
 International Journal of Engineering Research ISSN:2319-6890)(online),2347-5013(print)

 Volume No.3, Issue No.7, pp : 435-437 01 July 2014

IJER@2014 Page 435

Reversible Data Hiding In Encrypted Images by Reserving Room before

Encryption
Harish G, Smitha Shekar B, Prajwal R, Sunil S Shetty

 Department of Computer Science & Engineering, Dr. Ambedkar Institute of Technology, India.

Email: c_harishg@yahoo.com, smithashekar_b@yahoo.co.in, prajwalr07@gmail.com and

shettysunil1992@gmail.com .

Abstract

Recently, more and more attention is paid to

reversible data hiding (RDH) in encrypted images, since it

maintains the excellent property that the original cover can

be losslessly recovered after embedded data is extracted

while protecting the image content’s confidentiality. All

previous methods embed data by reversibly vacating room

from the encrypted images, which may subject to some errors

on data extraction and/or image restoration. Here, a novel

method is proposed so as to reserve room before encryption

with a traditional RDH algorithm, and thus it is easy for the

data hider to reversibly embed data in the encrypted image.

The proposed method can achieve real reversibility, i.e., data

extraction and image recovery are free of any error.

Keywords: Reversible Data Hiding, image encryption,

PSNR.

I. Introduction
 Reversible Data Hiding in images is a technique, by

which the original cover can be losslessly recovered after the

embedded message is extracted. This important technique is

widely used in medical imagery, military imagery and law

forensics, civil constructions where no distortion of the

original cover is allowed.

For hiding data in an image: The method in [1] segments the

encrypted image into a number of non-overlapping blocks;

each block is used to carry one additional bit. The method [2]

reduced the error rate of the method [1] by fully exploiting the

pixels in calculating the smoothness of each block and using

side match. The method in [3] compressed the encrypted LSBs

to vacate room for additional data by finding syndromes of a

parity-check matrix and to separate the data extraction from

image decryption, emptied out space for data embedding

following the idea of compressing encrypted images.

Here, a novel method is proposed so as to encrypt images

using RDH , for which “vacate room after encryption” is not

done in [1]–[3], but “reserve room before encryption”where,

first empty out room by embedding LSBs of some pixels into

other pixels with a traditional RDH method and then encrypt

the image, so the positions of these LSBs in the encrypted

image can be used to embed data which achieves excellent

performance in two different prospects

• Real reversibility is realized, i.e., data extraction and image

recovery are free of any error.

• For given embedding rates, the PSNRs of decrypted image

containing the embedded data are significantly improved and

for the acceptable PSNR, the range of embedding rates is

greatly enlarged.

(a)

(b)

Figure 1 (a) Framework VRAE (b) Framework RRBE

II. Previous Methods
The methods proposed in [1]–[3] can be summarized

asthe framework, “vacating room after encryption (VRAE)”,

as illustrated in Figure.1 (a). In this framework, a content

owner encrypts the original image using a standard cipher with

an encryption key. After producing the encrypted image, the

content owner hands over it to a data hider (e.g., a database

manager) and the data hider can embed some auxiliary data

into the encrypted image by losslessly vacating some room

according to a data hiding key. Then a receiver, may be the

content owner himself or an authorized third party can extract

the embedded data with the data hiding encrypted version

according to the encryption key.

In all methods of [1]–[3], the encrypted 8-bit gray

scale images are generated by encrypting every bit planes with

a stream cipher. The method in [1] segments the encrypted

image into a number of non-overlapping blocks sized by a×a,

each block is used to carry one additional bit. To do this,

pixels in each block are pseudo-randomly divided into two

sets S1 and S2 according to a data hiding key. If the additional

bit to be embedded is 0, flip the 3 LSBs of each encrypted

pixel in S1, otherwise flip the 3 encrypted LSBs of pixels in

S2. For data extraction and image recovery, the receiver flips

mailto:prajwalr07@gmail.com
mailto:shettysunil1992@gmail.com

 International Journal of Engineering Research ISSN:2319-6890)(online),2347-5013(print)

 Volume No.3, Issue No.7, pp : 435-437 01 July 2014

IJER@2014 Page 436

all the three LSBs of pixels in S1 to form a new decrypted

block, and flips all the three LSBs of pixels in S2 to

form another new block; one of them will be decrypted to the

original block. Due to spatial correlation in natural images,

original block is presumed to be much smoother than

interfered block and embedded bit can be extracted

correspondingly. However, there is a risk of defeat of bit

extraction and image recovery when divided block is

relatively small or has much fine-detailed textures.

