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I. Introduction

In the early sixties, the concept of 

Semantic Network was firstly intro-

duced as a knowledge representation 

model by cognitive scientist Allan M. 

Collins, linguist M. Ross Quillian and 

psychologist Elizabeth F. Loftus [1]. In 

1998, the term Semantic Web (SW) was 

coined by Web inventor Tim Berners-

Lee as an extension of the current Web 

[2]. It was described as a giant global 

semantic network of data that is directly 

consumable and understandable to 

machines. In contrast to a hypertext Web 

that indicates texts linked to other texts 

in other places by hyperlinks, the 

Semantic Web projects a hyperdata Web 

that indicates data objects linked with 

other data objects across the Web 

through formal semantics and ontologies. 

It enables the formation of a global web of 

data or open linked data [3] that interlinks 

distributed data at a Web-scale. The 

Semantic Web is led by the World Wide 

Web Consortium (W3C) as an interna-

tional collaborative movement [4].

Computational Intelligence (CI) [5] 

is a set of nature-inspired computational 

approaches that primarily includes 

Fuzzy Logic Systems (FLS) [6], Evolu-

tionary Computation (EC) [7] and Arti-

ficial Neural Networks (ANN) [8]. 

Fuzzy logic was introduced as a tool to 

deal with vagueness and uncertainty that 

is common for human intelligence. Evo-

lutionary computation could produce 

highly optimized processes by mimick-

ing the population-based evolution. 

Neural networks is adept at modeling 

and learning complex relationships by 

mimicking the human brain. 

The Semantic Web, in its intrinsic 

nature, creates even more sophisticated 

problems than hypertext 

Web. Firstly, the uncertain 

nature of the Web calls for 

more expressive languages 

capable of dealing with 

fuzziness and vagueness in 

Web semantics. Secondly, 

in a highly open, decen-

tralized, and vast Web envi-

ronment, more efficient 

computational approaches 

are required to reduce the computation-

al complexity of a diverse of new prob-

lems inherent to the Semantic Web. 

Typical  examples include Web-scale 

query answering and reasoning,  distrib-

uted semantic storage, complex ontology 

alignment across multiple domain 

boundaries, and massive linked data 

analysis, etc.

These insights have triggered a body 

of researches and innovation with a 

synergy of the Computational Intelli-

gence and the Semantic Web recently 

[9][10][11][12][13][14]. For examples, 

Fuzzy Logic has inspired the design of 

var iant fuzzy extensions of several 

Semantic Web languages [9][10]; 

Nature-inspired optimization methods 

such as Genetic Algorithms (GA) [11], 

Swarm Intelligence (SI) [12], and Artifi-

cial Immune Syste ms (AIS) [13] have 

been witnessed in optimizing query 

answering and reasoning over such a 

vast, decentralized data space; Artificial 

Neural Networks are equipped by 

many Semantic Web applications to 

improve the learning capability.

This article attempts to survey 

the state of the art of applying CI 

approaches into Se -

mantic Web applica-

tions. We first identify 

the vital characteristics 

or challenges inherent 

to the Semantic Web 

inc lud ing  va s tne s s , 

vagueness, and incon-

sistency in Section II. 

We then survey exist-

ing  researches with CI 

methods incor porated into the 

Semantic Web from perspectives of 

these characteristics. In order to pres-

ent the literature review, we collected 

and selected those well-established and 

most representative works. We classi-

fied them into three primary catego-

ries of CI methods including Fuzzy 

Logic, Evolutionary Computation, and 

Artificial Neural Network, corre-

sponding to Section III, IV, and V 

respectively. We emphasize on the dis-

cussion of perspectives and potential 

future research directions in this arena 

in Section VI, followed by a conclu-

sion in Section VII.

II. Semantic Web in a Nutshell

A. The Emergence of a Global Linked 
Data Space
In a nutshell, the key innovative idea of 

the Semantic Web is to create a Global 
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Linked Data Space [3] through formal 

semantics. Tim Berners-Lee suggested 

four pr inciples to the question of 

“how” [15]. The first is to use URIs to 

identify things. The second is to use 

HTTP URIs so that these things can 

be referred to and de-referenced by 

both people and intelligent agents. The 

third is to publish machine-under-

standable information about the things 

when their URIs are de-referenced, 

using standard Semantic Web languages 

such as Resource Description Frame-

work (RDF) [16], Web Ontology Lan-

guage (OWL) [16], and XML. The 

fourth is to include links (with seman-

tic annotations) to other related URI-

identified things in other places on the 

Web to improve discovery of related 

information. 

