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Abstract—Mobile Health (mHealth) systems leverage wireless
and mobile communication technologies to provide healthcare
stakeholders with innovative tools and solutions that can revo-
lutionize healthcare provisioning. Body Area Sensor Networks
(BASNs) is part of the mHealth system that focuses on the
acquisition by a group of biomedical sensors of vital signals.
However, the design and operation of BASNs are challenging,
because of the limited power and small form factor of biomedical
sensors. The source encoding and data transmission are the two
dominant power-consuming operations in wireless monitoring
system. Therefore, in this paper, a cross-layer framework that
aims at minimizing the total energy consumption subject to delay
and distortion constraints is proposed. The optimal encoding
and transmission energy are computed to minimize the energy
consumption in a delay constrained wireless BASN. This cross-
layer framework is proposed, across Application-MAC-Physical
layers. At large scale networks and due to heterogeneity of
wireless BASNSs, centralized cross-layer optimization becomes less
efficient and more complex. Therefore, a distributed cross-layer
optimization has been considered in this paper. The proposed
solution has close-to-optimal performance with lower complexity.
Simulation results show that the distributed scheme achieves
the compromise between complexity and efficiency in energy
consumption compared to centralized scheme.

Index Terms—Wireless healthcare applications, EEG signals,
Cross-layer design, Convex optimization.

I. INTRODUCTION

Growing number of patients with chronic diseases requiring
persistent monitoring has created a major impetus to develop
scalable BASNs for remote health applications. Despite simi-
larities with Wireless Sensor Network (WSN), BASN has its
peculiar design and operational challenges, particularly focus-
ing on energy optimization. The primary design parameters
for BASN are energy consumption, network performance, data
heterogeneity and security. Energy efficiency is a fundamental
design parameter for BASNs, because replacing sensors or
charging batteries is difficult. Wireless BASNs consist of tiny
nodes in, on, or around a human body to monitor vital signs
such as body temperature, activity or heart-rate. These sensor
nodes periodically send sensed information to a healthcare
provider. BASN is considered as a promising solution for
healthcare monitoring system, which helps in detecting, eval-
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uation, and diagnoses of various diseases without constraining
the activities of the patient [1].

Recently, the issues related to signal compression tech-
niques, sensor selection and low-power hardware design have
gained much interest [2][3][4][5]. A good review of state-
of-the-art hardware, technologies, and standards for BASN
was presented in [6]. Many approaches have been devised
to address energy efficiency problem in WSNs, from ad-hoc
algorithms to more sophisticated ones, such as data-driven,
mobility, and duty cycling/sleep scheduling schemes [7]. To
the best of our knowledge, most of the presented work in the
literature do not take into consideration the trade-off between
encoding and transmission energy in BASNs. Furthermore,
the cross-layer design of energy minimization that addresses
the time-frequency allocation under delay and distortion con-
straints, has not been studied before. For example, the authors
in [8] debate the trade-off between the compression ratio and
distortion for lossy EEG compression without considering the
energy consumption. The authors in [9] used dynamic priority
assignment mechanism to distribute network bandwidth among
different nodes according to their relative QoS requirements.
On the other hand, much of the research in the area of BASNs
has focused on issues related to reducing power consumption
at MAC layer by avoiding idle listening and collision [10], or
by presenting latency-energy optimization [11]. The authors
in [12] developed a MAC model for BASNs to fulfill the
desired reliability and latency of data transmissions, while
simultaneously maximizing battery lifetime of individual body
sensors. For that purpose, a cross-layer fuzzy-rule scheduling
algorithm was introduced. However, they ignored the encoding
energy and source coding distortion in their model.

In this paper, we propose a distributed cross-layer design
that optimizes and adapts the encoding energy in the ap-
plication layer and the transmission energy in the physical
layer, with constraints on delay, Bit error rate (BER) and
source coding distortion. This cross-layer framework utilizes
a dynamic time-frequency slot allocation, which minimizes
the energy consumption compared to the conventional Time
Division Multiple Access (TDMA) scheme that assumes con-
stant bandwidth allocation. This scheme is distinct from [13]
and [14], which ignored the energy consumption in source
coding and did not take the delay and distortion constraints
into consideration. Furthermore, the authors in [14] ignored
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the cross-layer design, which optimizes the performance by
jointly considering multiple protocol layers.

The proposed cross-layer design optimizes different control
parameters across the protocol layers (application, MAC and
physical layers). It considers the problem of computing a
minimum-energy joint source coding, scheduling, and link
adaptation strategy to transfer the gathered data by sensor
nodes and satisfy the distortion threshold and delay deadline
constraints.

