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Abstract

Stochastic processing networks arise as models in manufacturing,

telecommunications, transportation, computer systems, the customer

service industry and biochemical reaction networks. Common charac-

teristics of these networks are that they have entities, such as jobs,

packets, vehicles, customers or molecules, that move along routes, wait

in buffers, receive processing from various resources, and are subject

to the effects of stochastic variability through such quantities as arrival

times, processing times and routing protocols. Understanding, analyz-

ing and controlling congestion in stochastic processing networks is the

aim of the mathematical theory of queueing.

In this article, we begin by summarizing some of the highlights in

the development of the theory of queueing prior to 1990; this includes

some exact analysis and development of approximate models for cer-

tain queueing networks. We then describe some surprises of the early

1990s and ensuing developments of the last 25 years related to the use

of approximate models for analyzing the stability and performance of

multi-class queueing networks. We conclude with a description of re-

cent developments for more general stochastic processing networks, and

point to some open problems.
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1. Introduction

Stochastic models of complex processing networks arise in a wide variety of applications in

science and engineering, e.g., in manufacturing, transportation, telecommunications, com-

puter systems, customer service facilities and biochemical reaction networks (Anderson &

Kurtz 2011; Bertsekas & Gallager 1992; Goss & Peccoud 1998; Kelly & Yudovina 2014;

Koole 2013; Kushner 2001; Meyn 2008; Srikant 2004; Yao 1994). These “stochastic process-

ing networks” typically have entities, such as jobs, vehicles, packets, customers or molecules,

that move along paths or routes, receive processing from various resources, such as servers,

and are subject to the effects of stochastic variability through such variables as arrival

times, processing times and routing protocols. Networks arising from modern applications

are often highly complex and heterogeneous in that different classes of entities can share

common network resources. Frequently the processing capacity of some resources is limited,

i.e., there are bottlenecks, which results in congestion and delay due to entities waiting for

processing. Understanding, analyzing and controlling congestion in stochastic processing

networks is the aim of the mathematical theory of queueing.

Much of the research in queueing theory to date has focussed on models that fall into a

broad subset of stochastic processing networks called multi-class queueing networks. Some

exact analysis of these networks is available under certain structural and distributional

restrictions. However, for networks with more general assumptions, one usually needs to

resort to approximate models. There are various kinds of approximate models that are

used, and these typically involve proving some kind of scaling limit to justify their use as

approximations. For the approximations considered in this article, we keep the network

structure fixed, while rescaling time and space. Here we shall consider two of the most

common types of approximations, namely, (i) first order approximations, which are dynam-
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ical systems called fluid models, and (ii) second order approximations, which are diffusion

models. The dynamics of the approximate models are constrained and hence non-linear,

because we are modeling quantities that are non-negative, such as numbers of jobs of various

classes that are waiting for processing. Fluid approximations involve a law of large numbers

scaling and capture average dynamics, whereas diffusion approximations capture statistical

fluctuations around average behavior and involve a central limit theorem type of rescaling.

The approximations are justified by proving rigorous stochastic process limit theorems. The

diffusion approximations we consider here will be for heavily loaded networks, where the

rate at which work is input to the system is approximately balanced by the capacity of the

system to process that work. Such networks are of particular interest because the effects of

stochastic variability are often most apparent in this “heavy traffic regime”.

At this point in time, there is a significant theory that justifies and uses fluid and

diffusion approximations to characterize the stability and heavy traffic performance of multi-

class queueing networks that use head-of-the-line (HL) processing. Under a HL protocol,

entities of the same class that are waiting for processing by a server are served in the

order in which they arrived to the server. Approximations for HL multi-class queueing

networks have been developed over a number of years and there have been some surprises

along the way. Furthermore, there are still some challenging problems to consider for these

networks. However, in contrast, understanding the stability and performance of non-HL

queueing networks, and more general stochastic processing networks, is only in its early

stages of development, and is a very active area of current research. While the general

approach of using fluid and diffusion approximations as part of an array of tools for studying

these problems is still valid, and some use of this methodology has been made for certain

applications, there is as yet no general theory for these more complex stochastic processing

networks and there are many open questions.

In this article, we begin by summarizing some of the highlights in the development of

the theory of queueing prior to 1990, this includes some exact analysis and development

of approximate models for certain queueing networks. We then describe some surprises of

the early 1990s and ensuing developments related to the use of approximate models for

analyzing the stability and heavy traffic performance of multi-class queueing networks. We

conclude with a description of recent developments for more general stochastic processing

networks and describe various open problems.

1.1. Some Terminology

Frequently we shall refer to the entities processed in stochastic processing networks as jobs,

but depending on the application context, we may alternatively use the terms customers,

packets, vehicles or molecules. In our discussion in this article, we shall restrict to open

networks in which entities arrive from outside the system and eventually depart the system.

Sections 2 and 3 focus on (multi-class) queueing networks. Such a network consists of a

set of nodes (or stations). At each node there are jobs that need to be processed at the node

and a server (or a pool of identical servers) capable of processing those jobs. We call the

nodes “queues”, following Kelly (1979). The term queue, as used here, includes the server(s),

the jobs being processed, and the jobs waiting for processing at a node. Jobs at a node

are classified into finitely many classes depending on their arrival characteristics, service

requirements, and routing needs. Classes at different nodes have distinct labels. If there is

more than one class of job at a node, the node will be called a multi-class queue, otherwise
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it will be called a single-class queue. When a job has finished service at a node, it either

departs the system or changes class via a routing mechanism, which may be probabilistic.

Acyclic queueing networks are those in which the routing is such that a job never returns

to a node that it has previously visited. Feedforward queueing networks are those in which

the queues are numbered and jobs are always routed from lower to higher numbered queues.

We shall use the term “queueing networks with feedback” to mean queueing networks that

allow arbitrary probabilistic routing.