Figure 1 illustrates the new archi-

tecture of the Internet inspired by 

Tim Berners-Lee. It contains three 

major levels of abstraction: Net, Web, 

and Graph. The Graph layer i s 

thought of as the Semantic Web. It 

allows Web users or intelligent agents 

to create and explore the connections 

between the things or data objects 

without the awareness of the bound-

aries of Web sites.

B. The Semantic Web Languages: 
RDF and OWL
Succinctly, RDF [16] is a data model 

based on the idea of making statements 

about Web resources in the form of tri-

ple: <subject, predicate, object>. The subject 

denotes a resource, and the predicate 

denotes an attribute of the resource or a 

relationship with other resources denot-

ed by the object. For example, we can 

represent the notion “Tom has the symp-

tom headache” in RDF as a triple: <Tom, 

hasSymptom, Headache>. The triple state-

ment model provides an especially 

straightforward and simple way of 

describing arbitrary things and their 

relations on the Web. 

OWL [16] goes beyond RDF in its 

more expressive ability to represent a 

full ontology that gives a formal, 

explicit specification of a shared con-

ceptualization for a domain. An OWL 

ontology typically defines vocabularies 

for classes, properties, instances and 

their operations. The data described by 

an OWL ontology is interpreted as a 

set of individuals, a set of property asser-

tions which relate these individuals to 

each other, with additional axioms 

that place constraints on classes and 

properties. These axioms enable sys-

tems to infer additional knowledge 

based on the knowledge explicitly 

provided. The W3C-endorsed OWL 

specification [17] includes three vari-

ants of OWL family languages includ-

ing OWL Lite, OWL DL and OWL 

Full with different levels of expressive-

ness. The latest version of OWL is 

OWL 2 [16] that includes three tracta-

ble profiles targeted at different types 

of applications. For example, OWL 2 

EL is particularly useful in applications 

that contain very large numbers of 

properties and/or classes, OWL 2 QL 

is aimed at applications that use very 

large volumes of instance data and 

require efficient query answering rea-

soning, and OWL 2 RL is aimed at 

applications that require scalable rule-

based reasoning. 

As content in forms of RDF or 

OWL can manifest itself as self-descrip-

tive data, more accurate, complete and 

meaningful results can be obtained with 

the assistance of automated query and 

reasoning process.

C. Synergy of the Semantic Web and 
Computational Intelligence
The Semantic Web presents difficult 

challenges owing to its nature of being 

decentralized, vast, uncertain, incom-

plete and inconsistent. We summarize 

these challenges from three perspec-

tives, on which different CI techniques 

have been proven to be effective and 

advantageous.

 ❏ Vastness and Tractability: The 

vastness of the Semantic Web is 

obvious. For example, the W3C 

Linking Open Data community 

project [3] has collectively gathered 

295 data sets consisting of over 31 

billion RDF tr iples, which are 
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FIGURE 1 Three major levels of abstraction of the Internet: Net, Web, and Graph.

In 1998, the term Semantic Web (SW) was coined by Web 
inventor Tim Berners-Lee as an extension of the current 
Web. It was described as a giant global semantic network 
of data that is directly consumable and understandable 
to machines.
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interlinked by around 504 million 

RDF links as of September 2011. 

Any automated query and reasoning 

systems will have to tackle truly 

huge inputs in a highly optimized 

and tractable way.

 ❏ Vagueness and Uncertainty: 

Descriptive data on the Web usually 

comes along with imprecise concepts 

like “high” or precise concept with 

uncertain values [18]. The vagueness 

and uncertainty may exist in user 

queries, in data content, in matching 

queries to data content, and in com-

bining disparate data sources with 

overlapping ontologies. Both current 

RDF and OWL languages can only 

handle crispy descriptions which are 

definitely not satisfactory.