The rest of the paper is organized as follows. Section
II introduces the network model and problem formulation.
Section III presents the centralized cross-layer optimization.
Section IV introduces the proposed distributed cross-layer
optimization. Section V presents the simulation environment
and results. Finally, Section VI concludes the paper.

II. NETWORK MODEL AND PROBLEM FORMULATION
A. Network Model

In this paper, a wireless BASN, as shown in Figure 1 is
considered. In this network model, the Personal/Patient Data
Aggregator (PDA) gathers the data from a group of sensor
nodes pre-attached to it, and forwards the aggregate traffic to
a central server. There is no possibility of collision within the
network, as each sensor node has its own time and frequency
slots, and the channels between the PDAs and the central
server are orthogonal to the channels between the PDAs and
the sensor nodes. It is assumed that there are [NV sensor nodes
communicate with their PDAs by using a single-transmit and
a single-receive antenna.

~
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Fig. 1. System Model.

B. Physical Layer Model

In this section, we review our previous work in [15] and
extend it using dynamic frequency allocation. All related
parameters in this model are defined in the same way as in
[15].

For a sensor node 7 with bandwidth w;, the data rate that
can be transmitted is

(1

where & —1.5/(log(5BER)), as in [16], and ~ is the
signal to noise ratio at the receiver side. It is assumed that the
wireless channels between the sensor nodes and the PDAs are
characterized by a flat fading channel, where |h;| is the fading

r; = w; logy (1 + k)
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channel magnitude. The channel state remains unchanged
during each frame period, but varies from frame period to
another. It is assumed that each sensor node 7 and its PDA is
separated by a distance d;, and connected by a direct link. A
free space path loss model is used [17], where

gt - gr - >\2

= P t(Z) a7 (2)
where Py (4) is the transmitted power, g; is the transmit antenna
gain, g, is the receive antenna gain, A is the wavelength and
o is the overall path loss. By using the same analysis as in
[15], the required transmission energy to send a data of length

l; with rate r; is

Wi'lt

Ey(i) = ——L(2m/wi — 1 3
(i) = T ) G)
where x; is the channel gain and defined as
k- a; 2
P = hil”. 4
=y, Il ¥

C. Application Layer Model

In this paper, the proposed framework utilizes the encoding
model of EEG signals. However, without loss of generality,
the proposed model can be extended to a range of vital
signs which are typically at a low data rate e.g., temperature,
pressure or heart-rate reading, or at higher data rate such as
streaming of ECG signals. The EEG signal is considered as
the main source of information to study human brain, which
plays an important role in diagnosis of brain disorders. Many
studies have utilized the dynamic properties of EEG signals
to differentiate between healthy subjects and patients with the
epileptic disease [18]. Furthermore, the EEG signal is used
in diagnosis of brain death, stroke, tumors and several brain
disorders. The importance of EEG signal also appears in Brain
Computer Interface (BCI) applications [19].

1) Encoder Energy Consumption:

According to our work in [20], the main modules of the
typical EEG encoder are the Discrete Wavelet Transform
(DWT), quantization and encoding of the quantized DWT
coefficients. Consequently, the encoding energy consumption
is evaluated as

Es = Epwr + Eg 5

where Epw is the energy consumed in DWT and E, is the
quantization-encoding energy consumption.

Using thresholding-based DWT, the coefficients that are
below the predefined threshold can be zeroed without much
signal quality loss [21]. According to this threshold, we can
control in the number of output samples generated from DWT
and thus the compression ratio of the DWT. The compression
ratio is evaluated as Cgr = 1 — 11\‘[—{, where M is the number
of output samples generated after DWT and Nj; is the length
of the original signal.

The computational complexity that is defined as the number
of computations needed in the compression process, for N
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dimensional EEG signal, is calculated as

=L

Cpwr =F - N; Z
1=0

1
o (6)
where L is the number of decomposition levels and F' is the
wavelet filter length of the utilized wavelet family. Using this
computational complexity, the energy consumed in the DWT-
based encoding can be evaluated as

Epwr = Cpwr(F,Ng, L) - Ecomp (7N
where E,;, is the energy consumed per computation.

For the sampling, quantization and encoding, the energy
consumption depends on the number of conversion steps (to
convert the input samples into bits), which in turn depends on
the number of input samples to the quantization and encoding
modules. Hence, the number of bits generated from sensor
node 4, after DWT and quantization, is calculated as

lcomp = Ns : (1 - CR’L) n = lz (1 - CR’L) (8)
where n is the number of bits/sample. Consequently, the
encoding energy consumption is evaluated as

F.Ns<

where E¢g is the energy consumption at each conversion step,
which can be obtained as in [22].