In depicting a multi-class queue, we will find it helpful to relegate different classes of

waiting jobs to different buffers so that there is one buffer for each class of job. Note that,

in contrast to usage by some authors, the collection of buffers and server(s) at a node is

what we are calling a queue. We think of the jobs in a buffer as being ordered according to

their time of arrival to the buffer, with the job that arrived the longest time ago being at

the head-of-the-line. Under a head-of-the-line (HL) service discipline, when a job is selected

from a buffer for service, the job at the head-of-the-line is the one selected. Examples of

HL disciplines are First-Come-First-Served (FCFS), where jobs are served in the order in

which they arrive to a queue, and priority disciplines which give priority to some buffers

over others, while serving jobs within a buffer in HL order. Examples of non-HL disciplines

are Last-Come-First-Served (LCFS), in which the last job to arrive to a queue is served

first, Random Selection for Service (RSS), in which waiting jobs are selected at random

for service, and Processor Sharing (PS), which is an idealization of a round-robin or time-

sharing type of discipline. (Here we consider LCFS with preemption, where a job in service

will be suspended by a newly arriving job. Service of such a job is resumed when all jobs that

arrived after it have been served.) Describing the dynamics of HL networks is frequently

simpler than for non-HL networks. A multi-class queueing network is depicted in Figure

2a.

2. Some Exact Formulas in Queueing Theory

2.1. Early Developments for Single-Class Queues

The origins of queueing theory lie in the work of Danish mathematician, statistician and

engineer, A. K. Erlang, who developed and analyzed models of telephone exchanges. Es-

pecially well known is the work (Erlang 1917), which contains his famous loss formula for

the steady-state probability that a telephone call coming into a system with finitely many

circuits will be blocked. This formula has been used in designing the capacity of telephone

systems, and also in other applications, where there is a limited service capacity and no

capacity for storing jobs awaiting service. Such systems are often referred to as loss systems

(Hunt & Kurtz 1994; Kelly 1991; Zachary & Ziedins 2002).

For calls that arrive according to a Poisson arrival process of rate λ to an exchange with

c circuits, where call lengths are independent and exponentially distributed with a mean of

µ−1, Erlang’s loss formula gives the steady-state probability, B, that a typical arriving call

will be blocked:

B =

λc

µcc!∑c
j=0

λj

µjj!

. (1)

It was later realized that Erlang’s loss formula still holds if the call lengths have an arbitrary

distribution with finite mean (Sevastyanov 1957). Such insensitivity properties, which ex-

pand the applicability of models, have also been identified in other more complex stochastic
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processing networks. For a short survey and recent work on such insensitivity properties in

communication network models, see the works of Bonald (2007) and Zachary (2007).

Work on queueing theory, especially related to telephony, continued after Erlang. An-

other important formula was developed in the early 1930s by Pollaczek (1930) and Khint-

chine (1932). For a system with a single server, this formula gives the following succinct

expression for the steady-state mean number of jobs L in the system when arrivals follow a

Poisson process of rate λ, there is unlimited capacity for storing waiting jobs, the jobs are

served in the order in which they arrive to the system and the service times for individual

jobs are independent of one another and have a common general distribution with finite

mean (1/µ) and variance (σ2
S):

L = ρ+
ρ2 + λ2σ2

S

2(1− ρ)
. (2)

Here ρ = λ/µ is called the traffic intensity for the system; it measures the average load

on the system and needs to be less than one for a steady-state distribution to exist. An

important feature of this formula is that it shows that the mean number of jobs in the system

depends not only on the mean arrival rate and service rate, but also on the variability of

the service distribution.

With the successful use of analytical techniques in operations management and decision

making during World War II, work in queueing theory, and its application in industry

and business, expanded dramatically in the 1950s and 1960s. A summary notation A/S/c,

introduced by Kendall (1953), very efficiently described key assumptions for many single-

class queues. Here the letter A describes the interarrival time distribution, S the service

time distribution and c the number of servers. For example, the letter M in the A or S

position stood for Markovian, denoting either Poisson arrivals or independent, exponentially

distributed service times, respectively, and the letter GI in the A or S position stood for

independent, identically distributed random variables with a general distribution. (We note

that some authors implicitly assume independence and then simply use G in place of GI.)

Thus such a queue with a single server, Poisson arrivals and independent, exponentially

distributed service times would be denoted M/M/1, and M/GI/1 would indicate a single-

server queue with Poisson arrivals and independent, identically distributed service times

having a general distribution. Later this notation was expanded to A/S/c/K/D to include

the system capacity for holding jobs (K) and the service discipline (D) that specifies the

order in which the processing of jobs should occur. If the capacity is omitted from the

notation, it is assumed to be infinite. Examples of common service disciplines for a single-

class queue are FCFS, LCFS, RSS and PS. Only FCFS is a HL discipline (see Section

1.1).

For single-class queues, closed form expressions for steady-state statistics and some

time-dependent distributions were obtained, especially where either the arrivals were Pois-

son or the service times were independent and exponentially distributed, e.g., M/GI/1 or

GI/M/1; in these situations, an embedded Markov chain could often be identified and ana-

lyzed. Many variations were considered and analyzed for single-class queues under certain

assumptions, including situations where rates were state-dependent, arrivals or services oc-

curred in batches, servers broke down, or customers grew impatient. A powerful formula,

proved first by Little (1961), and now referred to as Little’s law, relates the average number

of jobs L in a stable queueing system to the average time W spent per job in the system:

L = λW. (3)
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The conditions under which this formula holds have been generalized over the years and it

is true for input-output systems in amazing generality (Stidham 1974).

For more on the exact analysis of single-class queues, see e.g., the book by Asmussen

(2003). Henceforth, to simplify the exposition, we shall focus on queues that have an infinite

capacity for holding waiting jobs.

2.2. Networks of Single-Class FCFS Queues

The first general results for networks of queues were obtained by Jackson (1957, 1963),

motivated by manufacturing applications. The main result of Jackson’s 1963 paper provides

a beautiful decomposition result for the steady-state behavior of a network of finitely many

single-class queues, where external arrivals are given by independent Poisson processes,

service times are all independent of one another and exponentially distributed, the service

discipline is FCFS, and jobs are routed probabilistically between queues. In particular,

Jackson’s result implies the following. Consider a network of N single-class queues where

jobs arrive from outside the network and eventually leave the network, where the external

arrivals to each queue are given by independent Poisson processes with arrival rate αi ≥ 0

for queue i (and
∑N
i=1 αi > 0), where there is a single server for each queue that serves

jobs in the order in which they arrive at the queue (i.e., FCFS order) such that, when there

are ni > 0 jobs at queue i, the service time for the job currently in service is exponentially

distributed with parameter 1/µi(ni) (so that µi(ni) is the effective rate at which the job is

being served), and where a job upon completing service at queue i is routed next to queue

j with probability Pij . Assuming that the routing matrix P has spectral radius less than

one and P ′ denotes the transpose of P , let λ = (λ1, . . . , λN )′ be the unique column vector

solution of the traffic equation:

λ = α+ P ′λ, (4)

where α = (α1, . . . , αN )′ denotes the column vector of external arrival rates. Suppose that

for each i = 1, . . . , N , there is πi(0) > 0 such that

πi(n) = πi(0)
λni∏n

k=1 µi(k)
, n = 1, 2, . . . , (5)

defines a probability distribution πi on the non-negative integers. Then, there is a unique

steady-state distribution for the number of jobs Q = (Q1, . . . , QN ) at each of the queues,

which has the following product form:

P(Q = (n1, . . . , nN )) =

N∏
i=1

πi(ni). (6)

Thus, in steady-state, the number of jobs in distinct queues are independent of one another

and for i = 1, . . . , N , the distribution of Qi is the same as if the ith queue were an isolated

single-class queue fed by a Poisson arrival process of rate λi.

