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Abstract

Using algebraic techniques, one of the co-authors has designed a [155,64,20] low density parity check

code based on permutation matrices. This code is quasi-cyclic by construction and hence admits a

convolutional representation. A set of low density parity check convolutional codes is derived from

this quasi-cyclic code and its generalizations. We investigate the performance of these convolutional

codes when decoded using belief propagation on their corresponding graph representations.

∗This work was supported in part by NSF Grant CCR00-75514 and NASA Grant NAG5-10503.
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1 Introduction

In the past few years, excellent performance has been achieved for binary transmission over noisy

channels using turbo coding and low density parity check (LDPC) codes. These codes have an inherent

block structure that requires splitting the data to be transmitted into frames, which can be a dis-

advantage in some applications. Convolutional codes, on the other hand, have no such requirement,

and hence are well suited for continuous transmission. Inspired by the pioneering work of Blake [1],

on algebraic coding, we derive a class of algebraically constructed convolutional codes from a class of

LDPC codes that are based on an algebraic construction given by Tanner [2] [3], and investigate the

performance of these codes.

At the Recent Results Session of ISIT 2000, Tanner presented a [155,64,20] LDPC code that

was designed using algebraic techniques [2]. The parity check matrix of this code is made up of a

block of circulant matrices, which makes the code quasi-cyclic. Quasi-cyclic codes provide a link

between the theories of block and convolutional codes [4] [5]. Thus, these constructions, apart from

providing an algebraic approach to constructing LDPC convolutional codes, also serve to bridge the

gap between the theories of LDPC block and convolutional codes. The resulting convolutional codes

can be represented by a semi-infinite low density parity check matrix that retains the structure of the

original parity check matrix of the block code. The low density structure of the block code, that is

replicated in the convolutional code, allows for graph based iterative decoding on the convolutional

code’s constraint graph. An added advantage of converting the block codes into convolutional codes

is the ease of encoding.

In the following section we describe the construction of such quasi-cyclic LDPC codes and show

how LDPC convolutional codes are derived from them. The performance of the convolutional codes,

when decoded with a continuously operating decoder, is then examined.

2 Code Construction

2.1 The Block Codes [3]

Let Zm denote the integers from 0 to m−1, where m is a prime number. If addition and multiplication

are defined modulo m, then Zm is the Galois field GF (m) of size m. We can then construct a (j, k)

regular LDPC code, where j and k are among the prime factors of m − 1. Let a and b denote two

non-zero elements in GF (m) with multiplicative orders k and j, respectively. Then the j × k matrix

P (shown below) is made up of integers and its (s, t)th element is given by Ps,t = b(s−1)a(t−1) modulo

m. (Here, 1 ≤ s ≤ j and 1 ≤ t ≤ k.) An LDPC code is constructed by specifying its parity check

matrix H (shown below). Specifically, H is made up of a j × k block of permutation matrices –

each permutation matrix being an m × m matrix obtained by circularly shifting the m × m identity
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variable nodes (5 rings of 31 each)  

parity nodes    (3 rings of 31 each)  

Figure 1: Tanner graph for Tanner’s [155,64,20] quasi-cyclic code

matrix. The permutation matrix in position (s, t) within H is denoted as IPs,t , the permutation matrix

obtained by circularly shifting the identity matrix by Ps,t places.

P =















1 a a2 . . . ak−1

b ab a2b . . . ak−1b

. . . . . . . . . . . . . . .

bj−1 abj−1 a2bj−1 . . . ak−1bj−1















(j×k)

H =















I1 Ia Ia2 . . . Iak−1

Ib Iab Ia2b . . . Iak−1b

. . . . . . . . . . . . . . .

Ibj−1 Iabj−1 Ia2bj−1 . . . Iak−1bj−1















(jm×km)

The code thus constructed has a binary parity check matrix that is jm × km, which means the

code has a rate R ≥ 1− (j/k). (The rate may be greater than 1− (j/k) because there may be a linear

dependence among the rows of H thus constructed; indeed, it is easy to see that there are in fact at

least j − 1 dependent rows). By construction, it is clear that every column of H contains exactly j

ones and every row contains exactly k ones, i.e., H represents a (j, k) regular LDPC code [6].