=L 1
> 5

=0

Es ) : Ecomp + Ns (1 - OR) : ECS (9)

2) Encoder Distortion Calculation:

The encoding distortion is measured by the Percentage
Root-mean-square Difference (PRD) between the recovered
EEG data and the original one. Using the same analysis as
in [20], the encoding distortion Dy is evaluated as

D, = 016(1_CR) +c2- (1 - CR)_CS +cy - F™% —cg (10)

where the model parameters ci, ca, c3, ¢4, c5 and cg are
estimated by the statistics of the typical EEG encoder used.

D. Problem Formulation

The objective of our optimization problem is to minimize
the overall energy consumed by all sensor nodes that share the
medium to transfer their data to their PDAs. The total energy
dissipation at sensor node ¢ (¢ € N) consists of the encoding
and the transmission energy consumptions. It is given by

E; = E,(i) + E,(i). (11)

Therefore, the proposed cross-layer optimization problem can
be formulated as an Energy-Delay-Distortion optimization
problem, where the design objective is to minimize the total
energy consumption under given delay and distortion con-
straints. Therefore, the problem of minimizing the total energy
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consumption can be written as

(%)

i,
such that
D (i) < Dy (i)
Li(1 ; Cri) < i) (12)

=N
E w; < Wy
=1

7“1‘207 2SFiSFma;E7 OSCRiS:l? Vi € N.

This optimization problem is a function of the channel
gain x;, link bandwidth w;, compression ratio C'r;, wavelet
filter length F;, data length [;, application layer distortion
threshold Dy, and delay deadline 7,,. The last three variables
are imposed by the application layer. In our model, a dynamic
frequency allocation scheme that uses time-frequency slot
assignment is proposed. In this scheduling scheme, the fraction
of time slot and bandwidth are optimally assigned to each
sensor node according to its application requirements and
channel state, while minimizing the total energy consumption
across the network. Accordingly, the requirements of the MAC
layer is to get the optimal ¢;’s and w;’s for all sensor nodes,
where
_ ll (1 — CRz)

T

t; < 71m(i), Vie N (13)
and Z:j\’ w; < wg, where w; is the total available bandwidth.
To eliminate interference, there is no frequency overlap be-
tween w;’s. The length of the assigned slots ¢;’s and bandwidth
w;’s are adaptive to the requirements of the application and
the channel state to guarantee minimum energy consumption.

Consequently, the unknowns in this optimization problem
are the transmission rates r;, link’s bandwidth w;, compression
ratios C'g; and wavelet filter lengths F;. By knowing the trans-
mission rates and links bandwidth, the required transmission
energy from different nodes can then be obtained from (3).
Similarly, by knowing the compression ratios and wavelet filter
lengths, the required encoding energy can then be obtained
from (9).

III. CENTRALIZED CROSS-LAYER OPTIMIZATION

(CCLO)

In the proposed cross-layer architecture, different parame-
ters are captured from different layers and passed to the central
server to find the optimal system parameters, that minimize the
total energy consumption and satisfy the delay and distortion
constraints. The central server receives, from each sensor
node, the application layer constraints (distortion threshold and
delay deadline). At the same time, it receives the channel
conditions from the PDAs. After that, for each scheduled
sensor node, it determines the optimal-assigned time-frequency
slots, transmitted rate and encoder’s parameters. To optimally
allocate resources and maintain certain BER, whatever the
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channel conditions were, adaptive modulation is used where
each node can change its transmission power and modulation
scheme according to channel conditions.

By checking the operations that preserve convexity [23],
this initial form of the optimization problem is not convex.
Therefore, we opt to manipulating the original optimization
problem to convert it into a convex Geometric Program as

follows. First, let 1 — Cr = Cg and substitute using Taylor s
theorem, 2ri/w =14+ T 1125;(2) + T ;)52 (2) + I é(:f (2) +-

in (3), where [; = I; - Cg;.