2.3. Networks of Multi-Class Queues and Product Form

Multi-class queues are simple examples of stochastic processing networks with resource

sharing in that jobs of different classes share the processing capacity of a server (or pool of

identical servers). In addition to the service disciplines mentioned in connection with single-

class queues above, new possibilities arise for multi-class queues such as priority disciplines,

which give priority to one job class over another.
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While there was some interest in multi-class queues in the 1950s and 1960s, starting

in the 1970s, the theory received a significant boost from the need to model computer

systems. Indeed, this motivated the seminal work of Baskett et al. (1975) which provided

an important generalization of Jackson’s result by establishing sufficient conditions for a

multi-class queueing network to have an explicit product form steady-state distribution,

i.e., the queues in the network are mutually independent in steady-state and the steady-

state distributions for the individual queues have exact expressions. Networks satisfying

the conditions of Baskett et al. (1975) are commonly referred to as BCMP networks. In an

open BCMP network, there are Poisson arrivals to each class, all of the multi-class queues

operate under the same service discipline and the possible disciplines are restricted to four

types: FCFS, LCFS, PS and infinitely many servers (IS). For the first three types, there

is a single server at each queue. Under the FCFS discipline, the BCMP condition requires

the service times to all be independent and exponentially distributed and all jobs at a given

queue have the same mean service time, whereas for LCFS, PS and IS, the service times need

not be exponentially distributed, but for a given class they are independent and identically

distributed with Coxian distributions. Some state-dependence of arrival and service rates

is allowed. An important aspect of the BCMP product form distributions is that they are

insensitive in that the dependence on the service time distributions is only through the

means of the distributions. The BCMP method of proof uses a notion of partial balance (a

variant of the notion of detailed balance familiar for reversible Markov chains), which was

introduced previously by Whittle (1968), in the context of migration models.

Strong probabilistic insight into the BCMP product form result was provided by Kelly

(1979), who proved that a network of quasi-reversible multi-class queues has a product

form steady-state distribution and that BCMP networks are examples of networks of quasi-

reversible queues. The notion of a quasi-reversible queue was first identified by Muntz (1972)

and further developed by Kelly (1979). The notion builds on a result of Burke (1956) for

single-class queues: a stationary M/M/c queue has the property that the departure process

is a Poisson process with the same rate as the Poisson arrival process and the number of

customers at the queue at time t is independent of the departure process up to that time.

A quasi-reversible multi-class queue is a queue having a steady-state distribution such that

the state of the stationary queue at time t is independent of the arrival times for each class

of customer served at the queue subsequent to time t, and of the departure times for each

class of customer served at the queue up to time t. The term quasi-reversible stems from

the fact that a stationary quasi-reversible multi-class queue, when viewed in reverse time,

behaves like a similar multi-class queue but where the parameters are usually different from

those of the original queue. Kelly’s insights also led to a clear understanding of certain

insensitivity properties of networks of quasi-reversible queues.

Since the work of BCMP and Kelly, there have been various extensions and refinements

giving sufficient conditions for multi-class queueing networks to have product form steady-

state distributions, see e.g., (Chao, Miyazawa & Pinedo 1999). Indeed, new applications and

extensions of the theory are still being made. An emerging area of application is to synthetic

biology, where both single-class, see e.g., (Arazi, Ben-Jacob & Yechiali 2004; Elgart, Jia &

Kulkarni 2010; Jia & Kulkarni 2011; Levine & Hwa 2007), and multi-class (Mather et al.

2010, 2011) queueing networks have been used as stochastic models. In particular, Mather

et al. (2010, 2011) derived previously unreported formulas for the steady-state correlations

between the numbers of jobs in distinct classes at a node in a multi-class queueing network

and applied this to enzymatic networks.
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3. Approximations for Heavily Loaded Queueing Networks

As we have indicated in the previous section, much of the early work in queueing theory

focussed on exact analysis of individual queues and of networks of such queues that have

product form steady-state distributions. This exact analysis required special assumptions

on the distributions associated with the arrival and/or service of jobs, such as Poisson

arrival processes and/or exponentially distributed service times. While insights from these

investigations are still used and expanded upon, systems with general distributions for

the arrivals and service typically cannot be analyzed exactly, and it is natural to seek more

tractable approximate models for their analysis. Heavily loaded networks, where congestion

is a compelling problem, are of particular interest. Over the years, a substantial theory has

been built up of diffusion approximations to heavily loaded multi-class queueing networks

with head-of-the-line service. However, there have been some surprises along the way,

relating at least in part to stability questions. In this section, we provide a brief overview of

this development. For more details up through the mid 1990s, we refer readers to (Williams

1996).

To simplify the description, we shall focus attention on situations where there is one

server for each queue. For all but the last subsection, the queueing networks considered

will be assumed to operate under HL service disciplines such as FCFS (across all buffers

processed by a given server) and priority policies which give preference to some buffers over

others. We shall not explicitly write HL before the term multi-class queueing networks in

the first five subsections. In the last subsection, we shall discuss non-HL queueing networks

with service disciplines such as LCFS and PS.

3.1. Approximations for Single-Class Queues and Networks

Early work of Kingman (1961, 1962, 1965), Prohorov (1963), Borovkov (1964, 1965), and

others in the 1960s, emphasized approximation of steady-state distributions or of finite-

dimensional distributions for waiting times and job counts for a single-class queue. A heavy

traffic approximation for the entire job count process was first clearly provided in the work

of Iglehart & Whitt (1970a), who considered a FCFS single-class queue (with multiple

servers). Their work is generally regarded as the prototype for process-level heavy traffic

approximations for single-class queueing networks. This work shows that a sequence of

suitably rescaled job count processes for a single-class queue converges in distribution to

a one-dimensional reflecting Brownian motion as the traffic intensity parameter tends to

one. Here the rescaling is a central limit theorem type of scaling (for the nth system in

the sequence, time is accelerated by a large factor r2n and the weight of an individual job

is reduced by multiplying the job count by a factor 1
rn

, which is typically of the order

of 1 − ρn, where ρn is the traffic intensity parameter). Assumptions on the sequences of

arrival and service processes require that they satisfy a functional central limit theorem and

in particular, interarrival times and service times have finite first and second moments.

