performance potential of our algorithms.
We implement a multithreading CPU version and a GPU

version 7 of our prototype on a hybrid CPU-GPU machine
equipped with an Intel Core i5 2400 and an NVIDIA Tesla
C2050 GPU (Fermi architecture with 448 GPU cores).

In the multithreading CPU version, we parallelize both the
SAMPLING and ALIGNMENT procedures with the pthread
library. Long streams are split into multiple substrings, which
are sampled in parallel by different threads and then assembled

6The scalability experiments are not shown due to the space limit.
7The multithreaded CPU version is written in C, compiled using gcc 4.4.5

with flag -O2. The GPU version is written in CUDA compiled using CUDA
4.2 with flag -O2 -arch sm 20 and NVIDIA driver v295.41.

TABLE I
TIMES OF SPEEDUP IN ALIGNDLD’S ALIGNMENT OPERATION. [P]

REPRESENTS A PARALLEL VERSION.

Traffic A.Enron D.MiscNet

Data txt png pdf txt png pdf

CPU 1.00 1.00 1.00 1.00 1.00 1.00
CPU[P] 3.59 3.29 3.40 2.78 3.18 2.82
GPU[P] 44.36 47.93 47.98 34.60 42.51 41.59

TABLE II
THROUGHPUT (IN MBPS) OF THE ALIGNMENT OPERATION ON GPU

Sensitive data size (KB) 250 500 1000 2500

Sampling rate
0.03 426 218 110 44
0.12 23 11 5 2

for output. ALIGNMENT is the most time-consuming proce-
dure and is made parallel on both CPU and GPU. We use a
parallelized score matrix filling method to compute a diagonal
of cells at the same time. This method consumes linear space.

We evaluate the performance of the most time-consuming
ALIGNMENT procedure on the Tesla GPU. Times of speedup
in detecting sensitive data of types txt, png, or pdf against
A. Enron or D. MiscNet traffic, respectively, are shown in
Table I. Our GPU detection prototype achieves over 40 times
of speedup over the CPU version on large content datasets.
The prototype achieves a throughput of over 400Mbps against
500MB misc network traffic (D. MiscNet) shown in Table II.
This throughput is comparable to that of a moderate commer-
cial firewall. More optimizations on data locality and memory
usage can be performed in real-world detection products.

VII. RELATED WORK

Existing commercial tools and services for data leak pre-
vention include Symantec DLP [5], IdentityFinder [6], Glob-
alVelocity [7], and GoCloudDLP [8]. All solutions are likely
based on set intersection. Symantec DLP is based on n-grams
and Bloom filters that save space for set membership test.

Network intrusion detection systems (NIDS) such as Snort
and Bro use regular expression to perform string matching in
deep packet inspection [14]. Nondeterministic finite automaton
(NFA) with backtracking requires O(2n) time and O(n) space.
Deterministic finite automaton (DFA) has a time complexity
of O(n) and a space complexity of O(2n). Neither DFA or
NFA is designed to support arbitrary and unpredictable pattern
variations. In comparison, our sequence alignment solution
covers all possible pattern variations in long sensitive data
without explicitly specifying them.

Alignment algorithms have been widely used in computa-
tional biology applications [15]. Jung et al. proposed NetDi-
align for network privacy using the Dialign algorithm [16].
Kreibich and Crowcroft presented an alignment algorithm for
traffic intrusion detection [17]. Data leak detection differs from
the above network privacy and IDS problems. We consider
both transformed leaks and scalability issue. Our alignment

performs complex inferences needed for aligning sampled
sequences, and our solution is also different from fast non-
sample alignment in bioinformatics, e.g., BLAST [18].

Other approaches to detect and prevent data leaks include
tracing data movement within the device [19], searching short
sensitive keywords [20], symbolic execution analysis on mo-
bile apps [21], etc. These methods differ from ours because we
aim at comparing long and inexact sequences from sensitive
data and content sequences.