III. Proposed Method
Since losslessly vacating room from the encrypted images is

relatively difficult and sometimes inefficient and reversing the

order of encryption and vacating room, i.e., reserving room

prior to image encryption at content owner side, the RDH

tasks in encrypted images would be more natural and much

easier which leads to the novel framework, “Reserving Room

Before Encryption (RRBE)”. As shown in Figure. 1(b), the

content owner first reserve enough space on original image

and then converts the image into its encrypted version with the

encryption key. Now, the data embedding process in

encrypted images is inherently reversible for the data hider

which needs to accommodate data into the spare space

previous emptied out. The data extraction and image recovery

are identical to that of Framework VRAE. Obviously, standard

RDH algorithms are the ideal operator for reserving room

before encryption and can be easily applied to Framework

RRBE to achieve better performance compared with

techniques from Framework VRAE. This is because in this

new framework, the customary idea is followed i.e., first

losslessly compresses the redundant image content (e.g., using

excellent RDH techniques) and then encrypts it with respect to

protecting privacy. Next, elaborate a practical method based

on the Framework “RRBE”, which primarily consists of four

stages: generation of encrypted image, data hiding in

encrypted image, data extraction and image recovery, data

extraction and image restoration.

A. Generation of Encrypted Image

Actually, to construct the encrypted image, the first stage can

be divided into three steps: image partition, self-reversible

embedding followed by image encryption. At the beginning,

image partition step divides original image into two parts A

and B; then, the LSBs of A are reversibly embedded into B

with a standard RDH algorithm so that LSBs of A can be used

for accommodating messages; at last, encrypt the rearranged

image to generate its final version.

1) Image Partition: The reserving room before encryption is

a standard RDH technique, so the goal of image partition is to

construct a smoother area , on which standard RDH

algorithms such as [4], [5] can achieve better performance. To

do that, without loss of generality, assume the original image

is an 8 bits gray-scale image with its size M×N and pixels Ci,j

ϵ [0,255],1 ≤ i ≤ M ≤ j ≤ N. First, the content owner extracts

from the original image, along the rows, several overlapping

blocks whose number is determined by the size of to be

embedded messages, denoted by l. In detail, every block

consists of m rows, where, m=[l/N]and the number of blocks

can be computed through n= M-m+1. An important point here

is that each block is overlapped by pervious and/or sub

sequential blocks along the rows. For each block, define a

function to measure its first-order smoothness

Higher relates to blocks which contain relatively more

complex textures. The content owner, therefore, selects the

particular block with the highest to beA, and puts it to the

front of the image concatenated by the rest part with fewer

textured areas, as shown in Figure. 2.

Figure.2 Illustration of image partition and embedding

process.

2) Self-Reversible Embedding: The goal of self-reversible

embedding is to embed the LSB-planes of A into B by

employing traditional RDH algorithms. For illustration,

simplify the method in [4] to demonstrate the process of self-

embedding. Note that this step does not rely on any specific

RDH algorithm.

Pixels in the rest of image B are first categorized into

two sets: white pixels with its indices i and j satisfying (i + j)

mod2= 0 and black pixels whose indices meet (i + j) mod2 =

1, as shown in Figure. 2. Then, each white pixel, , is

estimated by the interpolation value obtained with the four

black pixels surrounding it as follows

 where the weight , is

determined by the same method as proposed in [4]. The

estimating error is calculated via and then

some data can be embedded into the estimating error sequence

with histogram shift, which will be described later. Further

calculate the estimating errors of black pixels with the help of

surrounding white pixels that may have been modified. Then

another estimating error sequence is generated which can

accommodate messages and can also implement multilayer

embedding scheme by considering the modified B as

“original” one when needed. In summary, to exploit all pixels

of B, two estimating error sequences are constructed for

embedding messages in every single-layer embedding process.

3) Image Encryption: After rearranged self-embedded image,

denoted by X , is generated. Then encrypt X to construct the

encrypted image, denoted by E .With a stream cipher, the

encryption version of X is easily obtained. For example, a

gray value ranging from 0 to 255 can be represented by 8 bits,

, such that

(3)

The encrypted bits can be calculated through exclusive- or

operation

 International Journal of Engineering Research ISSN:2319-6890)(online),2347-5013(print)

 Volume No.3, Issue No.7, pp : 435-437 01 July 2014

IJER@2014 Page 437

(4)

Finally, embed 10 bits information into LSBs of first

10 pixels in encrypted version of to tell data hider the number

of rows and the number of bit-planes that he can embed

information into encrypted image. Note that after image

encryption, the data hider or a third party cannot access the

content of original image without the encryption key, thus

privacy of the content owner being protected.