Subsequently, Iglehart & Whitt (1970b) generalized their results to acyclic networks of

FCFS single-class queues, although the approximating diffusion had a complex description.

Harrison (1978) simplified this description for two queues in tandem when he proved a heavy

traffic limit theorem for this case and provided an elegant sample path representation for

the limit process, which is a reflecting Brownian motion living in the positive quadrant of

two-dimensional Euclidean space.

Reiman (1984a) proved the first general heavy traffic diffusion approximation result for
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networks of FCFS single-class queues with arbitrary probabilistic routing. These networks

are sometimes referred to as generalized Jackson networks because they are generalizations

of the (product form) networks considered by Jackson (1957, 1963), in the sense that the

exponential distributions of the interarrival and service times used by Jackson are replaced

by general distributions satisfying the finite first and second moment conditions needed for

a functional central limit theorem to hold. In the work of Reiman (1984a), the limit process

is a multi-dimensional reflecting Brownian motion that lives in the positive orthant of

Euclidean space where the dimension of the space is the number of queues in the network.

This diffusion process is constructed by applying a continuous mapping to a Brownian

motion. The existence and uniqueness of this mapping, which solves the so-called Skorokhod

reflection problem, was proved by Harrison & Reiman (1981). An attractive feature of the

diffusions is that their characteristics are determined from just first and second moment

information of the arrival and service processes for the network, together with a Markovian

routing matrix.

3.2. Some Approximations for Multi-Class Queues and Networks

For multi-class queues, early on, Whitt (1971) proved a heavy traffic limit theorem for a

multi-class queue with static priority service. He considered a queue with traffic intensity

equal to one and two priority classes (high and low). He showed that the two-dimensional

process that tracks the numbers of jobs of each class in the queue at any time, when

renormalized with a central limit theorem type of scaling, converges in distribution to a

process in which the component corresponding to the high priority class is identically zero

and that corresponding to the low priority class is a one-dimensional driftless reflecting

Brownian motion.

Subsequently, various authors (Chen & Mandelbaum 1991; Dai & Kurtz 1995; Johnson

1983; Peterson 1991; Reiman 1988) were able to prove heavy traffic limit theorems for more

general situations, including for multi-class queues with feedback and for networks of multi-

class queues. However, all of these works had restrictions and relied on the existence of a

continuous mapping to define the limit reflecting Brownian motion process from a Brownian

motion.

One of the most general of these results is due to Peterson (1991) who proved a heavy

traffic limit theorem for networks of multi-class queues with feedforward deterministic rout-

ing and with either FCFS or static priority service. Peterson’s work justifies a diffusion

approximation for the job count process, which tracks the number of jobs of each class at

each server. The dimension of this process is equal to the number of classes. Peterson’s

paper highlighted the importance for multi-class heavy traffic limit theorems of consider-

ing another process besides the job count process called the (immediate) workload process,

which tracks the amount of work (measured in units of required service time) embodied in

the jobs at each queue. The dimension of this process is equal to the number of queues (i.e.,

nodes) in the network, which in a multi-class queueing network is lower than the number of

classes, as there are multiple classes associated with at least one queue. Peterson proved,

under standard heavy traffic assumptions, that the renormalized workload process converges

to a reflecting Brownian motion living in the positive orthant of a Euclidean space whose

dimension is equal to the number of queues in the network. He showed also that the job

count process converges weakly, with the same normalization as for the workload process,

to a process that is a linear lifting of the reflecting Brownian motion, where the form of
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the linear lifting depends on the service discipline. This phenomenon, that the limit of the

renormalized workload process determines the limit for the (typically higher dimensional)

renormalized job count process, has been called state space collapse (SSC). This term was

coined in earlier work on heavy traffic approximations for multi-class queues by Reiman

(1984b, 1988).

After the work of Peterson (1991), a major challenge was to establish a general heavy

traffic limit theorem for multi-class queueing networks with feedback (i.e., arbitrary prob-

abilistic routing). While it was known that the diffusion approximations for such networks

could not all be described as continuous mappings of Brownian motion, a theory of weak

existence and uniqueness for the purported diffusion approximations was in place by the

early 1990s (Taylor & Williams 1993) and so a conjecture for a limit theorem could be stated

precisely (Harrison & Nguyen 1990, 1993). However, some surprising counterexamples pro-

duced in the early 1990s indicated that the behavior of multi-class queueing networks can

be considerably more complex than that of their single-class counterparts.

3.3. Surprising Examples

Dai & Wang (1993) produced a surprising two-queue FCFS example which showed that not

all multi-class queueing networks can have an approximation as conjectured by Harrison &

Nguyen (1990, 1993). Around that time, there was also a growing interest in the stability

of multi-class queueing networks. Simple two-queue deterministic examples with a priority

service discipline due to Kumar & Seidman (1990) and Lu & Kumar (1991) showed that

such networks need not always be stable under a natural load condition, which is normally

phrased as saying the traffic intensity parameter is less than one at each queue. Rybko

& Stolyar (1992) gave the first stochastic counterexample, for a two-queue network with a

priority service discipline. It was a further surprise when two-queue counterexamples for

the FCFS service discipline were given by Seidman (1994) (for deterministic interarrival and

service times) and Bramson (1994) (for exponentially distributed interarrival and service

times).

3.4. Stability of Multi-Class Queueing Networks

The aforementioned examples generated a great deal of interest in seeking sufficient con-

ditions for stability of multi-class queueing networks. The first technique used was to

find Lyapunov functions for proving positive recurrence of Markov processes describing the

queueing networks themselves. There is much work in the early to mid-1990’s in this vein,

for a sample, see Kumar & Meyn (1995).

A significant advance was made when an alternative approach using approximate deter-

ministic dynamical system models, called fluid models, was developed. Fluid models can be

thought of as first-order approximate models for the queueing networks. Some solutions of

these models can be obtained as limits of the original queueing networks under a functional

law of large numbers type of rescaling, where the size of the initial condition is allowed to

go to infinity. Fluid model solutions need not always be unique and a fluid model may have

more solutions than can be obtained as fluid limits.