 ❏ Divergence and Inconsistence: 

There are always contradictions that 

inevitably arise when data from 

divergent sources are combined. In 

an open system such as the Seman-

tic Web, the aim is to have the 

agents inter-operate irrespective of 

the conflicts between their seman-

tics in solving a problem collectively. 

This requires advanced methods to 

deal with semantic mapping, ontol-

ogy alignment, inconsistent reason-

ing, etc. [19].

In studies related to both CI and the 

Semantic Web, many attempts have been 

made to apply variants CI approaches to 

tackle these challenges. For examples, 

Evolutionary Computation has been 

demonstrated to deal with the vastness 

and tractability issues; Fuzzy Logic has 

been proven to be effective for the man-

agement of vagueness and uncertainty in 

Web semantics; Artificial Neural Net-

works have been applied in solving 

inconsistent issues with regards to data 

mapping, ontology alignments, and the 

like. Figure 2 establishes a connection 

between typical CI approaches and their 

applications in the Semantic Web, which 

will be surveyed in detail in the follow-

ing sections.

III. Semantic Web 
Meets Fuzzy Logic
One big problem in many Semantic 

Web applications is to model, store, 

query, map and reason with fuzziness 

and vagueness in data semantics [18]. 

This section first presents several repre-

sentative fuzzy Semantic Web applica-

tions, then introduces the proposed 

fuzzy languages and their corresponding 

reasoning methods. 

A. Fuzzy Applications 
in the Semantic Web
Fuzzy concepts are useful in enhancing 

query or search in the Semantic Web 

[20][21][22]. For example, a fuzzy con-

cept Agile Animal can be used to anno-

tate and index data items about animals 

in a semantic search engine. A Tiger can 

thus be classified as an Agile Animal to a 

Fuzzy Logic for Fuzzy Semantic Query and Search [20], [21], [22]

Fuzzy Logic for Ontology Alignment and Semantic Mapping [19], [23]

Fuzzy Ontology for Semantic Image Retrieval and Analysis [24], [25]

Fuzzy Ontology for Semantic Web Service Matchmaking [26]

Genetic Algorithms for Semantic Query Optimization [34], [35]

Genetic Algorithms for Ontology Alignment [36], [37]

Genetic Algorithms for Semantic Web Service Composition [38]

Swarm Intelligence for Semantic Storage System [39], [40]

Swarm Intelligence for Web-Scale Reasoning [41]

Artificial Immune Systems for RDF Query Optimization [42]

Recursive ANN for Learning Ontology Alignment [43]

Interactive Activation and Competition ANN for Ontology Alignment [44]

Self-Organization Map for Ontology Enrichment [45], [46]

Projective Adaptive Resonance Theory ANN for Ontology Construction [47]
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FIGURE 2 An illustration of the landscape of the applications of CI techniques in the Semantic Web.
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degree of 0.9. In this way, the degree of 

relevance to the concept can be deter-

mined and ranked while querying and 

searching based on such a fuzzy seman-

tic index.

Fuzzy approaches have also been 

applied to resolving semantic conflicts 

between ontologies [19][23]. Fuzzy 

semantic mapping can state the generic 

similarity of two concepts of two differ-

ent ontologies. We can assert that the 

objects modeled by the first concept can 

be also modeled by the second concept 

to a certain degree. For example, the 

concept of TabletComputers can be 

mapped to MobileDevice to a degree of 

0.8. This is very useful in the Semantic 

Web as the boundaries of semantic 

mappings between data sources are usu-

ally fuzzy.

There are also schemes for using 

fuzzy ontology to enhance image analy-

sis and retrieval [24][25]. For example, 

an object o1 in an image could be Red 

to a degree 0.8 and closeTo another 

object o2 to a degree 0.6. These fuzzy 

assertions together with ontology axi-

oms enable agents to recognize objects 

contained in an image in a fuzzy way so 

that fuzzy semantic search and analysis 

can be performed against those images. 

The application of fuzzy matchmak-

ing of Semantic Web services is also 

found in the literature [26]. The match-

making activity exploits a fuzzy ontolo-

gy to represent mult i-g ranular 

information enclosed in the semantic 

descriptions of a web service using the 

OWL-S language, an OWL-based 

semantic markup language for web ser-

vices. The matchmaking is computed 

based on a fuzzy distance between user 

queries and the semantic profiles of 

matched services.