VIII. CONCLUSIONS

Despite the commercial success of data leak software and
appliances, existing solutions based on set intersection have
serious security drawbacks. We present new and sophisticated
alignment-based algorithms to improve the accuracy detecting
data leaks, e.g., high specificity (i.e., low false alarm rate). Our
extensive experimental evaluations with real-world data and
leak scenarios confirm that our method is useful for big data
analytics and detecting transformed sensitive data exposure.

REFERENCES

[1] RiskBasedSecurity, “Data breach quickview: An executive’s guide to
2013 data breach trends,” February 2014.

[2] A. V. Aho and M. J. Corasick, “Efficient string matching: An aid to
bibliographic search,” Commun. ACM, vol. 18, no. 6, pp. 333–340, 1975.

[3] X. Shu and D. Yao, “Data leak detection as a service,” in Proceedings
of SecureComm, September 2012, pp. 222–240.

[4] F. Liu, X. Shu, D. Yao, and A. R. Butt, “Privacy-preserving scanning of
big content for sensitive data exposure with MapReduce,” in Proceedings
of ACM CODASPY, 2015.

[5] Symantec, “Symantec data loss prevention,” http://www.symantec.com/
data-loss-prevention.

[6] identifyfinder, “Identity finder,” http://www.identityfinder.com/.
[7] Global Velocity Inc., “Global velocity,” http://www.globalvelocity.com/.
[8] GTB Technologies Inc., “GoCloudDLP,” http://www.goclouddlp.com/.
[9] S. Jha, L. Kruger, and V. Shmatikov, “Towards practical privacy for

genomic computation,” in Proceedings of IEEE S&P, 2008.
[10] A. Z. Broder, M. Charikar, A. M. Frieze, and M. Mitzenmacher, “Min-

wise independent permutations,” J. Comput. Syst. Sci., vol. 60, no. 3,
pp. 630–659, 2000.

[11] T. F. Smith and M. S. Waterman, “Identification of common molecular
subsequences,” J. Mol. Biol., vol. 147, no. 1, pp. 195–197, March 1981.

[12] C. Wuest and E. Florio, “Firefox and malware: When browsers attack,”
Symantec Corporation, Tech. Rep., October 2009.

[13] C. Kalyan and K. Chandrasekaran, “Information leak detection in
financial e-mails using mail pattern analysis under partial information,”
in Proceedings of the 7th WSEAS International Conference on Applied
Informatics and Communications, vol. 7, 2007, pp. 104–109.

[14] P.-C. Lin, Y.-D. Lin, Y.-C. Lai, and T.-H. Lee, “Using string matching
for deep packet inspection,” IEEE Computer, vol. 41, pp. 23–28, 2008.

[15] V. O. Polyanovsky, M. A. Roytberg, and V. G. Tumanyan, “Comparative
analysis of the quality of a global algorithm and a local algorithm for
alignment of two sequences,” Algorithms Mol Biol, vol. 6, p. 25, 2011.

[16] J. Jung, A. Sheth, B. Greenstein, D. Wetherall, G. Maganis, and
T. Kohno, “Privacy Oracle: a system for finding application leaks with
black box differential testing,” in ACM CCS, 2008, pp. 279–288.

[17] C. Kreibich and J. Crowcroft, “Efficient sequence alignment of network
traffic,” in Proceedings of IMC, 2006, pp. 307–312.

[18] S. F. Altschul, W. Gish, W. Miller, E. W. Myers, and D. J. Lipman,
“Basic local alignment search tool,” Journal of molecular biology, vol.
215, no. 3, pp. 403–410, 1990.

[19] A. Nadkarni and W. Enck, “Preventing accidental data disclosure in
modern operating systems,” in Proceedings of ACM CCS, 2013.

[20] V. P. Kemerlis, V. Pappas, G. Portokalidis, and A. D. Keromytis, “iLeak:
A lightweight system for detecting inadvertent information leaks,” in
Proceedings of EC2ND, October 2010.

[21] Z. Yang, M. Yang, Y. Zhang, G. Gu, P. Ning, and X. S. Wang,
“AppIntent: Analyzing sensitive data transmission in Android for privacy
leakage detection,” in Proceedings of ACM CCS, 2013.