The fluid model approach was first introduced for a specific example of a two-queue

network, with FCFS service and exponentially distributed interarrival and service times, by

Rybko & Stolyar (1992). As these authors pointed out, their procedure was, in principle,

quite general in nature. However, for all but the simplest systems, technical problems arise
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with their method when comparing solutions of the stochastic and deterministic systems.

Subsequently, Stolyar (1995) and Dai (1995) independently developed criteria for the stabil-

ity of multi-class queueing networks, in terms of the stability of fluid limits and fluid models,

respectively. As mentioned above, fluid limits are fluid model solutions, but the converse

need not be true. However, fluid limits can be awkward to work with as their characteriza-

tion can be a difficult issue. Also, Stolyar (1995) assumed exponential distributions for the

interarrival and service times, whereas Dai (1995) considered more general distributions.

Dai’s work was motivated in part by the knowledge that an analogous theorem holds for

diffusions (Dupuis & Williams 1994). The results of Stolyar (1995) and Dai (1995) set off

another flurry of work on establishing stability of queueing networks by analysing fluid mod-

els. In particular, Bramson (1996a,b) found entropy functions for fluid models associated

with multi-class queueing networks operating under (i) the FCFS discipline, provided all

jobs at a given queue have the same mean service time (Kelly-type), and (ii) a HL version

of the PS discipline. This work was particularly notable as FCFS is a difficult discipline to

analyze for multi-class queues because one needs to keep track of the order in which jobs

arrive to each queue, hence the state descriptor is essentially infinite dimensional. For an

excellent exposition of the use of fluid models for studying stability of multi-class queueing

networks, see Bramson (2006).

3.5. Diffusion Approximations for Multi-Class Queueing Networks via State
Space Collapse

While subcritical fluid models (with traffic intensity less than one at each queue) are used

in establishing stability for multi-class queueing networks, critical fluid models (with traffic

intensity equal to one at each queue) have been used as an important ingredient in estab-

lishing heavy traffic diffusion approximations for these networks. Indeed, in the late 1990s,

Bramson (1998) and Williams (1998a) developed a modular approach to proving heavy

traffic limit theorems for HL multi-class queueing networks. The idea of this approach is (i)

to use asymptotic behavior of critical fluid models to prove a version of state space collapse

called multiplicative state space collapse (Bramson 1998), and then (ii) to use the result of

(i) to establish a diffusion approximation for the workload process, which can be lifted to

a diffusion approximation for the job count process via multiplicative state space collapse

(Williams 1998a).

The notion of multiplicative state space collapse (MSSC), introduced by Bramson

(1998), is a generalization of the notion of state space collapse (SSC) used by Peterson

(1991) in his work on feedforward networks. Loosely speaking, state space collapse holds if,

in diffusion scale, the job count process can be approximately recovered from the (typically

lower dimensional) workload process and that the precision of this approximation becomes

exact in the heavy traffic limit. MSSC involves a normalization by the amount of work in

the system. It is easier to verify MSSC than SSC and frequently one can prove SSC once

MSSC is known.

The combination of the results of Bramson (1998) and Williams (1998a) yielded heavy

traffic limit theorems for multi-class queueing networks that have FCFS service, provided

they are of Kelly-type, and for a HL version of the PS discipline. These works also pro-

vided a general procedure that has since been utilized by various authors in proving heavy

traffic diffusion approximations for multi-class queueing networks with other HL service

disciplines, see e.g., (Ata & Lin 2008; Bramson & Dai 2001). The diffusion processes arising
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in these approximations are semimartingale reflecting Brownian motions (SRBMs) living in

the positive quadrant of a suitable Euclidean space. These SRBMs are more general than

the reflecting Brownian motions that arise as heavy traffic limits in the works of Peterson

(1991); Reiman (1984a), which are defined via a continuous mapping from Brownian mo-

tion. For surveys describing various aspects of SRBMs, see Williams (1995) and Dieker

(2010), and for an invariance principle that provided a key step in (Williams 1998a), see

Williams (1998b).

3.6. Non-HL Queueing Networks

In contrast to the developed theory of stability and heavy traffic diffusion approximations

for HL multi-class queueing networks, a similar theory for queueing networks operating

under non-HL policies is much less developed. Part of the challenge in dealing with such

non-HL policies is the need to develop a good mathematical framework for describing the

stochastic dynamics of the network. In the last 15 years, measure-valued processes have

been successfully used to describe and analyze some non-HL queueing systems. In particu-

lar, under general distributional assumptions, diffusion approximations have been developed

for single-class queues operating under certain non-HL policies, including LCFS, PS, short-

est remaining processing time (SRPT) and earliest-deadline-first (EDF) policies, see e.g.,

(Doytchinov, Lehoczky and Shreve 2001; Gromoll 2004; Gromoll & Kruk 2007; Gromoll,

Kruk & Puha 2011; Kruk et al. 2011; Limic 2000; Puha 2015). The work of Kruk et al.

(2004) treats acyclic multi-class networks under the EDF policy. However, it remains an

outstanding problem to develop a general theory of stability and heavy traffic diffusion

approximations for multi-class queueing networks with non-HL service disciplines.

4. More General Stochastic Processing Networks

This section begins with an explanation in broad terms of what a stochastic processing

network is and gives examples to indicate their flexibility for modeling in applications. This

is followed with a brief description of some questions and approaches associated with the

analysis and control of stochastic processing networks, and a description of some recent

developments, open problems and future directions for research. Henceforth we shall use

SPN as an abbreviation for Stochastic Processing Network.

4.1. Network Structure

Three key components of the structure of an SPN are (i) buffers (or classes) for storing wait-

ing jobs, (ii) resources for processing activities, and (iii) activities. Examples of resources

are servers or even pools of identical servers. Activities embody the processing capabilities

of the network. In abstract terms, an activity consumes from certain classes, produces for

certain (possibly different) classes, and uses certain resources in the process. [This notion

is a stochastic model analogue of one used for dynamic deterministic production models

by mathematicians and economists in the 1950s, see the works of Koopmans (1951) and

Harrison (2002) for more on this.] An especially desirable feature of the notion of a pro-

cessing activity is that it is very broad. In particular, it allows several familiar categories

of SPNs to be included within one modeling framework. This includes multi-class queueing

networks, processing facilities with alternate routing capabilities, and manufacturing plants

in which multiple components may be combined to produce new components or in which
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components may be split up so that different parts undergo different types of processing and

processed parts may be combined later to produce a finished product (so-called fork-join

networks). The notion of an SPN considered here is similar to that introduced by Harrison

(2000, 2003), although we embrace a more general service discipline — Harrison restricts to

service protocols that process jobs from the head-of-the-line (HL) of each buffer, whereas

we allow for more general non-HL processing as well. A sample schematic for an SPN is

shown in Figure 1.