B. Fuzzy Representation Languages 
for the Semantic Web
There are today many proposals for 

fuzzy extensions to the Semantic Web 

languages such as fuzzy RDF [27], fuzzy 

OWL [28] and the most recent fuzzy 

OWL2 [29]. Most of these languages are 

based on Fuzzy Description Logics [30]

[31] that are extended from standard 

Description Logics (DL) and Fuzzy Set 

Theory.  

At this point we want to make clear 

that this article is not intended to pres-

ent a comprehensive and formal specifi-

cations on these languages (See [9][10] 

for such purposes). As an alternative, we 

use several examples to present the syn-

tax, semantics, and axiom expressions.

We commence from a running sce-

nario in healthcare. As usual, we use 

,C C1 2f to denote concepts and 

,o o1 2f to denote instances. We use DL 

syntax [31] for simplicity and readability. 

We firstdefine the TBox, which denotes 

the terminological component of a 

knowledge base.

TBox Y{C1 oungPatient/=

 HeavyWeight+

 (C HighFever2 .hasSymptom7/

 )}.Sign WeakPulsehas+ 7

C1 denotes the concept for those 

young patients with heavy weight. C2 

denotes the concept for those patients 

who have symptoms of both high 

fever and weak pulse. With the fuzzy 

concepts defined in the Tbox, we can 

create a corresponding ABox, the 

assertion component of a knowledge 

base, with fuzzy assertions like the fol-

lowing ones (see the box at the bot-

tom of the page).

If using t-norm (triangular norm), in 

order for o1 to be an instance of C1 it 

should hold that:

( ) ( ( ),C o t o1 1 1YoungPatient=

 ( ))o1HeavyWeight

 ( . , . )t 0 8 0 6=

Depending on which t-norm we use, 

we can infer different values for o1 

being a C1 or a C2. 

For example, if t is the product 

t-norm then, C1(o1)= 0.48. 

We may want to define fuzzy axioms 

in OWL such as fuzzy subsumption, 

fuzzy functional role, fuzzy disjointness, etc. 

[10]. For example, to define the fuzzy 

subsumption relation between the con-

cepts of BodyItching and SkinSymptom 

with a degree 0.9, we use:

( ) .0 9BodyItching SkinSymptom 23

Last but not least, we show examples 

on how to concretely represent fuzzy 

knowledge in an RDF/XML concrete 

syntax so as to publish fuzzy ontologies 

on the Web. There are several approaches 

to encoding fuzzy knowledge [10][29]. 

One is to extend OWL construct with 

the elements degree and ineqType that 

takes values such as “>=”. The follow-

ing is a simple example. 

<HighFever rdf : about=“#symptom01” 

 owlx : ineqType=“>=” owlx : degree 

=“0.7” />

Another approach is to store fuzzy 

knowledge in the form of OWL anno-

tations [29], thus avoiding the burden of 

extending the language. The advantage 

of using annotation is its strong compat-

ibility with existing tools such as parsers 

or reasoning engines for non-fuzzy 

ontologies since these tools can simply 

ignore fuzzy descriptions encoded in the 

annotations.

C. Reasoning in a Fuzzy 
Semantic Web
Being similar to crispy OWL knowledge 

base, reasoning services in fuzzy OWL 

ABox = 
{( : ) . , ( : ) .

( : ) . , (( , ) : )) . ,

{( : ) . , (( , ) : )) . }

o o

o o o

o o o

1 0 8 1 0 6

2 0 7 1 2 0 9

3 0 5 2 3 0 8

YoungPatient HeavyWeight

HighFever hasSymptom

WeakPulse hasSign

2 2
2 2

2 2

There are today many proposals for fuzzy extensions 
to the Semantic Web languages such as fuzzy RDF [27], 
fuzzy OWL [28] and the most recent fuzzy OWL2 [29].
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include: KB satisfiability, concept n-satisfi-

ability, concept subsumption, and entailment. 