The optimization problem in this form is still not convex.
However, it can be transformed into e /qlnvalent convex ones
using a change of variables. Define Cr; = log(Chr;), Fz =
log(F;) and 7; = log(r;). Substitute in (3), we will have

1;Criw; (r EaR ;?f 2t )
Ey(i) = Ti - T
~— 4 rilog®(2) )
_ l7,CRz (10g(2) 2w, +- (14)
z;
Lie“r (log(2) + e 4 )
= x; ’

The function log(}, d;e*'¥) is convex if d; > 0,y; € R
[23]. Composition with an affine mapping preserves convexity.
Using the same approach, we will have

=L
> g

=0

Ey(i) = e - N, < >  Beomp + NoeCmi - Bgg. (15)

Accordingly, the function F; is convex in Cg;, F;, w; and r;.
Thus we obtain the convex optimization problem as

(%)

Cri 7
167 4 cpemeCmi 4 gyees B

min
Cri Fi, 7,0
such that
—cg < Dy(i), Vie N

LieCrie™ < 7,.(i), Vie N

%

Il
=

et < wy
1

Fy,

)

< el 0<e“”i <1, VieN.
- (16)
The variables of this problem are Cg;, F;, 7, w;, for i €
{1,---,N}. The number of variables grows as 4N and the
number of constraints grows as 5N + 1. It is difficult to
calculate the computational complexity of solving a general
convex optimization problem. However, there are efficient

interior-point methods to solve such problems [24].

e >0

2

IN

Y axy

IV. DISTRIBUTED CROSS-LAYER OPTIMIZATION

A. Using Fixed Frequency Allocation

Centralized cross-layer optimization can achieve low design
margin and potential better performance; however, it can also
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accrue larger overhead. Therefore, the design of distributed
cross-layer optimization algorithms has become significant to
decrease the complexity of the CCLO solution. Accordingly,
a distributed cross-layer algorithm is proposed, as shown
in Algorithm 1. In this algorithm, instead of solving the
optimization problem on central server, each PDA will solve its
own optimization problem. To achieve that, the central server
distributes the total bandwidth w, equally between different
sensor nodes. Hence, each sensor node will has its own
problem that can be solved to find its parameters. Therefore,
the convex optimization problem can be written as, for all
1e{l,---,N},

_min (E)

Cri,Fi, T

such that

C
cref

Ri L 626763@ +ege B g < Din(i)
l~e®€_ﬁ < Tm(i)

< Frae, 0<e“m <1,

a7

“>0 2<e

Consequently, the number of variables grows as 3N and the
number of constraints grows as 5N.

Algorithm 1 Distributed Cross-Layer Optimization With
Fixed Frequency Allocation (DCLO-FFA)

I: At central server: Calculate the bandwidths, where w; =
A, Vi € N, then broadcast them to the network.
At PDAs:
Receive, from each sensor node, the application layer
constraints (Dy, (%), 7y, (2)).
3: Solve the optimization problem in (17), Vi € N.
Broadcast evaluated Cr;, I}, 7; to the network.
End

B. Using Dynamic Frequency Allocation

To improve the performance of DCLO-FFA algorithm, Dis-
tributed Cross-Layer Optimization With Dynamic Frequency
Allocation (DCLO-DFA) algorithm is proposed. In this algo-
rithm, we define a relationship between the application layer
constraints and the corresponding-assigned bandwidth. In this
relation, when Dy, or 7, decreases, the assigned bandwidth
will increase to decrease the energy consumption. Therefore,
we define the weighted function ¢/ for sensor node i as

s =

Dyp(max)
Dy, (4)
where 7, (maz) is the maximum delay deadline, Dy, (max) is
the maximum distortion threshold for all sensor nodes, y and
B are weighted coefficients that imply the effects of Dy, and
Tm on weighted function. Using average weighted function 1;,

where

MTm(max) (18)

i

P

=N (19)
Zi:iv Vi
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The assigned bandwidth for sensor node ¢ is evaluated as
(20)

The main steps of this algorithm are the same as DCLO-FFA
algorithm except step 1. In this step, instead of distributing the
total bandwidth equally between sensor nodes, we will use the
relation in (20).

wi:E-wt.

V. SIMULATION RESULTS

The simulation results were generated using the network
topology shown in Figure 1. The simulation parameters used
are given in Table L.

TABLE I
SIMULATION PARAMETERS

Parameter Value Parameter Value
No -174 dBm A 0.12 m
we 3 kHz d 5—15m
Ecomp 8 nJ Ecs 21 nJ/step
Fraz 20 BER 10—4
L 2 N 4096 sample
Dyp 8 % n 12 bps
“w 1 B 1
c1 1.48 () 4.35
c3 1.46 c4 2.4
cs 0.18 c6 9.5
In order to assess the importance of considering

Application-MAC-Physical layers in the proposed cross-layer
framework and optimize both the transmission and encoding
energy, Figure 2 is presented. This figure illustrates the total
energy consumption with varying maximum distortion thresh-
old Dy, (max). In this figure, we compare our proposed CCLO
and DCLO-DFA algorithms with cross-layer optimization al-
gorithms that ignore application layer optimization [13], which
we called centralized cross-layer optimization without applica-
tion layer (CCLO-WAL) and DCLO-DFA without application
layer (DCLO-DFA-WAL). These algorithms utilize traditional
distortion model that chooses the compression ratio based on
the desired distortion threshold only [25]. The same applies
to the algorithms that consider the MAC-Physical cross-layer
optimization and ignore the application layer [13].

