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Abstract

We propose a contextual framework for 2D image matching and registration using an ensemble feature. Our

system is beneficial for registering image pairs that have captured the same scene but have large visual discrepancies

between them. It is common to encounter challenging visual variations in image sets with artistic rendering differences

or in those collected over a period of time during which the lighting conditions and scene content may have changed.

Differences between images may also be caused by using a variety of cameras with different sensors, focal lengths,

and exposure values. Local feature matching techniques cannot always handle these difficulties, so we have developed

an approach that builds on traditional methods to consider linear and histogram of gradient information over a larger,

more stable region. We also present a technique for using linear features to estimate corner keypoints, or Pseudo

Corners, that can be used for matching. Our pipeline follows this unique matching stage with homography refinement

methods using edge and gradient information. Our goal is to increase the size of accurate keypoint match sets and

align photographs containing a combination of man-made and natural imagery. We show that incorporating contextual

information can provide complimentary information for SIFT and boost local keypoint matching performance, as well

as be used to describe corner feature points.

Index Terms

Keypoint matching, 2D registration, contextual features, ensemble features, linear features, histogram of gradients.

I. INTRODUCTION

Matching photographs and finding image correspondences is necessary for a variety of applications in computer

vision from creating structure from motion point clouds to image classification. While several methods already exist

for detecting and matching sets of pixels using image intensity patterns, many will encounter difficulties when images
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Fig. 1. Outline of our registration pipeline. Keypoint features are first extracted. SIFT keypoints, Harris-Laplacian corners, or our proposed

Pseudo-Corners can be used. If SIFT is used, keypoints are matched using the SIFT descriptor. We then search for matches using contextual

features. I1 is segmented into MSER-based neighborhoods which are used to determine neighborhood sizes for studying line segments and

HOG’s. (HOG information in top right image is colored according to the dominant gradient direction for each cell.) Linear and HOG information

is used to verify new matches. An aligning homography is calculated and refined using ICP and gradient-based methods.

are captured under highly varying conditions. Changes in lighting, camera exposure values, scale, scene content,

and artistic styles can greatly affect local gradient information surrounding keypoints. Popular keypoint detection

and matching methods such as Harris Laplacian [1] and SIFT [2] that rely on such information may not perform

well under these circumstances. In difficult situations, they may provide too few matches or so many incorrect

matches that a correct image alignment may not be identified after applying robust methods like Random Sample

Consensus (RANSAC) [3]. Standard detector techniques may not even find a sufficient amount of repeatable features

to match keypoints successfully. We propose a pipeline that builds upon traditional keypoint matching techniques

and uses contextual information to handle these challenging scenarios. We hypothesize that using this extra regional

information can help clear up a great deal of the ambiguity presented by small scale gradient information to find a

larger set of matches for registration purposes. We also present a method for estimating corner keypoint locations

for situations where other repeatable features may be hard to detect and use this same contextual information to

match them.

All features have their own strengths and weaknesses and each may be more well-suited for specific tasks than

others [1]. On one hand, defining features on a very local scale can create a relatively large set of keypoints that

are highly informative for matching and invariant to certain amounts of perspective and content changes. However,

limiting the amount of visual information accounted for in a descriptor may obscure the differences in these local
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keypoint descriptors [4]. This is especially true when highly different viewing conditions, clutter, and occlusions are

present, causing local visual properties to change, making it difficult to match locally-defined keypoints correctly.

Using a larger scale can help define more discriminative features. By combining local and regional information into

one ensemble feature, we feel we can achieve the best of both worlds by taking advantage of both precise local

information and distinct regional data.

A. Background

Images can be aligned using information from locally defined feature descriptors, regional descriptors, direct

methods that rely on global pixel-pixel correspondences, or structural features such as line segments. Locally

defined keypoints use data, such as gradient direction and magnitude, from neighboring pixels within a relatively

small window size. Regional descriptors use information over a larger portion of the image to describe an area and

potentially match it to corresponding regions in other images. Global matching techniques, such as optical flow and

Fourier-based alignment, can provide a very accurate image alignment, but generally require a good initialization

to be successful [5].

We try to take advantage of the strengths of several of these methods by combining them together into one

ensemble feature matching and alignment refinement approach that uses local, regional, global, and structural

information.

1) Local Matching Methods: The Harris detector and use of the Hessian matrix are two classical methods for

finding local interest points in images [5] [6] [1]. Both detectors use the second moment matrix to study the

gradients of pixels surrounding an interest point. The scales for points’ feature descriptors are often chosen using

the Laplacian [7]. These methods work to identify local areas with significant visual changes, such as corners,

and are fairly invariant to lighting changes. However, these early methods were shown to be sensitive to large

scale changes and had limited affine invariance, which led to the development of more sophisticated detectors

and descriptors. For example, the Scale Invariant Feature Transforms method (SIFT) [2] is a commonly used and

robust local feature matching technique that assigns a scale and orientation to each interest point. A descriptor is

constructed based on local image gradients that is generally unique to a single area in the image. The neighborhood

size used to construct the descriptor is usually around 16x16 pixels at the appropriate image scale. Several groups

have expanded on the SIFT descriptor to develop feature matching methods that are faster and more robust to

various transformations [8] [9] [10].