In addition, two other important reason-

ing problems are the Best Truth Value 

Bound Problem (BTVBP) that computes 

the best lower and upper truth value 

bounds for an axiom, and the Best Satis-

fiability Bound Problem (BSBP) that 

determines the maximal degree of truth 

that a concept may have over all individ-

uals in the domain (See [9] for a formal 

definition on these problem).

Reasoning services over a fuzzy 

OWL ontology are normally reduced 

to reasoning over classical fuzzy 

description logic [30][31], thus one 

can implement fuzzy DL reasoners to 

support reasoning for fuzzy exten-

sions of OWL. There exist several 

fuzzy reasoners particularly designed 

for OWL. FiRE [18] is tableaux-based 

fuzzy reasoner that supports a nomi-

nal and datatype-free subset of fuzzy-

OWL DL. FuzzyDL[28] is a mixed 

integer programming fuzzy reasoner 

that supports fuzzy-OWL Lite. Scal-

ability issue has also been investigated 

in the literatures [22][32]. Particularly, 

Pan et al. presents algorithms of fuzzy 

OWL 2 QL for a family of expressive 

fuzzy query languages for the Quill 

query engine in the TrOWL infra-

structure [22]; Liu et al. report a 

MapReduce-based framework that 

enables scalable reasoning for a subset 

of fuzzy OWL 2 RL on a cloud infra-

structure [32].

IV. Semantic Web Meets 
Evolutionary Computation
The Semantic Web, in entirety, is a large-

scale self-organized complex system that 

is akin to being evolutionary [33]. In 

this consideration, new adaptive 

approaches are required to exploit the 

ever growing amounts of dynamic, 

multi-dimensional, and evolutionary 

semantic data at a Web-scale. This sec-

tion surveys relevant applications of 

three typical Evolutionary Computation 

methods including Genetic Algorithms, 

Swarm Intelligence, and Artificial 

Immune Systems, which have been 

proven to be effective and efficient in 

reducing the complexity of the problem 

space with regards to web-scale query 

answering and reasoning.

A. Genetic Algorithms for the 
Semantic Web
A Genetic Algorithm (GA) is a search 

heuristic that generates optimization 

solutions to problems using techniques 

inspired by natural evolution, such as 

inheritance, mutation, selection, and 

recombination [11]. GA methods have 

been investigated in optimizing 

semantic query processing [34][35], 

reducing complexity for ontology 

alignment [36][37], and computing 

optimal composition of Semantic Web 

services [38]. 

eRDF [34] is a GA-based framework 

for optimizing semantic query evalua-

tion. The problem of semantic query 

evaluation can be formulated as finding 

semantic subgraphs that match the pat-

tern of a given semantic query. eRDF 

firstly generates partial matched sub-

graphs as the population of candidate 

solutions. To propagate new candidate 

solutions, it then mutates the subgraphs 

by extending the graphs, or recombines 

two candidate subgraphs to generate 

new candidate solutions. Subgraphs that 

survive the fitness selection are consid-

ered to be optimal. Alexander Hogen-

boom et al reports similar approaches to 

finding optimal orders of join-paths for 

RDF query optimization [35].

GA methods have also been applied 

in reducing complexity of ontology 

alignment when a number of matchers 

are required to be combined to find 

optimal mappings from huge number of 

pairs of entities [36]. The problem con-

sists of finding a best combination of 

weights for different ontology matchers 

such as those based on string normaliza-

tion, string similarity, data type compari-

son, and linguistic methods, etc. The 

advantages of using GA methods lay in 

its capability of learning the best combi-

nation of weights for optimum align-

ment functions without requir ing 

human intervention.

Tizzo, N.P. [37] reports the use of 

Asynchronous Teams algorithm with 

genetic agents to optimize the composi-

tion of Semantic Web services. There are 

agents responsible for creating new 

composition patterns. There are other 

agents performing the crossover and 

mutation over these patterns based on 

genetic algorithms.

B. Swarm Intelligence 
for the Semantic Web
Swarm Intelligence (SI) is the collective 

behavior of decentralized, self-organized 

systems [12]. SI systems are typically 

made up of a population of simple 

agents interacting locally with each 

other and leading to the emergence of 

“intelligent” global behavior. SI methods 

have inspired researchers to implement 

self-organized storage systems for large-

scale semantic data sets [39][40] and 

optimize the decentralized Web-scale 

reasoning process [41]. 