4.2. Examples of Activities

To illustrate the flexibility of activities for modeling, in Figure 2 we show schematics for

four examples of SPNs related to applications. The applications are to semiconductor chip

fabrication, customer service centers, input-queued packet switches and bandwidth sharing

in a data network. Below we describe each of these in a bit more detail. Here, unless

indicated otherwise, the resources will be servers.

Figure 2a is a schematic for a multi-class queueing network. This is an SPN in which

there is just one activity associated with each buffer and where that activity connects to

just one server. On the other hand, a server may process multiple activities and hence

multiple buffers. The servers thus partition the set of buffers in a multi-class queueing

network. A semiconductor chip fabrication plant is an example of a system that can be

modeled as a multi-class queueing network (Kumar & Kumar 2001). In this application,

(very expensive) machines are the servers. To manufacture a semiconductor chip, a partially

finished chip may need to make multiple passes through the same machine to receive similar

processing at different stages in the production cycle. Chips in different stages of production

are stored in distinct buffers while waiting for processing. Each machine may process from

several different buffers, but each buffer is associated with a particular machine. An activity

corresponds to a machine processing partially completed chips from a given buffer. The

routing of the partially completed chips is typically deterministic but with a lot of feedback.

Figure 2b is a schematic for an SPN that one often sees in customer service situations

such as telephone call centers, where service agents are cross-trained to have overlapping

capabilities. In the situation depicted in the figure, flexible scheduling of customers is

permitted in that customers from the middle buffer may be processed by either the top

server or the middle server. Similarly, customers from the bottom buffer may be processed

by the middle or bottom server. Which server a particular customer is sent to depends

on the scheduling policy used for the network. In large telephone call centers, a pool of

agents might be used in place of a single server, where all agents in a pool have the same

processing capabilities (Gans, Koole & Mandelbaum 2003).

Figure 2c is a schematic for an SPN associated with a 2×2 input-queued packet switch.

Such switches are ubiquitous in routers in the Internet. Their input consists of streams of

packets coming from different sources and the switch routes these packets to their intended

destinations. For an N × N switch, there are N sources and N destinations. Although

in reality there is one buffer for each source, it is helpful for modeling to think of having

N virtual buffers for each source, one for each of the N destinations. Then each arriving

packet can be thought of as being stored in a virtual buffer associated with its source and

destination while waiting to be routed to its destination by the switch. Thus there are N2

virtual buffers where packets within a virtual buffer are queued in the order in which they

arrived. The switch operates in discrete time and in each time slot it can route at most
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one packet from each source and at most one packet can be routed to each destination. To

describe the scheduling, in each time slot, the switch chooses a bijection between the sources

and destinations. When the virtual buffers associated with a bijection are all non-empty,

choice of such a bijection results in the transfer of the maximum possible number of packets,

N , in a time-slot. Such transfers correspond to the use of one of N ! “maximal” activities.

Other activities (not shown), in which less than N packets are transferred in a time slot,

result when a bijection is chosen for which one or more of the associated virtual buffers

is empty. Figure 2c shows the two maximal activities corresponding to the two bijections:

1→ 1, 2→ 2 and 1→ 2, 2→ 1, for a 2× 2 switch. Input-queued switches are examples of

SPNs in which activities can simultaneously consume from more than one buffer.

Figure 2d is a schematic for an SPN associated with the transfer of data in a com-

munication network such as the Internet (Srikant 2004). This schematic is for a so-called

connection level model, introduced by Massoulié & Roberts (2000), which aims to capture

the dynamics of file arrivals and departures for a data network. Files arrive to the net-

work and each file has an associated deterministic route, consisting of a set of links that it

needs to traverse before departing the network. Here the processing resources correspond to

links in the network that have a finite bandwidth or rate at which data can be transmitted

through them. Files awaiting transmission through the network are stored in buffers where

all files in a given buffer are statistically indistinguishable in that they come from a common

source, are destined for the same route through the network and their sizes are drawn from

a common distribution. The model is at a time scale where propagation time through the

network is infinitesimal, so that at any instant of time, a file being transmitted is utilizing

the same bandwidth at all of the links on its route. In other words, processing files from a

given buffer simultaneously uses (the same) resource capacity from all of the links on the

route associated with that buffer. This “simultaneous resource possession” is depicted in

Figure 2d. For example, the orange files, stored in the middle buffer, will be transmitted

through the middle set of three links, simultaneously using the same bandwidth at these

three resources, and the second and fourth links share their bandwidth capacity with more

than one file type. Consequently, bandwidth allocated to the orange files will affect how

much bandwidth is available at the second and fourth links to allocate to green and pink

files, respectively. Of particular interest is how this simultaneous resource possession can

cause entrainment of resources resulting in underutilization of network capacity.

4.3. Questions and Approaches

Study of SPNs with general distributional assumptions on interarrival and processing times

typically focusses on the analysis of a system under a fixed operating policy or on the design

of an optimal (or near optimal) control policy. Given a fixed system operating under a given

policy, two major questions of interest are as follows.

(i) Is the system stable?

(ii) How does it perform when heavily loaded?

When considering problems of optimal control, one aims to

(iii) Find an operating policy that optimizes some performance criterion.

In answering (iii), one typically has to ultimately address questions (i) and (ii) for the

system operating under a proposed optimal policy.
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As we have described in Section 3, for HL multi-class queueing networks there is now

a considerable theory and tools addressing the stability and heavy traffic performance of

such networks via fluid and diffusion approximations. It is desirable to have an analogous

theory for more general SPNs. Most of the developments to date in this direction have

been for SPNs associated with optimal control or have been tied to specific applications

such as packet switches and bandwidth sharing in data networks. In the next subsection, we

describe some of these developments and some open problems. In the subsequent subsection,

we outline some directions for future research.

As most of the developments to date have been for SPNs with HL service from each

buffer (HL SPNs), in the following, the SPNs we consider will be assumed to process jobs

from each buffer in an HL manner unless specifically indicated otherwise.