The relatively small window sizes used by these methods to create keypoint descriptors can be beneficial in many

cases. They will be able to identify locally distinct areas accurately. However, cases where image pairs have large

scale, lighting, and/or content changes may require a larger window size to correctly pinpoint very distinct keypoint

matches since the images will have so many visual differences.

2) Regional Matching Methods: Several methods for matching and aligning photographs have expanded on these

locally defined feature descriptors to use visual information covering a larger region within images. Yang et al. [13]

designed a pipeline using bootstrapping and region growing to search for a dense set of corner and edge features.
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Fig. 2. Registration results after applying our pipeline to several challenging image pairs from our dataset as well as from the datasets provided

in [11] and [12]. Original images are shown above registered images.

They use these features to compute a global homography relating two images. Since this method uses a single

homography to overlay an image pair, it is best-suited for planar-approximate scenes. Hacohen et at. [14] also

identifies dense matches across image pairs. They align image patches by searching across a set of transformations

such as rotations and translations that overlay pairs of patches as well as possible and use groupings of matches to

calculate the coherence of a region.

Other groups have developed region detectors and descriptors that rely on less-structured features. MSER’s are

used to identify image neighborhoods that are visually similar and contrast greatly with adjacent regions. The SIFT

descriptor can be used to describe and match corresponding MSER’s in image pairs [15]. MSER is affine invariant

but has been shown to be biased to “round” shapes [16]. If an image has repetitive patterns, such as a row of

windows, it is possible that the MSER feature will be ambiguous if its size is not large enough. Shape contexts [17]

describe feature points that are uniformly sampled along contours based on nearby keypoint’s relative locations.

These groupings of points are used to find optimal image correspondences and are useful for object recognition.

Contours throughout the image must be correctly extracted, which is not always an easy task.

Measuring the similarity of all overlapping pixels is another approach for region matching. Normalized cross

correlation, the sum of squared differences, and the sum of absolute differences all perform a pixel-by-pixel

comparison and can be used to find the best alignment for an image pair [18]. Histograms of gradients (HOG) have

also been used as unstructured region descriptors for image alignment verification [19] and object recognition [20].

While these methods can be very informative, scale and orientation information should be known in order to use

them efficiently. To maximize their robustness, and to avoid exhaustively searching for overlapping regions, they
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can be combined with other information or descriptors to provide this information.

Another class of mid-level, regional matching approaches is to identify symmetrical elements and self-similarities

in images. This is especially useful when working with architectural data that often times contains repetitive

structures [21]. Hauagge and Snavely search for horizontal, vertical, and rotational symmetries about various axises

and scales across images [12]. Self-similarities can even be identified in patterns of colors, edges, and repeated

visual elements in non-architectural imagery by measuring how similar a small region is to parts of the larger

surrounding region [22].

Machine learning techniques can also be used to identify unique regions in photographs, paintings, and 3D models

to match imagery with highly varying properties and to perform object recognition [11], [23], [24]. These mid-level

discriminative features ideally occur often enough in the data to be learned, but are different enough from the rest

of the imagery to be clearly located in photographs and models with visual dissimilarities. Alignment estimates can

even be made between multi-modal data such as paintings and photo-realistic 3D models by using the gist scene

descriptor and edge information of different regions [25].

3) Linear Features: Extracting long linear features is another approach used for matching images. This can be

a very difficult task as line features are relatively fragile and their lengths may vary with changing viewpoints

and lighting conditions. Wang et al. [26] match clusters of line segments, or line signatures, in image pairs using

the assumption that local neighborhoods of strong structural features will maintain the same relative arrangements

throughout baseline and lighting changes. Fan et al. [27] also match lines by using spatially proximate features.

They consider two lines to be a matching pair if they have similar distance ratios to neighboring keypoints that

are known matches. Since each potential linear match requires nearby correctly matched keypoints, this method

is dependent on having a relatively large number of correct feature point correspondences. Color histograms of

the color profiles surrounding a line segment have also been used for line matching under the observation that the

changes in color between two intersecting planes is relatively invariant to camera motion [28].

B. Overview and Contributions

In this paper we present a framework for using contextual information for image matching with the goal of

increasing the number of keypoint matches found between challenging image pairs in order to find an aligning

transformation relating the images. We mainly work with piece-wise planar man-made scenes that need not be time

adjacent, examples of which are shown in Figure 2. For planar-approximate image patches, we believe that using

relatively large regions for keypoint comparison helps features remain more distinct throughout such condition

changes. Our contextual framework for registering images can take three forms. The first is to build upon and

complement existing sparse local feature matching techniques such as SIFT. We describe the surrounding regions

of keypoints in terms of salient structural features via line segment extraction and their rich texture information

using histograms of gradients (HOG). These neighborhood sizes are determined adaptively using maximally stable

extremal regions (MSER) [29]. To eliminate the requirement that we incorporate an existing matching algorithm,

we can also use our regional contextual information to describe and match Harris-Laplacian corners. The third
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option is to estimate corner locations using extracted line segments, which we call Pseudo Corners, freeing this

algorithm from any dependencies on existing detectors or descriptors. After combining several local keypoint and

regional template matching techniques to make an educated estimate about the image alignment, we follow up with

iterative and global refinement stages using corner, edge, and gradient information across the entire image planes.