Tanner’s example: A [155,64,20] quasi-cyclic code [2]:

Elements a = 2, b = 5 are chosen from GF (31):

o(a) = 5, o(b) = 3.

The LDPC matrix

H =









I1 I2 I4 I8 I16

I5 I10 I20 I9 I18

I25 I19 I7 I14 I28









(93×155)

is thus obtained. The length of the shortest cycle (or, in other words, the girth) of the Tanner graph

corresponding to this matrix is 8. A sparse Tanner graph representation having such a large girth
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makes the code ideal for graph based belief propagation decoding. The elegant graph structure for

this code is shown in Figure 1. The associated code has a minimum distance (dmin) of 20. All parity

check matrices constructed in the above fashion have Tanner graphs with similar properties, making

them well suited for graph based decoding. In fact, for short to moderate block lengths (typically

between 1000 and 10,000 depending on the values of j and k), they outperform other regular random

constructions with comparable rates and block lengths [3].

2.2 The Convolutional Codes

The LDPC code constructed above is quasi-cyclic or, in other words, a tail biting convolutional code;

hence, a convolutional representation of this code can be obtained by simply unwrapping the quasi-

cyclic code [4] [5]. Every circulant block of the jm × km binary parity check matrix of the regular

LDPC code constructed above is expressed in polynomial form to obtain the following j × k matrix

H(D) =















1 Da−1 Da2
−1 . . . Dak−1

−1

Db−1 Dab−1 Da2b−1 . . . Dak−1b−1

. . . . . . . . . . . . . . .

Dbj−1
−1 Dabj−1

−1 Da2bj−1
−1 . . . Dak−1bj−1

−1















(j×k) .

This is the parity check matrix of the corresponding convolutional code in polynomial form. The

convolutional code has a design rate r = 1 − (j/k).

Thus, from Tanner’s [155, 64, 20] code mentioned above, we obtain a rate 2/5 convolutional code

with parity check and generator matrices given by

H(D) =









1 D D3 D7 D15

D4 D9 D19 D8 D17

D24 D18 D6 D13 D27









(3×5)

G(D) =





a1(D)
∆(D)

a2(D)
∆(D)

a3(D)
∆(D) 1 0

b1(D)
∆(D)

b2(D)
∆(D)

b3(D
∆(D) 0 1





(2×5) ,

where

a1(D) = D4(1 + D7 + D10 + D14 + D18 + D29)

a2(D) = D3(1 + D3 + D6 + D18 + D21 + D36)

a3(D) = D7(1 + D4 + D8 + D11 + D15 + D22)

b1(D) = D13(1 + D6 + D14 + D15 + D23 + D28)

b2(D) = D12(1 + D2 + D11 + D21 + D23 + D35)

b3(D) = D21(1 + D3 + D4 + D5 + D10 + D16)

∆(D) = 1 + D4 + D14 + D25 + D26 + D33.
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The minimal-basic generator matrix [7] has the minimum overall constraint length among all

equivalent rational and polynomial generator matrices and is thus of interest. The minimal-basic form

of G(D) is shown below.

Gmin(D) =

[

a1(D) a2(D) a3(D) a4(D) a5(D)

b1(D) b2(D) b3(D) b4(D) b5(D)

]

(2×5) ,

where

a1(D) = D6 + D10 + D14 + D17 + D18

a2(D) = D5 + D8 + D9 + D11 + D13 + D14 + D15 + D19 + D21 + D22 + D23

a3(D) = D9

a4(D) = D2 + D10 + D13 + D15 + D16 + D18 + D19 + D20 + D21 + D23

a5(D) = 1 + D + D3 + D9 + D10 + D11 + D12 + D13 + D15

b1(D) = D4 + D5 + D6 + D8 + D10 + D11 + D12 + D13 + D14 + D16 + D17

b2(D) = D3 + D4 + D5 + D6 + D8 + D11 + D12 + D13 + D14 + D16 + D17 + D18 + D19 + D20

b3(D) = D7 + D8 + D9 + D12

b4(D) = 1 + D + D2 + D5 + D8 + D9 + D10 + D11 + D13 + D14 + D15 + D16 + D21 + D22

b5(D) = 1 + D2 + D4 + D7 + D8 + D13 + D14.