Scalable query and reasoning over 

decentralized semantic storage requires 

both smart strategies of storing semantic 

data and highly optimized query and 

reasoning approaches. Ant-inspired 

swarm approaches have been used to 

implement distr ibuted storage and 

retrieval system for large-scale RDF data 

sets [39][40]. The idea is to model stor-

age operations on RDF triples as ants 

moving virtual network of nodes. While 

writing, the ants move from nodes to 

nodes until finding a number of RDF 

triples sufficiently similar to the one to 

be stored, and store it based on similarity 

clustering over the triples. While read-

ing, the ants regard RDF triples as food 

and forage from nodes to nodes until 

finding the similarity clusters containing 

the particular result. Successful opera-

tions trace back the paths they took and 

maintain virtual pheromones for each 

node to node connection. Subsequent 

The Semantic Web, in entirety, is a large-scale 
self-organized complex system that is akin to 
being evolutionary.
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operations can make use of these phero-

mones as heuristic rules to evaluate the 

possibility of finding results if selecting 

that particular connection. Results show 

that this approach can generate opti-

mized storage strategy to improve the 

overall efficiency of semantic storage 

system.

Swarm approaches are also feasible 

for optimizing Web-scale reasoning par-

ticularly geared towards a decentralized 

setting [41]. The idea is that reasoning 

tasks can be decomposed by distribut-

ing inference rules to individuals of a 

self-organized swarm. All individuals 

“walk” on the triples of a RDF graph 

locally to expand their knowledge in a 

parallel way, thereby optimizing the 

whole reasoning processes significantly 

owning to the large number of swarms. 

One advantage of the approach is that 

triples can be added and deleted to the 

store at any time without affecting the 

inference process due to the random 

behavior and large number of individu-

als. This is an important feature because 

of the highly dynamic nature of the 

Semantic Web.

C. Artificial Immune System 
for the Semantic Web
Artificial Immune Systems (AIS) are a 

type of EC systems inspired by the prin-

ciples and processes of the vertebrate 

immune system [13]. It typically exploits 

the immune system’s characteristics of 

learning and memory to solve a prob-

lem. AIS has inspired solutions to opti-

mize query answering in the Semantic 

Web [42]. The idea is to develop an 

analogy between semantic queries and 

antibodies of immune systems. Success-

ful antibodies that are activated by an 

infection are to be cloned and mutated, 

thus generating a number of similar 

antibodies better suited to tackle the 

infection. Analogously, successful queries 

that produce relevant results are to be 

cloned and modified to give rise to vari-

ous similar queries, each of which may 

be an improvement and mutation on 

the original query.

V. Semantic Web Meets Artificial 
Neural Network
An Artificial Neural Network (ANN) is 

a computational model inspired by the 

structure and functional aspects of bio-

logical neural networks [7]. They are 

useful to learn complex relationships or 

patterns hidden in large scale semantic 

data. Researchers have used ANN to 

enhance ontology alignment [43][44], 

ontology enrichment [45], concept 

mining [46], automatic ontology con-

struction [47], etc. This section surveys 

and classifies the usage of ANNs in two 

typical categories: unsupervised ANN 

for ontology learning and supervised 

ANN for ontology alignment. For each 

category, we select two most representa-

tive works from the literature.

A. Supervised ANN 
for Ontology Alignment
In the literature, supervised ANNs are 

widely applied in learning semantic 

mappings between heterogeneous 

ontologies. 

Recursive Neural Network model 

(RNN) [48], designed to process struc-

tured data efficiently, is suitable for use 

with ontologies which are in a struc-

tured data representation too. RNN has 

been used to model automatic ontology 

alignment [43]. The idea is to use con-

cept structures and instance relations in 

an ontology as input to a neural net-

work to learn classifiers, which will be 

used for aligning concepts of other 

ontologies. 