4.4. Recent Developments and Some Open Problems

4.4.1. Optimal Control. In the context of optimal control, mathematical models for SPNs

with HL service and proposed approximating diffusion control problems have been intro-

duced by Harrison (2000, 2003). While these proposed approximations are only formal (not

rigorously justified), for a subclass of such SPNs called unitary networks, assuming infinite

horizon discounted linear holding costs, Budhiraja & Ghosh (2012) have rigorously justi-

fied these approximations. (In unitary networks, each activity consumes from at most one

buffer and uses at most one server for its processing (Bramson & Williams 2003). Multi-

class queueing networks and parallel server systems are examples of unitary networks.)

Also, in certain contexts related to applications, see e.g., (Ata & Kumar 2005; Ata & Lin

2008; Bell & Williams 2001, 2005; Dai & Lin 2008; Harrison 1998; Kushner & Chen 2000;

Mandelbaum & Stolyar 2004; Stolyar 2004), diffusion approximations for SPNs have been

justified.

One class of SPNs that have received considerable attention are parallel server systems.

Control problems for these systems are sometimes called assignment problems. These sys-

tems are natural models for “one-pass” customer service facilities where there is no feedback

and there is some choice in assigning jobs to servers. Figure 2b depicts a small example of

such a system. A feature of these models is that flexibility in assigning jobs to servers can

potentially permit workload to be dynamically distributed so as to optimize utilization of

servers.

Complete Resource Pooling. In a seminal work on parallel server systems, building on no-

tions of resource pooling introduced earlier by Kelly & Laws (1993) for multi-class queueing

networks, Harrison & López (1999) identified a condition for optimal utilization of servers

(in heavy traffic) called complete resource pooling. An important aspect of the work of

Harrison & López (1999) is that the authors showed that complete resource pooling holds

for a parallel server system only when a certain server-buffer graph associated with the

system is connected (and in fact it is a tree, see (Williams 2000)). Under this condition,

the diffusion control problem can be reduced to a control problem for a one-dimensional

workload process and Harrison and López solved this problem for linear holding costs. In

this solution, idleness of servers is only incurred in the diffusion control problem when there

is no work for the servers to do. Subsequently, in successively more general works, Harrison

(1998), Williams (2000) and Bell & Williams (2001, 2005), provided an interpretation for

this solution in terms of a dynamic threshold policy for the original parallel server system
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and proved asymptotic optimality of this policy in the heavy traffic limit. For similar sys-

tems, with strictly convex holding costs, Stolyar (2004) and Mandelbaum & Stolyar (2004)

proved asymptotic optimality of so-called max-weight and generalized cµ-type policies, re-

spectively.

Going beyond one-pass systems, Ata & Kumar (2005) and Dai & Lin (2008) considered

optimal control of SPNs with feedback under a complete resource pooling condition. Ata

and Kumar proved asymptotic optimality of a discrete review policy for unitary networks

with linear holding costs. For more general SPNs with quadratic holding costs, Dai and Lin

proved asymptotic optimality of maximum pressure policies, a type of back pressure policy.

This followed earlier work of Dai & Lin (2005) showing that maximum pressure policies

stabilize SPNs under nominal conditions in the sense that the total output rate is equal to

the total input rate. This notion of stability is often called rate stability or it is said that

the policy maximizes throughput. An attractive feature of the policies of Dai & Lin (2008),

Mandelbaum & Stolyar (2004), and Stolyar (2004), is that they do not require knowledge

of the arrival rates for execution of the policies.

Beyond Complete Resource Pooling. When complete resource pooling is not satisfied,

there are a few examples of HL multi-class queueing networks (which are not parallel server

systems) in which analytic solutions of approximating diffusion control problems have been

used to suggest asymptotically optimal controls for the original networks, see e.g., (Budhi-

raja & Ghosh 2005; Harrison & Wein 1989; Kelly & Laws 1993; Laws 1992; Laws & Louth

1990; Martins, Shreve & Soner 1996; Wein 1990). These examples typically have a small

number of queues and corresponding low workload dimension. Ata & Lin (2008) have stud-

ied the behavior of SPNs under a maximum pressure policy when a linear independence

assumption is satisfied by workload vectors. Beyond analytic solutions, several methods for

generically approximating solutions of the diffusion control problems have been proposed

for various SPNs, see e.g., (Budhiraja, Chen & Rubenthaler 2014; Budhiraja & Ghosh 2012;

Harrison 1996; Kushner & Dupuis 2001; Maglaras 2003). However, these generic methods

typically do not take advantage of elegant structure revealed through solving the diffusion

control problems. Consequently, it has remained an outstanding open problem to find and

exploit structure of the diffusion control problems when complete resource pooling does not

hold. As a step in this direction, in recent work, Pesic & Williams (2015) have explored

partial pooling in parallel server systems based on a “forest of trees” structure that they

derived for these systems, which generalizes the single tree structure of such systems under

complete resource pooling. A new definition of workload introduced there potentially opens

up avenues for further exploration.

4.4.2. Input-queued Switches. Input-queued switches, as described in Section 4.2, are ex-

amples of SPNs in which activities can simultaneously consume from more than one buffer.

Various scheduling algorithms have been proposed for these switches that involve choosing

matchings (bijections) between sources and destinations. See the work of Shah & Wischik

(2006) for a summary. One algorithm that has received substantial study is the maximum

weight matching (MWM) algorithm, initially shown to be stable for radio hop networks by

Tassiulas & Ephremides (1992). Letting Qij denote the number of packets in the virtual

buffer associated with source i and destination j, the MWM algorithm chooses a matching

π (a bijection from {1, . . . , N} to itself) that achieves the maximum value for the weight,∑N
i=1Qiπ(i), associated with π. A variant of the MWM algorithm is the MWM-α algorithm
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for which Qiπ(i) in the last expression is replaced by Qαiπ(i) for α > 0. An advantage of

these algorithms is that they only depend on information about numbers of packets waiting

to be processed and do not need information about arrival rates.