Several quasi-cyclic LDPC block codes and their corresponding convolutional representations have

been obtained following the above procedure. A few of them are listed in Table 1. The free distance

(dfree) of the convolutional code is lower bounded by the minimum distance (dmin) of the quasi-cyclic

code (i.e., dfree ≥ dmin) [4] [5]. Thus, in the example above, dfree of the convolutional code is at

least 20. We conjecture that the above convolutional code has, in fact, a dfree of 24. Choosing one

of the inputs to the encoder G(D) as the all zero sequence and the other input as the denominator

polynomial, i.e., 1 + D4 + D14 + D25 + D26 + D33, produces a codeword of weight 24. This, strictly

speaking, provides an upper bound on the dfree of this convolutional code. Interestingly, this is the

same as the upper bound obtained by Mackay and Davey [8] for LDPC matrices constructed by using

permutation matrices, as is the case here1. The graph structure of the block code carries over to

the convolutional representation. This, as we shall see, allows for decoding the convolutional codes

efficiently using belief propagation decoding.

1Mackay and Davey show that (j, k) regular LDPCs constructed from permutation matrices (that commute) have a

minimum distance of at most (j + 1)! (which is 24 for these (3,5) LDPCs). The assertion also holds for the convolutional

codes that are derived from them.
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Table of codes - A few examples of convolutional codes derived from quasi-cyclic LDPC

codes

Block length design parameters rate (conv. code) rate (blk. code) field size

N j k rconv rblk m

155 3 5 0.4000 0.4129 31

1055 3 5 0.4000 0.4018 211

1477 5 7 0.2857 0.2884 211

1967 5 7 0.2857 0.2878 281

2105 3 5 0.4000 0.4009 421

2947 5 7 0.2857 0.2870 421

7357 3 5 0.2857 0.2863 1051

3 Decoding

The convolutional codes constructed in this fashion are found to have very large constraint lengths,

which makes Viterbi or BCJR decoding impractical. Sequential decoding, although close to maximum

likelihood, is computationally practical only for rates below the cut-off rate. We therefore investigate

decoding these codes using belief propagation based on the graph obtained from the constraints im-

posed by the parity check entries [4] [9]. We now illustrate, through a simple example, the methodology

used for obtaining the constraint graph of the convolutional code from its parity check matrix and

the strong resemblance it bears to the corresponding graph of the original quasi-cyclic block code.

Consider a [15, 5] quasi-cyclic code [5] with the following parity check matrix:

HQC =















































1 1 0 0 0 1 0 0 0 0 0 1 0 0 0

0 1 1 0 0 0 1 0 0 0 0 0 1 0 0

0 0 1 1 0 0 0 1 0 0 0 0 0 1 0

0 0 0 1 1 0 0 0 1 0 0 0 0 0 1

1 0 0 0 1 0 0 0 0 1 1 0 0 0 0

0 0 1 0 0 1 1 0 0 0 1 0 0 0 0

0 0 0 1 0 0 1 1 0 0 0 1 0 0 0

0 0 0 0 1 0 0 1 1 0 0 0 1 0 0

1 0 0 0 0 0 0 0 1 1 0 0 0 1 0

0 1 0 0 0 1 0 0 0 1 0 0 0 0 1















































.

The corresponding Tanner graph for this code is shown in Figure 2. As described above, we can

derive a convolutional code from this quasi-cyclic code. Here we obtain a rate 1/3 convolutional code
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Figure 2: Tanner graph for a

(15,5) quasi-cyclic code

�� �� �� ���	
����

Figure 3: Tanner graph for the convolutional code

derived from a (15,5) quasi-cyclic code

(The dark circles are the codebits and the empty circles are the constraints (parity checks).)

from the above quasi-cyclic block code with parity check and generator matrices given by

HC(D) =

[

1 + D 1 D

D2 1 + D 1

]

, GC(D) =
[

1 + D + D2 1 + D + D3 1
]

.