As shown in the figure, at low Dip(mazx), CCLO and
DCLO-DFA algorithms optimize wavelet filter length F' to
enhance the compression ratio and maintain the distortion
threshold constraint in (10). With increasing compression ratio,
the number of bits to be transmitted will decrease. As a result,
the total energy consumption will decrease. On the other hand,
CCLO-WAL and DCLO-DFA-WAL algorithms choose the
compression ratio based on the distortion threshold constraint
without optimization. This leads to lower compression ratio
and higher energy consumption. At high D, (max), the effect
of optimizing both the compression ratio and wavelet filter
length decrease, hence the energy consumption gap between
different used algorithms decrease. Therefore, in order to
minimize the total energy consumption, it is important to take
into consideration both the transmission and encoding energy
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together to get the best dominant control parameters that affect
both of encoding and transmission.

3
10 : : —— DCLO-DFA-WAL
—+— DCLO-DFA
107} —a— CCLO-WAL
—— CCLO

Total Energy Consumption (Joule)

1" 12 13

10
Maximum Distortion Threshold %

14

Fig. 2. The effect of optimizing both the transmission and encoding energy
on total energy consumption.

In order to assess the performance of the proposed algo-
rithms, comparisons with varying maximum delay deadline
are presented in Figure 3. As shown in the figure, the DCLO-
FFA algorithm consumes more energy than other algorithms,
because it allocates bandwidth equally between sensor nodes,
without taking into consideration the application layer re-
quirements. Accordingly, the sensor nodes that have tight
constraints (low Dy, and 7,,) will consume more energy to
satisfy their constraints. While in DCLO-DFA algorithm, it
distributes the total bandwidth according to the application
layer constraints. Therefore, the sensor nodes that have tight
constraints will take larger bandwidth than other nodes. This
bandwidth allocation is near to the optimum allocation in the
CCLO. As a result, it will lead to less energy consumption than
DCLO-FFA algorithm and near to the CCLO performance.
Furthermore, as a result of allocating bandwidth equally in

—e— CCLO
—+— DCLO-DFA
—e— DCLO-FFA

Total Energy Consumption (Joule)

i

10° i
1 2

1.6

i i i
1.8 22 24 26 28

Maximum Delay Deadline (sec)

Fig. 3. A comparison between the total energy consumption using the
proposed algorithms for different delay deadlines.

DCLO-FFA algorithm, there is a degradation in its perfor-
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mance with increasing number of sensor nodes in the system,
as shown in Figure 4. It is clear from the figure that increasing
number of sensor nodes will result in increasing the perfor-
mance deviation for the DCLO-FFA algorithm. However, the
complexity decreases with respect to the CCLO.

—— CCLO
R —e— DCLO-FFA
10 |=—+— DCLO-DFA

Total Energy Consumption (Joule)

i i
2 25 3 35 4 4.5 5 55 6

Number of Sensor Nodes

Fig. 4. A comparison between the total energy consumption using the
proposed algorithms With increasing the number of sensor nodes.

VI. CONCLUSION

In the proposed approach, transmission energy, encoding
energy, application quality of service (QoS) constraints, and
scheduling are jointly integrated into a cross-layer framework.
This framework is used to dynamically perform radio resource
allocation in BASNSs, and to effectively choose the optimal
system parameters to adapt to the varying channel conditions.
Furthermore, the relationship between bandwidth allocation
and energy consumption is analyzed to optimally allocate
time-frequency slots to the sensor nodes while minimizing the
total energy consumption. Consequently, under the delay and
distortion constraints, the proposed cross-layer optimization
framework is able to get the best configuration of system
parameters that minimizes the total energy consumption.

This framework determines the optimal transmitted rate at
physical layer, assigned time-frequency slots at MAC layer,
wavelet filter length and compression ratio at application layer.
In addition to that, due to the growing scale and heterogeneity
of wireless BASNs, the design of distributed cross-layer opti-
mization algorithms has become an urgent necessity. There-
fore, in addition to the centralized cross-layer optimization
solution, distributed cross-layer optimization algorithms are
presented. These algorithms reduce complexity of centralized
solution with minimal performance degradation.
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