It has been shown under various assumptions on the inputs that an input-queued switch

is rate stable under the MWM (Dai & Prabhakar 2000; McKeown, Anantharam & Walrand

1996) and MWM-α (Keslassy & McKeown 2001; Shah & Wischik 2006) algorithms. Shah

& Wischik (2012) studied the behavior of fluid models and proved multiplicative state space

collapse (MSSC) for input-queued switches operating under any one of a family of policies

that includes the MWM-α, α > 0, policies. Kang & Williams (2012) subsequently used this

MSSC to prove a heavy traffic diffusion approximation under the MWM policy. It remains

an open problem to prove such a diffusion approximation under the MWM-α policy for all

α 6= 1. In fact, Shah & Wischik (2012) proved their MSSC for acyclic networks of switches

and it is an open problem to prove a diffusion approximation in that context as well for all

α > 0.

In other work on input-queued switches, some authors have sought bounds on the behav-

ior of the expected value of the total number of packets under various matching algorithms,

where the bounds are in terms of the switch size N and the load on the system ρ, especially

as N →∞ and/or ρ→ 1. In particular, Shah, Tsitsiklis & Zhong (2011) conjectured that

in certain limiting regimes, an optimal bound should be of the order of N/(1 − ρ). For

the latest on this conjecture and other references, see the works of Shah, Walton & Zhong

(2014), Shah, Tsitsiklis & Zhong (2014) and Maguluri & Srikant (2015).

4.4.3. Connection Level Models with Bandwidth Sharing. For the connection level models

of Massoulié & Roberts (2000), described in Section 4.2, there has been considerable interest

in understanding their stability and heavy traffic behavior when operated under “fair”

bandwidth sharing policies. This is especially true for a family of such policies introduced by

Mo & Walrand (2000), called α-fair policies, which are indexed by a parameter α ∈ (0,∞).

The case α = 1 includes the notion of proportional fairness, which was introduced earlier by

Kelly (1997). Assuming Poisson arrivals and exponentially distributed file sizes, the process

that tracks the number of files on each route is a continuous time Markov chain and the

model is equivalent in distribution to a HL SPN. Lyapunov functions constructed by de

Veciana, Lee & Konstantopoulos (2001) for α = 1 and for max-min fair (corresponding to

α → ∞), and by Bonald & Massoulie (2001) for all α ∈ (0,∞), imply positive recurrence

of the Markov chain associated with this model when the average load on each resource is

less than its capacity. Kang et al. (2009) proved that MSSC holds in heavy traffic for all

α ∈ (0,∞). Then assuming a local traffic condition, they used this to prove a diffusion

approximation when α = 1 and that for proportional fairness this diffusion has a product

form stationary distribution. Ye & Yao (2012) subsequently showed how to remove the

local traffic condition. It remains an open problem to prove a diffusion approximation for

α 6= 1; the main difficulty being the current lack of a general theory of well posedness

for the approximating diffusion process. Several authors have considered variants of the

connection level model and more general bandwidth sharing policies under the Poisson

arrivals and exponential file size assumptions, see (Harrison et al. 2015) and the introduction

to (Gromoll & Williams 2009).

When file sizes are generally distributed, the connection level model under a bandwidth

sharing policy is a network generalization of a processor sharing queue where the bandwidth

allocated to a route is shared equally amongst all of the files on a route. This is a non-HL
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SPN, which can be described using a measure-valued process that keeps track of residual

file sizes or ages of files (and also residual interarrival times if arrivals are not Poisson).

Even the question of stability of such an SPN is challenging. Stability has been proved for

certain values of α, e.g., for max-min fair by Bramson (2010), and for α = 1 with Poisson

arrivals and phase-type file size distributions by Lakshmikantha, Beck & Srikant (2004) for

certain network topologies and generally by Massoulié (2007). A fluid limit theorem has

been proved for this model by Gromoll & Williams (2009) and the invariant states of the

fluid model for α-fair policies have been characterized there. Stability of the fluid model

under α-fair policies has been established under a nominal load condition for linear networks

and simple tree networks by (Gromoll & Williams 2008) and more generally by Paganini

et al. (2012), under the assumption that fluid model solutions are sufficiently smooth that

they have densities satisfying a partial differential equation. Lee (2008) established suffi-

cient conditions for stability of the fluid model to imply positive recurrence of a Markovian

measure-valued age process associated with the original connection level model. In sum-

mary, there is nearly a complete theory for stability of the connection level model under

α-fair policies with general file size distributions. The matter of diffusion approximations is

however open except for the case of α = 1, which has recently been addressed by Vlasiou,

Zhang & Zwart (2014) for file sizes having phase-type distributions.

4.5. Future Directions

As one can see from the previous section, there has been progress on studying stability,

performance and control for some types of SPNs and some policies for operating them. It

is likely that new developments will continue to be inspired by applications. However, at a

general mathematical level, it remains an outstanding problem to develop a general theory

of stability and heavy traffic diffusion approximations for SPNs. For HL policies, the model

framework of Harrison (2000, 2003) can be used to describe the networks, and it is desirable

to develop a theory parallel to what is now available for HL multi-class queueing networks.

For non-HL policies, one has the same problem for SPNs as for multi-class queueing net-

works of developing a workable, general mathematical framework to describe the stochastic

dynamics of these networks. Measure-valued processes appear to be a potentially useful

modeling tool here. However, so far, this area is relatively underdeveloped. The connec-

tion level models with bandwidth sharing policies and general interarrival time and file size

distributions are good test examples of such networks.

This article has only touched on some aspects of SPNs. Three other important directions

in which research is being conducted for these models and which we have not treated here

are “heavy tails”, “large deviations” and “many server limits”. The book by Whitt (2002)

is a useful starting point for heavy tails, and “Big Queues” (Ganesh, O’Connell & Wischik

2004) is a good place to start for those interested in large deviations for SPNs. The study

of many server limits for SPNs has been motivated principally by applications to large

telephone call centers (Gans, Koole & Mandelbaum 2003). This has been a very active area

of research in recent years. See the recent survey (Dai & He 2012) and references therein,

for a start.
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Figure 1

A sample schematic for a stochastic processing network. Here open-ended rectangles represent
infinite capacity buffers for storing entities awaiting processing, circles represent resources (e.g.,
servers) for performing processing of activities, red arrows between buffers and resources represent

activities, the circle with a cross indicates a routing mechanism whereby entities produced by a
processing activity may be routed to various buffers in the network. Different types of activities

are shown, illustrating their modeling flexibility. The green vertical bars indicate entities awaiting
processing by an activity. The leftmost and rightmost arrows indicate inputs to and outputs from
the network, respectively.
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Figure 2

Schematics for four stochastic processing networks relating to applications. (a) Semiconductor
chip fabrication. (b) Customer service center. (c) Input-queued packet switch. (d) Bandwidth

sharing in a data network.
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