Our pipeline is outlined in Figure 1.

The contributions of our registration method lie in the combination of methods used including the structure of

our contextual matching framework and the way we incorporate this framework with local keypoint matching to

create an ensemble feature. We propose using robust SIFT feature points or plentiful corner keypoints as anchor

points for exploring potentially matching regions by comparing both HOG’s and line segments. The MSER’s that

encompass each SIFT or corner keypoint, and that are often used to identify homogeneous regions, give us a general

idea of the dimensions of local planar patches and what the neighborhood size should be for stable matching. We

match both hard and soft edge features (lines and HOG’s) in these regions to increase the matching feature set

size between images with visual discrepancies. Line segments represent the salient features and structures found in

an image and are relatively invariant to perspective and lighting changes. However, using line segments creates a

very minimalist representation of an image. It does not provide as much distinct information as HOG, which picks

up curved structures and textures. HOG, on the other hand, is sensitive to clutter in the image. For line segment

extraction, we use the Line Segment Detector method [30]. This algorithm has been shown to accurately identify

existing lines in an image without also including many false detections due to its incorporation of line-support

regions that require pixels on or near a line segment share very similar gradient orientations. Including this method

in our work helps us to match stable regions across lighting and time changes in the images.

One of the main issues encountered in line-based matching is the lack of a robust distinctive line-based feature

descriptor. Lines in general have no area and the sizes of their neighborhoods are not known or are hard to

determine. The length of a line segment is fragile and therefore is not a stable attribute for comparison. However,

the relative orientations and locations of line segments can be computed if a proper anchor point is available.

In this paper, we combine SIFT and corner points with line segments to conduct line matching. By exploring

multiple scales of regions and using dominant gradient information in a local neighborhood, we are able to develop

a coordinate system which can be used to encode the relative locations and orientations of the line segments in

local neighborhoods. We avoid including any information dependent on the unstable end points of the line segments

and focus on matching groupings of segments as opposed to individual lines. Our experimental results show that

making use of line segments in this fashion can provide accurate information for matching on a large variety of

imagery.

By using a variety of methods to find image pair correspondences and making no assumptions about a scene’s

structure, we have developed a robust pipeline that is capable of registering images with varying subjects including

highly regularized architecture with repeating patterns and more natural, unorganized subjects combining buildings

with curved features and non-standard designs and added foliage.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TIP.2015.2456498

Copyright (c) 2015 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



7

C. Notation

For simplicity during our discussion, we will denote an image pair as I1 and I2. A feature point in I1 is represented

as A and its two closest matches in I2 are B and C. When I2 is transformed to I1’s coordinate system using a

homography, H , we will represent it as I ′2.

Throughout our discussion, we use the term “contextual” to refer to the set of matches verified using both linear

and HOG contextual information. “Ensemble” will refer to the set of features combining both SIFT matches and

contextually-verified matches.

II. CONTEXTUAL FEATURE MATCHING

The goal of our method is to extract highly distinct interest points and obtain a large number of correspondences

that can be used to correctly register image pairs [4]. Our pipeline begins by using regional contextual information to

match keypoints. We explore using three different types of keypoints as anchors for matching contextual descriptors.

The first approach we study is matching existing locally defined keypoint descriptors, such as SIFT, and expanding

upon them with our contextual information to create an ensemble feature. The second keypoint we test is Harris-

Laplacian using only our contextual work for matching. The third, Pseudo Corners, is a new keypoint type we

propose which is identified using line segments. We then identify inliers in the match set from any of these

methods using geometric verification, globally estimate and refine the image alignment, and increase our set of

matches.

A. Adaptive MSER Neighborhoods

We use MSER’s to determine the neighborhood that is considered during contextual matching. MSER’s are often

used to find homogeneous areas in images that contain distinctive information that is useful for matching [31],

[32]. An ideal neighborhood needs to contain enough regional information to clear up any ambiguity at the local

keypoint level but not include so much information that no regions actually match. We also want every pixel in an

image to belong to an MSER so that we have a “stable” neighborhood ready to select for every potential keypoint

match. To find potential MSER’s that satisfy these criteria, we create a Gaussian pyramid for an image and extract

MSER’s at each level, as shown in Figure 4. At the original image resolution, we get many MSER’s that tend to be

relatively small. Also, initially, not all pixels are assigned to an MSER. As we move down the pyramid and extract

MSER’s on increasingly blurred images, we end up with fewer, larger regions and more pixels assigned to a region.

Just to ensure that every pixel is indeed assigned to a region, we have one post-processing step after MSER’s are

extracted at each level. Connected components of pixels that have no region label are identified. Each component

is merged with the region that touches the highest number of pixels along the component’s perimeter. In general,

segmentation is a very difficult task, but this adaptive MSER labeling gives us a reasonable approximation of the

regions we need.