One problem concerning ontology 

alignment is to find an optimal configu-

ration that can best satisfy ontology con-

straints, such as “if a concept c1 maps to 

another concept c2 is true, then concept 

c3 maps to concept c4 is false.” The 

Interactive Activation and Competition 

(IAC) neural network [49], designed to 

solve constraints satisfaction problems in 

word perception, is used to search for a 

global optimal solution satisfying as 

many ontology constraints as possible 

[44]. The idea is to use a node in the 

IAC neural network to represent an ele-

ment mapping hypothesis. The connec-

t ions between nodes represent 

constraints between hypotheses. If two 

hypotheses supports or are against each 

other, the connection between them is 

positive or negative respectively. A learn-

ing process can thus be applied over the 

network to learn the optimal solution 

for constraints satisfaction. 

B. Unsupervised ANN 
for Ontology Learning
In the literature, unsupervised ANNs are 

found to be used to learn new concepts 

and instances from domain corpus, in 

order to enrich or automatically con-

struct an ontology. 

Self-Organization Map (SOM) [50] 

is a type of unsupervised neural network 

that can produce a low-dimensional 

representation of the input space of the 

training samples, called a map. SOM has 

been used to enrich domain ontologies 

with concepts and instances extracted 

from a domain text corpus [45][46]. The 

idea is to first convert an ontology into a 

neural representation as an initial state of 

a self-organization map. Next, the terms 

representing concepts or instances that 

are to be added into the ontology are 

extracted from a domain text corpus by 

text mining process. The actual ontology 

enrichment takes place via an unsuper-

vised training of the neural network by 

exposing the initialized SOM to the 

terms and their contextual information 

extracted from the domain corpus based 

on certain types of similarity metrics. 

Another type of unsupervised ANN, 

called the Projective Adaptive Reso-

nance Theory Neural Network (PART) 

[51], has also been employed to support 

automatic ontology construction from 

web pages [47]. The PART is trained to 

cluster the collected web pages for the 

sake of looking for representative terms 

of each cluster of web pages. The repre-

sentative terms are input to a Bayesian 

The most representative advantage of CI methods for 
the Semantic Web is their capability to tackle difficult 
problems in a highly dynamic and decentralized setting.
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network to complete the hierarchy of 

the ontology.

VI. Perspectives and Potential 
Research Directions
The idea of using CI techniques to the 

Semantic Web has been successfully 

implemented by many researchers. This 

section  points out the most representa-

tive advantages and disadvantages of CI 

methods for the Semantic Web, and pro-

poses several potential directions for this 

research area.

A. Advantages and Disadvantages 
of CI methods for the Semantic Web
The most representative advantage of CI 

methods for the Semantic Web is their 

capability to tackle difficult problems in 

a highly dynamic and decentralized set-

ting. Enriching the Web with semantics 

and enabling Web intelligence are non-

trivial missions due to the decentralized 

nature of the Web. The fact that no cen-

tral components are on duty imposes 

autonomous, dynamic, uncertain, and 

random behaviors on its constituents. 

Autonomy, uncertainty, and randomness 

have been well studied in nature-

inspired approaches and the CI commu-

nities have accumulated a wealth of 

well-established approaches. These 

approaches are particularly adept in 

addressing the challenges of dealing with 

autonomy, uncertainty, randomness and 

chaos.

One disadvantage of currently avail-

able CI methods is that they are usually 

targeted at only one or two specific 

aspects of a problem, and can only 

resolve problems separately. However, 

one reality of the Semantic Web is that 

the problems of vagueness, autonomy, 

randomness and inconsistence are pres-

ent simultaneously for many applica-

tions. This requires a hybr id and 

integration of different CI methods, 

enabling them to work collectively. We 

extend the discussion in more details in 

Subsection D.

B. Broader Use of Nature-inspired 
Methods for the Semantic Web
It is noticed that the “marriage” of the 

two fields is still new, and only a small 

portion of this vast wealth have been 

explored in the Semantic Web commu-

nity. Therefore, it may be interesting to 

try a broader variant of CI techniques 

such as ant colony optimization, particle 

swarm optimization, harmony search, 

memetic algorithm, multi-valued logic, 

chaos theory, and many more, into the 

Semantic Web. For example, Harmony 

Search (HS) may overcome the draw-

back of GA’s building block theory 

which works well only if the relation-

ship among variables is carefully consid-

ered. It is thus promising to explore HS 

methods to evaluate more complex 

semantic queries that may involve a 

number of variables. Chaos theory is 

promising to facility content discovery 

in the Semantic Web. The chaos theory 

can be used to create useful content 

focal points from the chaotic mess of 

semantic data resources distr ibuted 

across the Web. Instead of looking for 

repeatable semantic patterns, it looks for 

high-level correlations or trends by 

exploring the chaotic nature of the Web.