B. Data Hiding in Encrypted Image

Once the data hider acquires the encrypted image, he

can embed some data into it, although he does not get access

to the original image. The embedding process starts with

locating the encrypted version of A, denoted by . Since

 has been rearranged to the top of E, it is effortless for the

data hider to read 10 bits information in LSBs of first 10

encrypted pixels. After knowing how many bit-planes and

rows of pixels he can modify, the data hider simply adopts

LSB replacement to substitute the available bit-planes with

additional data m . Finally, the data hider sets a label

following m to point out the end position of embedding

process and further encrypts m according to the data hiding

key to formulate marked encrypted image denoted by .

Anyone who does not possess the data hiding key could not

extract the additional data.

C. Data Extraction and Image Recovery

Since data extraction is completely independent from image

decryption, the order of them implies two different practical

applications.

1) Case 1: Extracting Data from Encrypted Images:
To manage and update personal information of images

which are encrypted for protecting clients’ privacy, an inferior

database manager may only get access to the data hiding key

and have to manipulate data in encrypted domain. The order of

data extraction before image decryption guarantees the

feasibility of our work in this case.

When the database manager gets the data hiding key, he

can decrypt the LSB-planes of and extract the additional

data m by directly reading the decrypted version. When

requesting for updating information of encrypted images, the

database manager, then, updates information through LSB

replacement and encrypts updated information according to

the data hiding key all over again. As the whole process is

entirely operated on encrypted domain, it avoids the leakage

of original content.

2) Case 2: Extracting Data from Decrypted Images:

In Case 1, both embedding and extraction of the data

are manipulated in encrypted domain. On the other hand, there

is a different situation that the user wants to decrypt

the image first and extracts the data from the decrypted image

when it is needed. The following example is an application for

such scenario. Assume Alice outsourced her images to a cloud

server, and the images are encrypted to protect their contents.

In that encrypted images, the cloud server marks the images

by embedding some notation, including the identity of the

image owner, the identity of the cloud server and time stamps,

to manage the encrypted images. Note that the cloud server

has no right to do any permanent damage to the images. Now

an authorized user, Bob who has been shared the encryption

key and the data hiding key, downloaded and decrypted the

images. Bob hoped to get marked decrypted images, i.e.,

decrypted images still including the notation, which can be

used to trace the source and history of the data. The order of

image decryption before/without data extraction is perfectly

suitable for this case.

IV. Conclusion
Reversible data hiding in encrypted images is a new topic

drawing attention because of the privacy preserving

requirements from cloud data management. Previous methods

implement RDH in encrypted images by vacating room after

encryption, as opposed to which reserving room before

encryption is proposed. Thus the data hider can benefit from

the extra space emptied out in previous stage to make data

hiding process effortless. The proposed method can take

advantage of all traditional RDH techniques for plain images

and achieve excellent performance without loss of perfect

secrecy. Furthermore, this novel method can achieve real

reversibility, separate data extraction and greatly improvement

on the quality of marked decrypted images.

REFERENCES
i. X. Zhang, “Reversible data hiding in encrypted

images,” IEEE Signal Process. Lett., vol. 18, no. 4, pp. 255–258,

Apr. 2011.

ii. W. Hong, T. Chen, and H.Wu, “An improved reversible

data hiding in encrypted images using side match,” IEEE Signal

Process. Lett., vol. 19, no. 4, pp. 199–202, Apr. 2012.

iii. X. Zhang, “Separable reversible data hiding in encrypted

image,” IEEE Trans. Inf. Forensics Security, vol. 7, no. 2, pp. 826–

832, Apr. 2012.

iv. L. Luo et al., “Reversible image watermarking using

interpolation technique,” IEEE Trans. Inf. Forensics Security, vol.

5, no. 1, pp. 187–193, Mar. 2010.

v. V. Sachnev, H. J. Kim, J. Nam, S. Suresh, and Y.-Q. Shi,

“Reversible watermarking algorithm using sorting and prediction,”

IEEE Trans.Circuits Syst. Video Technol., vol. 19, no. 7, pp. 989–

999, Jul. 2009.