This code is described by the graph shown in Figure 3. There is a striking similarity between the

graph structures for the quasi-cyclic block code and its corresponding convolutional representation.

In fact, the graph for the convolutional code is obtained by unwrapping that of the block code.

The primary reason for obtaining a convolutional representation of the block codes is the fact that

we can decode these codes in a continuous fashion without any significant loss in performance. To this

end, a decoder (which we refer to as the continuous decoder) that operates over a window that slides

across the code-constraint graph of the convolutional code was implemented, following the approach

in [10]. This allows the decoding results to be output continuously, after some initial delay. The

other alternative would be to wait for the entire sequence of transmitted symbols and then decode

the entire frame as an LDPC block code of that length. We refer to this kind of decoding as one-shot

decoding, since decoding is performed only once after the whole frame has been received. We were

able to decode using the one-shot decoder for very long frame lengths (close to a million bits) quite

easily. This is because of the simple structure of the Tanner graphs of the convolutional codes, which

just carries over from the block codes.

4 Results

The performance obtained with these convolutional codes for rates 2/5 and 2/7 when decoded using

both continuous and one-shot decoding is shown in Figures 4 and 5. The performance of the cor-

responding quasi-cyclic LDPC block code is also shown for comparison. We find that there is little

loss in performance by decoding continuously compared to decoding after the whole frame has been

received and that the rate 2/5 codes achieve good performance beyond the cut-off rate. Interestingly,
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the convolutional codes seem to perform better than the block codes despite requiring fewer iterations

to converge. However, the performance of these convolutional codes is not very close to capacity.

There are two reasons for this - one, the construction of quasi-cyclic codes described in section 2 is

good primarily for short to moderate block lengths. This implicitly bounds the performance of the

convolutional codes that are derived from these codes; and two, the regular nature of the Tanner

graphs representing these convolutional codes further limits the performance of belief propagation de-

coding on such graphs (it is been shown in [11] how only carefully designed irregular graphs approach

the capacity limit). In fact, the lower rate 2/7 codes perform worse than the rate 2/5 codes! This can

be explained in terms of the threshold phenomenon of iterative decoders based on belief propagation

[11]. (The rate 2/5 convolutional codes2 resemble (3,5) LDPCs whose threshold is 0.965 dB, while the

rate 2/7 codes resemble (5,7) LDPCs whose threshold is 2.65 dB for a binary input AWGN channel.)

This opens an interesting avenue for further work: can we optimize the degree profile of the nodes in

the constraint graph and thereby improve the performance of such convolutional codes?

5 Conclusions

A set of convolutional codes with a simple graph structure has been constructed from their correspond-

ing quasi-cyclic block versions. Good performance beyond the cut-off rate limit has been obtained

with belief propagation decoding for the rate 2/5 codes. Recently, for short to moderate block lengths,

modifications have been proposed to the belief propagation algorithm to achieve performance closer

to maximum likelihood [12]. We are currently testing the performance of the convolutional codes

using similar techniques. It is of interest to note that the performance of the convolutional codes

is better than the associated block codes; this suggests that with good block LDPC codes that are

also quasi-cyclic codes, it may be possible to obtain convolutional versions that perform even better.

Also, modifications of the above construction may result in convolutional codes with irregular graph

structures that can improve further upon the current results.

2More precisely, we mean the constraint graphs representing these codes.
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Figure 4: Performance of rate 2/5 convolutional codes derived from quasi-cyclic (QC) codes.

The dotted lines correspond to codes derived from a block length 1055 LDPC code and the solid lines

correspond to codes derived from a block length 2105 LDPC code.
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Figure 5: Performance of rate 2/7 convolutional codes derived from quasi-cyclic (QC) codes.

The dotted lines correspond to codes derived from a block length 1477 LDPC code and the solid lines

correspond to codes derived from a block length 7357 LDPC code.
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