On the other hand, from the per-

spective of the Semantic Web, it may 

also be interesting to investigate how to 

use different CI techniques to resolve 

broader problems in the Semantic Web 

such as ontology evolution, query 

rewriting, provenance tracking, linked 

data mining, semantic routing optimiza-

tion, etc. For examples, linked data min-

ing is a promising field where CI 

methods can be particularly useful [52], 

given the astonishing size of the linked 

data generated so far and the decentral-

ized nature of the data. Provenance 

tracking is another interesting field that 

remains unexplored. Provenance track-

ing requires tracing, recording and que-

rying the paths of data production from 

one site to another site. Such path rela-

tions can be extremely complex in the 

context of the Semantic Web. Ant-

inspired method may be helpful when 

dealing with such a complexity.

C. Research on Emergent Semantics 
and Self-Organizing Semantic Web
Considering the complexity of the 

Semantic Web, it is not far-fetched to 

regard it as a complex system where the 

chaotic and loosely-defined nature of 

the Web need to be tamed by novel 

approaches. In such a system, global 

structures embodying global semantic 

agreement may probably emerge from a 

multiplicity of pair-wise, local interac-

tions between data sources and agents, 

generating eventually a self-organizing 

semantic infrastructure. These statements 

project the nature-inspired view of 

“emergent semantics in the Web and 

evolutionary Semantic Web” [33] that 

imposes a complex system perspective 

on the problem of dealing with seman-

tics and intelligence on the Web. 

We state that these open new fields  

study how semantics can emerge and 

semiotic relations can originate, spread, 

and evolve over time in a social Web by 

combining recent advances in a number 

of nature-inspired methods such as evo-

lutionary computation, chaos theory, 

and self-organization systems.

D. Hybrid Approaches of EC, NN, and 
FL for Semantic Web Applications
The reality that the problems of vastness, 

autonomy, vagueness, randomness, and 

inconsistence exist simultaneously poses 

more difficulties for many Semantic 

Web applications. For example, mapping 

data across the Web induces the problem 

that the space of mapping possibilities 

among a multitude of data sources is 

especially rich. Meanwhile, resolving the 

mapping heterogeneity imposes the 

problem that the meaning of mapping is 

usually fuzzy. The algorithms need to 

take care of both uncertainty and scal-

ability issues in many applications. The 

situation also exists in large-scale query 

routing and integrative reasoning among 

intelligent agents that may hold fuzzy 

knowledge on their status.

The way out of such conundrum 

may lay in a combination of variant CI 

techniques. For example, Neural Fuzzy 

System (NFS) [53] refers to the synthesis 

of neural network and fuzzy logic. The 

neuro-fuzzy combination results in a 

hybrid approach that fuzzy reasoning 

style is integrated with the learning and 

connectionist structure of neural net-

works. For another example, the synthe-

sis of genetic algorithm with fuzzy logic 
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extends its capability of dealing with 

fuzzy information in complexity reduc-

tion and optimization [54] [55]. We 

believe it could be a considerable 

research direction to take in these 

hybrid approaches of EC-FL [54][55], 

NN-FL[53], or EC-NN [56] to design 

systematic solution to tackle the hybrid 

challenges faced by the Semantic Web 

community.

VII. Conclusions
The Semantic Web, as a decentralized 

complex system, is akin to be fuzzy 

and evolutionary. In this article, we 

have provided a comprehensive survey 

on the applications of variant Compu-

tational Intelligence methods to 

enhance a variety of Semantic Web 

applications. The survey consists of three 

aspects: fuzzy logic to deal with vague-

ness and uncertainty in Web semantics; 

evolutionary computations to deal 

with the vastness and tractability issues 

in storing, querying, reasoning and 

mapping semantic data; artificial neural 

network to improve the learning capa-

bility of the Semantic Web. Based on 

the survey of the existing approaches 

in the literature, some potential future 

research directions in this area have also 

been discussed and proposed. 
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