To help achieve our goal of assigning every pixel to a mid-sized MSER, we allow different pixels in the image to

be assigned to MSER’s from different Gaussian pyramid levels. Initially, every pixel is assigned its corresponding
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Fig. 3. Mapping bounding box of MSER neighborhood in I1 to I2. Top: MSER segments and MSER defined neighborhood in I1. MSER

segment being used is shown in white. Bottom: Original MSER neighborhood in I2 and I2’s patch after it has been transformed to the same

coordinate system as I1’s patch via a scaling and rotation. The patch in I2 is extracted at multiple scales and each patch is rotated such that

its x-axis points along the dominant gradient direction in the patch.

label at the bottom level (original image resolution) of the pyramid. Then we begin moving up the pyramid. If a

pixel’s corresponding region in the next level of the pyramid has an area that is no more than 10% of the image

area (a threshold determined experimentally for our work), the pixel takes on the higher level region area.

The keypoint’s neighborhood in I1 used during contextual matching is an orthogonal bounding box that encom-

passes an entire chosen MSER. Using this bounding box essentially grows the region slightly and allows us to take

into account boundary information surrounding the distinctive area. During the matching stage, the MSER bounding

box in I1 is mapped to I2 at multiple relative scales to take into account scale changes between the images. The

bounding boxes are oriented such that each one’s x-axis is aligned along the dominant gradient direction within

the image patch. An example of using this information to find a corresponding region between I1 and I2 is shown

in Figure 3.
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Fig. 4. MSER’s extracted at different levels of a Gaussian pyramid. Segments are combined from different levels to create adaptive MSER

segments shown in Figure 1.

B. Contextual Line Segments

We use linear contextual matching to describe potential matches by searching for and matching line segments near

keypoints. Stable line segments in the MSER-based neighborhood of potentially matching keypoints are identified

using the Line Segment Detector method [30]. Line segments are extracted from I1 and I2 at three different levels of

a Gaussian pyramid. The lines found at each Gaussian level are all combined into one set of lines. Extracting lines

from multiple image scales helps to address the fragile nature of line segments and gives us more information for

matching. Each line segment must have a length of at least 0.03∗max(imagewidth, imageheight) and its midpoint

must be located within the selected MSER bounding box to be taken into account. All the stable line segments

in this neighborhood are transformed to a polar coordinate system determined by the neighborhood’s dominant

gradient orientation and normalized by the neighborhood’s dimensions and are represented as (ρ, θ). We then match

groupings of line segments in corresponding neighborhoods using Hungarian graph matching [33]. Figure 5 outlines

this process. Two line segments (lA, lB) are considered to be similar if they have a low dissimilarity score according

to Equation 1.

dissim(lA, lB) = (ρA − ρB)2 + ω(θA − θB)2 (1)

ω is a weight parameter that normalizes the range of θ (θ ∈ [0, 2pi]) to that of ρ which is based on the contextual

neighborhood dimensions. This dissimilarity measure is only calculated if at least three lines are identified in the

contextual neighborhood of the keypoint. If a required percentage of the line segments have low dissimilarity scores,

the keypoint match is saved. Table I shows how the precision of linear contextually verified matches changes as

the required percentage of matching lines in a region and the dissimilarity score thresholds change. These values

were obtained by running our method on the symmetry dataset in [12]. Figure 6 shows a set of matching lines.
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TABLE I

AVERAGE PRECISION ON SYMMETRY DATASET FOR VARYING GRAPH MATCHING PARAMETERS - DISSIMILARITY SCORE AND THRESHOLD

ON REQUIRED % OF MATCHING LINES

- dissim = 1.0 dissim = 2.0 dissim = 3.0

10% 0.552 0.617 0.412

30% 0.371 0.426 0.365

60% 0.000 0.081 0.081

Fig. 5. Matching lines in the neighborhood of a feature point. Left: Line segments are identified within neighborhoods centering a potential

match. The keypoint is shown in black in both neighborhoods and the relative scales are represented by black circles. Middle: Line segments are

converted to polar coordinates based on their distance from the keypoint and their orientation in relation to neighborhood’s dominant gradient

direction. Right: Hungarian graph matching is applied to the set of polar coordinates to figure out the optimal set of matching lines.

C. Contextual HOG

Our second approach for contextual matching takes advantage of every pixel in MSER-based neighborhoods

surrounding potential keypoint matches. The potentially matching neighborhood in the second image is calculated

at multiple scales and its orientation is determined using the region’s dominant gradient direction, giving us a region

that contains the same content and is based in the same coordinate system.

To measure how well the two neighborhoods match, we begin by computing histograms of gradients for each

image patch. Just as was discussed in Section II-B, a three-level Gaussian pyramid is built for the corresponding

neighborhoods. A vector is constructed for each HOG cell by concatenating its nine bin values and normalizing

using the vector’s magnitude. We calculate the L2 distance between the vectors for corresponding cells in the
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Fig. 6. Identifying matching neighborhoods for contextual matching. This example uses a SIFT match as an anchor for exploring contextual

neighborhoods. Left: Two images are matched and share a corresponding point, shown in yellow. This keypoint pair has a distinctiveness ratio

between 0.7 and 0.9 and is not verified by SIFT. Top Right: Matching line segments within neighborhood. Bottom Right: HOG descriptors for

cells in the neighborhood. Cells are colored according to dominant gradient direction. The line orientation in each cell shows the cell’s dominant

gradient direction.

matching neighborhoods across all levels of the pyramid. If the average of all these distances is under a defined

threshold (threshold = 0.5 for our experiments) we say that the neighborhoods surrounding the match have a

strong correspondence and save the keypoint match. By requiring a region to have matching HOG’s along multiple

scales, we are placing a stricter requirement on the matching criteria thereby removing noise that may be present

when only one scale is used. Figure 6 shows matching HOG cells for two corresponding neighborhoods.

This method makes no assumption about the structure of a region. It can be used to find features in both natural,

highly varied regions such as areas of images containing trees as well as in areas containing uniform architecture.

D. Ensemble SIFT

The first way we incorporate contextual information in our pipeline begins with obtaining an initial set of matches

for an image pair using SIFT, a very robust and scale invariant blob detector that describes the rich and varied

gradient information surrounding an interest point. In the traditional SIFT pipeline, A and B are identified as a

true match if the distance between their descriptors passes a distinctiveness ratio test (i.e. ||Ades−Bdes||
||Ades−Cdes|| < 0.7).

When matching photographs with highly varying image properties, we may not obtain enough keypoint matches,

or enough correct matches, that are very distinct to unearth a transformation mapping the images to each other.
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In order to identify correct point matches that may not pass the ratio test (and increase our pool of matches), we

also take into account contextual information. This entails measuring the similarities of the larger neighborhoods

surrounding a potential match. Sample matching neighborhoods are shown in Figure 6. We can use our two different

types of contextual descriptors to describe these larger neighborhoods, taking advantage of hard linear features and

soft histograms of gradients (HOG). Our SIFT + line segment method is robust to lighting and content changes

and helps by identifying salient linear features. Our SIFT + HOG method is useful for matching regions that

lack dominant lines but are rich in texture. These methods are both used to clear up some of the ambiguity

between possible keypoint matches. If the neighborhoods of the matches with relatively higher distinctiveness ratios

(0.7 < ratio < 0.9) match well using one of our measures, we include them in our list of putative correspondences

that are used for future registration. Figure 7 outlines how we use the ratio test for collecting matches. An example

of how using our contextual features in addition to SIFT can help improve alignment is shown in Figure 8.

Fig. 7. Outline of how we use the distinctiveness ratio test to collect matches and to determine when to use contextual matching in conjunction

with the SIFT matching scheme.

E. Contextual Harris-Laplacian

To eliminate our dependency on SIFT so that we can handle cases where an insufficient number of potential

SIFT matches exists, we can also apply our contextual matching scheme to corner matching. In this scenario, we

extract Harris-Laplacian corners from a pair of images and the Line Segment and HOG neighborhoods surrounding

each detected keypoint. For every Harris-Laplacian corner in I1, we compare its Line Segment neighborhood and

its HOG neighborhood to the respective contextual descriptors of every corner in I2. Neighborhoods are extracted

at multiple scales as discussed in Section II-B. Pairs of corners with a sufficiently low Euclidean distance between

either their Line Segment or HOG-based descriptors are saved as matches.

F. Identifying Pseudo Corners

We may also encounter cases where the scale, lighting, content, or rendering style changes between an image

pair are so great that it is difficult to extract repeatable SIFT keypoints or Harris-Laplacian corners in both images,

leaving us with insufficient keypoint information to work with for matching and registration. For these scenarios,

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TIP.2015.2456498

Copyright (c) 2015 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



13

Fig. 8. Image alignment improvement using our ensemble SIFT method. Left: Image pair to be aligned. Center: Image alignment using only

SIFT features. Right: Image alignment using our ensemble features.

we propose using line segments extracted from the images to estimate corner locations, which we refer to as Pseudo

Corner keypoints. Line segments are extracted at multiple scales and merged together. Two segments are connected

into one larger line segment if they are near collinear and are in close proximity. Similarly, two line segments will

be merged into a single line segment if they are near parallel and are in close proximity. We can also incorporate

a saliency requirement on the line segments used by thresholding out lines with average gradient magnitude values

below a certain value as done in [27]. Our new corner keypoints are the intersection points between nearby segments.

We avoid using the inaccurate intersection points of near parallel segments by restricting that any Pseudo Corner

must be within a certain distance of each of the line segments used to find it. This process is especially tuned to

planar, architectural scenes where we can have a high degree of confidence that the intersection point of segments

laying on the same plane will correspond to a real corner. We match our Pseudo Corners using the same approach

described in Section II-E by comparing the contextual neighborhoods of keypoints in the image pair. An example

of our results using this approach to align a difficult image pair entitled Vatican is shown in Figure 9 Bottom.

We can see from Figure 15 that this image pair is not registered well using the SIFT-based ensemble method or

the contextual Harris-Laplacian method that are discussed earlier in this paper. Figure 9 Top shows the matches

identified using our ensemble SIFT method. The middle rows show the line segments extracted from the images

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TIP.2015.2456498

Copyright (c) 2015 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



14

and the Pseudo Corners identified. The bottom image shows the image pair aligned using matched Pseudo Corners

to estimate the pair’s homography.

III. HOMOGRAPHY ESTIMATION, REFINEMENT, AND VERIFICATION

All 2D matches identified using any form of our ensemble approach are used together to calculate a homography

relating the image pair. The initial homography matrix is computed using RANSAC and Direct Linear Transform

(DLT) [34]. All 2D matches found so far are geometrically verified by calculating the homography relating the image

pair and identifying inlying matches. Multiple homographies are calculated for each image pair to take into account

various 3D planes that may be represented in the images [35]. Each homography matrix Hi is computed using

RANSAC and the chosen solution is the transformation matrix supported by the largest consensus set among the 2D

matches. Matches that support a particular homography are removed and are not considered in future homography

calculations.

Our iterative approach tries to find a balance between single, global homography calculations that are limited

to planar-approximate scenes and multiple-homography methods that explicitly require a planar segmentation of

photographs [36], [37] or more complicated image deformation models [38], [39], [40], [41], [42]. Generally, our

iterative approach chooses matches belonging to different planes on different iterations as shown in Figure 10, but

we do not complicate our method by enforcing such constraints. We conduct iterative homography fitting for the

remaining features (i.e. features that are considered outliers based on the homographies estimated in the previous

loops).

We take a two step approach to refine our image alignment that deviates from the popular approach of reestimating

each Hi based on the reprojection error of the match set. We begin by searching for a dense set of matches on

a relatively local scale. This first stage gives sets of keypoints the flexibility to search for correct matches along

a variety of directions and distances. This is followed up by computing an optimal global alignment that is more

rigid, but represents a general consensus for Hi throughout the image planes.

For refinement with local information, we apply the iterative closest point (ICP) algorithm [43] on the edge

and corner pixels of I1 and find their best matches in I2. Edge points are identified by extracting line segments

and uniformly sampling them. Ideally, by finding edge points using the Line Segment Detector algorithm, we are

working with “strong” edges. Edges and corners in I1 are transformed to the matching image plane using Hi and are

compared to all of I2’s keypoints within a specified search radius. Pairs of keypoints with SIFT descriptor distances

passing the traditional distinctiveness ratio test are saved. Hi is re-estimated using RANSAC and DLT. The search

radius for matching keypoints plays an important role in our optimization algorithm. If the current homography

estimation is far away from the optimum, we would like to have a large initial radius. On the other hand, if the

current estimation is close to the optimum, a smaller radius is all that is necessary. However, this information is

not known a priori, so we start a relatively large radius (10% of max(imagewidth, imageheight)) and divide it in

half for each iteration of our refinement.

After reestimating Hi, we check the new alignment by comparing HOG’s across the entire overlapping region
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of the two images within the bounds set by the matches used to compute Hi. If the relative HOG distance after

performing ICP is higher than that of the alignment before running ICP, the new alignment is rejected. This is

essentially a quality control step to ensure that the refinement stage does not lead to an alignment that diverges

from the best solution we can find.

We next use gradient information from the image pair to perform one last global alignment. The gradient

magnitude field for I1 and the binary edge image for I2 are computed. We wish to find the homography matrix

that aligns the edge points of each image with the strongest gradient responses in the matching image as much as

possible. The varying strengths of I1’s gradient field are used to guide I2’s edges to their ideal alignment and vice

versa. To accomplish this, Hi is perturbed using Levenberg-Marquardt Optimization to maximize Equation 2. Only

edge points that are within the bounded region of the image that Hi represents are considered in Equation 2.

E = argmax
Hi

# I2 edges∑
j=0

‖ 5 I1(H
′
iptj)‖

+

# I1 edges∑
k=0

‖ 5 I2(Hiptk)‖

 (2)

Figure 11 displays gradient information that can guide our alignment and the result of using this approach. This

second stage of refinement is applied at the end of our pipeline after we have already established a relatively strong

estimate of the image pair alignment. Line segments in one image need to be transformed closely to a linearly

shaped area of relatively strong gradient responses in the matching image for these pixels to contribute to the

refining of the image alignment. Equation 2 tries to find a general agreement amongst the transformation of all

the line segments in the overlapping regions of the images. The combination of using the Line Segment Detector

method, which is robust to noise, and searching for a general consensus amongst all the line segments in the images

helps our optimization avoid being overly influenced by noise and clutter in the images. Figures 1, 9, and 11 show

examples of lines extracted using the Line Segment Detector method. We can see in these cases that the lines picked

up mainly correspond to structures that exist in both images despite very different qualities in the photograph pairs.

We pick up very few lines along the ground, trees, people, or other clutter or noise in the images.

The benefit of using these types of refinement techniques instead of trying to simply minimize a match set’s

reprojection error is apparent when the initial point correspondences are very sparse or confined to one section

of the image pair. In this situation, we are very limited in how much we can actually refine our transformation.

On the other hand, our refinement approach that considers edges, corners, lines, and gradient information takes

into account visual properties spanning the majority of the image planes regardless of the distribution of our point

correspondences.

We have several different criteria for verifying each Hi. We first make sure that the points used to calculate the

homography matrix are not collinear. Once the matrix is computed, we also take into account the layout of the

transformed images and the numerical properties of the homography matrix. To check against our layout criteria,

we project the four corners of I2 to I1’s image plane using Hi. The top left and bottom left corners must remain
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to the left of the top and bottom right corners, and the top left and right corners must remain above the bottom

left and right corners after the transformation. If this condition is not met, Hi is discarded. We also calculate the

determinant of our normalized Hi. Experiments have shown that this value should not be close to zero [35].

IV. RESULTS AND DISCUSSION

We ran our pipeline on many of the image pairs provided in the architectural symmetry dataset [12] which

contains images with a variety of visual discrepancies. This dataset includes paintings, drawings, and historical

photographs matched to modern day images and several image pairs taken at very different times. Some image

pairs are obtained under different lighting conditions, including changes in season and time of day, and have scale

and perspective changes. The dataset includes ground truth homographies for aligning image pairs. We ran several

tests on this dataset to determine the effectiveness of the first version of our pipeline which builds upon a local

feature matching technique such as SIFT. The first of these tests is shown at the top of Figure 13. The goal of

these tests and Figure 13 is to show how we can increase the accuracy and robustness of a widely used feature

matching technique with our contextual framework. This test consisted of stitching the images using the homography

calculated from four different matching techniques. We show results for using traditional SIFT matches with a 0.7

distinctiveness ratio, SIFT matches with a 0.9 distinctiveness ratio, our ensemble features, and our ensemble features

with our refinement pipeline. The contextual features identified in conjunction with our ensemble features are based

on SIFT keypoints that have distinctiveness ratios between 0.7 and 0.9. We use the first homography calculated

with our pipeline since only one ground truth transformation is provided for each image pair. We have included

both standard SIFT results to show that just increasing our search range to potential matches with ratios up to 0.9

does not account for the increased match pool and accuracy produced by our pipeline. The overall accuracy of

using all SIFT matches with a distinctiveness ratio below 0.9 is very low.

For each of these four matching technique tests, we translate every pixel in I1 to I2 using both the ground

truth homography and the first homography calculated using the method being tested. We compute the percentage

of pixels that are transformed to the same coordinate. To allow for rounding errors and small inaccuracies in the

ground truth data, we set a threshold on what the 2D distance between projected pixels can be to label a pixel as

having been transformed correctly. This threshold is 0.6% of max(imagewidth, imageheight) which is the same

threshold used on 2D symmetrical transfer errors for identifying inliers in [44].

Our proposed ensemble feature compares favorably to SIFT across this dataset. From our tests, we also have

determined that blindly raising the distinctiveness ratio allows too many inaccurate matches for RANSAC to find a

correct homography between the image pairs and yields very unstable results. However, our approach for looking

through these more ambiguous matches and considering contextual information appears to be a very valuable source

of information. We increase the size of our match pool, making it easier to find a correct alignment, without letting

in so much noise that RANSAC is overwhelmed by the outliers.

We also performed a test to observe what percentage of the keypoint matches identified in the different techniques

are indeed correct. These results are shown in Figure 13 Center. From this chart we can see that, in general, adding in
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contextually verified matches increases the percentage of accurate correspondences in the pool of matches. In theory

this should increase the odds of a correct aligning transformation being calculated using RANSAC. In conjunction

with this, we also charted the number of each type of match that was used in Figure 13 Bottom.

In Figure 12, we show the precision-recall curves for four different image pairs in the symmetry dataset. These

curves were obtained by increasing the distinctiveness ratio (r) for accepting matches. r increases from left to right.

We show the curves for using just SIFT features, using our ensemble features, and using only our contextually-

verified features. The ensemble feature contains SIFT features with ratios under r and contextually-verified features

found within a distinctiveness ratio range of [r,r+0.2). The contextual curve shows only SIFT features that passed

either the linear or HOG requirements for all matches with ratios under r. The contextual and ensemble features

perform quite well under this metric. Combining the precision-recall measurements with those shown in Figure 13

demonstrates that the contextual information we propose using can complement local keypoint matching techniques

very well.

In Figure 15, we also provide the image alignment accuracy results for each of the three versions of our pipeline.

These consist of building on SIFT and creating an ensemble feature of SIFT and contextual descriptors, matching

Harris-Laplacian corners with contextual descriptors, and matching our proposed Pseudo Corners with contextual

descriptors. This chart shows the alignment accuracy using the initial set of matches from each of these methods

and the accuracy after refinement is applied. We can see here that each of the images tested can be aligned very

well using one of our techniques. Our contextual descriptor framework can be used successfully in combination

with a variety of keypoint detectors.

Further tests of our contextual corner methods are shown in the supplementary material in which we used both

our Harris-Laplacian-based method and Pseudo Corner method to align images in the png-ZuBuD dataset [45],

the Stanford Mobile Visual Search dataset, and the dataset provided in [11]. Visual results for several of these

image pairs are shown in Figure 2 and in the supplementary material. For these tests, we compute a homography

using the matches calculated from both tested techniques and report the number of matches found and the average

symmetrical transfer error [34] for all of the matches using the estimated homography. These tests show that we

can obtain sufficient numbers of matches between image pairs with a wide variety of visual properties to find an

aligning transformation. They also show, via their low average symmetrical transfer error, that the majority of the

matches found agree with each other about the value of the solved homography matrix. This indicates that the

matches found are structurally consistent.

To test our proposed feature detector, Pseudo Corners, we computed its repeatability scores on the Oxford Affine

Covariant Region Detectors Dataset [5] which provides image sets demonstrating changes in perspective, lighting,

scale, and JPEG compression. We compared the repeatability of our Pseudo Corners to that of SIFT and Harris-

Laplacian. These values are shown in Figure 14. Our Pseudo Corners method tends to out perform SIFT and

Harris-Laplacian on all of the image sets except “bark” and “wall”. Given the nature of Pseudo Corners, which

looks for the intersections of line segments, it is reasonable that it does not perform as well on these natural images.

We have also included several visual examples of image registration using our pipeline (Figure 2) for photographs
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from our own dataset, the symmetry dataset, and several other public datasets (see supplementary material). These

image pairs present challenges including changes in season and content, lighting, scale, camera orientation, blur,

and rendering styles. The runtimes to register many of these image pairs using our pipeline are also provided in

the supplementary material. Both quantitative and qualitative comparisons of our method to other feature extraction

and matching techniques including MSER, SIFT Flow [46], and local symmetry features [12] are presented in the

supplementary material as well.

A. Limitations and Future Work

Depending on the type of data used, our pipeline may face a few roadblocks. If only a small percentage of the

identified ensemble features are actually inliers, it is very unlikely that we will find a correct image alignment using

RANSAC. To address this in the future, we will explore using techniques that have expanded on RANSAC to work

with extremely noisy data such as [47].

One of the reasons we may encounter this problem is that fact that, currently, our pipeline does not incorporate

affine invariant descriptors and is limited to relatively small baselines. One option for addressing this is to include an

affine invariant descriptor such as ASIFT [8] to expand our work. Any keypoint matching technique or combination

of techniques can be inserted into this pipeline.

V. CONCLUSION

We have presented a contextual framework for describing and matching keypoints’ neighborhoods for the purpose

of aligning image pairs. Our framework can be used to build upon and complement local keypoint matching

techniques, creating an ensemble feature, or can be used independently to describe and match keypoints. In addition

to potentially incorporating raw local keypoint matches provided by existing techniques, we can use various keypoint

detectors as anchors to study larger regions surrounding keypoints in terms of salient line segments and texture-rich

HOG information. We have studied, tested, and presented results for using our framework in combination with

several different keypoint descriptors, including our newly proposed Pseudo Corners, to demonstrate that it is very

flexible and not dependent on any one method or type of information. By using both local and regional descriptors,

we are able to identify small unique regions surrounded by clutter and to clear up potential ambiguity during feature

matching by looking at a larger subset of the image. This pipeline has been designed to combine these various

feature extraction and matching methods in such a way that it is robust under lighting, content, and rendering

changes. We have shown quantitatively that using this information can increase the accuracy of identified matches

and image alignment over using SIFT alone as well as can be used to accurately describe Harris-Laplacian corners

and our proposed Pseudo Corners. Our technique can work on images containing a variety of architectural styles,

man-made features, and natural content without making assumptions about the general structure of a scene and can

handle different artistic representations of the same location.
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Fig. 9. Using Pseudo Corners to align a difficult image pair, called Vatican. Top: The majority of the SIFT (green) and linearly-verified (red)

keypoint matches for this pair are incorrect and cannot be used to align the images. No SIFT+HOG matches were identified in this example.

The relative SIFT scales are represented by the size of the circles and the features’ orientations are denoted by the black lines. 2nd Row: Line

segments extracted from images (shown in yellow) that are used to find Pseudo Corners. 3rd Row: Pseudo Corners identified after intersecting

line segments. Bottom: Image pair is aligned using the homography calculated from the matched Pseudo Corners.
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Fig. 10. Matches identified using multiple homographies. Each color corresponds to a different homography. We can see how each homography

tends to find matching points in different regions and planes of the image.

Fig. 11. Using gradient information to refine homography. Top: Two original images and their edge images and gradient field images. We aim

to align the edge and gradient field images as well as possible. Bottom Left: Stitching result before our refinement method is applied. Bottom

right: Result after our refinement is applied. Bottom middle: Zoomed in views of the area where the alignment is corrected through refinement.
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Fig. 14. Repeatability measurements for SIFT, Harris-Laplacian, and Pseudo Corners on Oxford Affine Covariant Region Detectors Dataset [5].

The sets of images test the following changes in image properties: bark - scale and image rotation changes on textured scene, bikes - increased

blur on a structured scene, boat - scale changes, graf - viewpoint changes, leuven - illumination changes, trees - increased blur on a structured

scene, ubc - changes in JPEG compression, wall - viewpoint angle changes on textured scene.
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Fig. 15. Comparing our contextual methods. Using the symmetry dataset [12], we show the alignment accuracy using our ensemble SIFT

features before and after refinement, contextual Harris-Laplacian before and after refinement, and contextual pseudo corners before and after

refinement. As mentioned in Section I-C, ensemble features refer to the version of our method that uses an existing keypoint descriptor, such as

SIFT, in addition to our contextual linear and contextual HOG information for matching. Contextual features use only our contextual descriptor

for matching. The accuracy is measured in terms of the percentage of pixels in I1 that are transformed to the correct location in I2 using the

homography estimated from the match set.
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