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Abstract

In many real-world face recognition scenarios, face
images can hardly be aligned accurately due to complex ap-
pearance variations or low-quality images. To address this
issue, we propose a new approach to extract robust face re-
gion descriptors. Specifically, we divide each image (resp.
video) into several spatial blocks (resp. spatial-temporal
volumes) and then represent each block (resp. volume) by
sum-pooling the nonnegative sparse codes of position-free
patches sampled within the block (resp. volume). Whitened
Principal Component Analysis (WPCA) is further utilized
to reduce the feature dimension, which leads to our Spatial
Face Region Descriptor (SFRD) (resp. Spatial-Temporal
Face Region Descriptor, STFRD) for images (resp. videos).
Moreover, we develop a new distance metric learning
method for face verification called Pairwise-constrained
Multiple Metric Learning (PMML) to effectively integrate
the face region descriptors of all blocks (resp. volumes)
from an image (resp. a video). Our work achieves the state-
of-the-art performances on two real-world datasets LFW
and YouTube Faces (YTF) according to the restricted pro-
tocol.

1. Introduction
Many face recognition systems have demonstrated

promising results under well-controlled conditions with co-
operative users. However, face recognition “in the wild” is
still a challenging problem due to dramatic intra-class vari-
ations caused by pose, lighting and expression. Moreover,
the faces in surveillance or internet videos (e.g. YouTube
videos) are commonly with low-resolution and may be even
blurred, which brings additional challenges for face recog-
nition systems. According to the reported results, most face
recognition algorithms degrade heavily on two real-world

datasets: Labeled Faces in the Wild (LFW) [16] and Y-
ouTube Faces (YTF) [37]. Therefore, it is crucial to de-
velop robust features and machine learning algorithms to
improve the face recognition performances on these real-
world datasets.

According to the features, face recognition methods can
be roughly divided into two categories: global feature
based approaches and local feature based approaches. A-
mong global feature based approaches, “Eigenface” [31]
and “Fisherface” [2] are two classical techniques using
images [40] or even videos (i.e. a set of face images) [10,20,
34] as the input. However, the global features are not robust
to local distortions due to expression, occlusion, etc. As a
result, local feature based approaches were widely used in
the past decades by developing hand-crafted local descrip-
tors, e.g., Gabor feature [11, 17], LBP feature [1] and their
variants [18, 43]. Although some of these methods have
shown promising performances on public face datasets col-
lected in the controlled environment, these hand-crafted de-
scriptors cannot work well for face recognition in the wild
(See the results on the LFW dataset1). To improve the per-
formance, researchers have tried different methods by inte-
grating multiple types of local features [27,42] and borrow-
ing an extra reference set [23, 41]. Moreover, it is also un-
clear how to effectively employ these features for the more
challenging Video-based Face Recognition (VFR) task, in
which the face images are usually of low-resolution and
even low-quality.

Recently, the Bag-of-Feature (BoF) methods have at-
tracted increasing attention and achieved excellent perfor-
mance for object classification [24, 29]. However, faces are
all similar in overall configuration and only different on sub-
tle textons. If we directly apply the classical BoF model
to face recognition, many facial details will be discarded,
which might degrade the performance. More recently, a few

1http://vis-www.cs.umass.edu/lfw/



BoF-based methods, such as Random Projection Tree [4]
and Local Quantized Patterns (LQP) [32], have attempted
to apply BoF to face images, but it still lacks of a systemat-
ic study of BoF for face recognition with clear performance
improvements.

In this work, we propose a new approach to extract ro-
bust features for real-world face recognition tasks. One ma-
jor challenge is that in these scenarios the face images are
only roughly aligned, thus considerable spatial misalign-
ment exists in the cropped face images. To address this
issue, in this work, we partition each image or one video
keyframe into a set of blocks and only compare the fea-
tures extracted from corresponding blocks. On the oth-
er hand, we represent each block by a set of position-free
patches without enforcing spatial constraints for the patch-
es within the block. This simple strategy in combination
with the BoF framework leads to an effective feature, which
is robust to face misalignment. Specifically, we first adopt
the nonnegative sparse coding to quantize each patch ac-
cording to a set of visual words in a pre-constructed visu-
al vocabulary from k-means clustering. Then we extrac-
t Token-Frequency (TF) features from each image (resp.
video) by sum-pooling the reconstruction coefficients over
the patches within each block (resp. each spatial-temporal
volume consisting of a set of blocks along the temporal di-
mension). Finally, we extract our Spatial Face Region De-
scriptor (SFRD) (resp. Spatial-Temporal Face Region De-
scriptor, STFRD) for images (resp. videos) by applying
Whitened Principal Component analysis (WPCA) to reduce
the dimension of TF features and suppress the noise in the
leading eigenvectors.

We also develop a new distance metric learning
method called Pairwise-constrained Multiple Metric Learn-
ing (PMML) for face verification by integrating the SFRD-
s (resp. STFRDs) from all the blocks of an image (resp.
all the volumes of a video). In contrast to the existing ap-
proaches which can only learn one distance metric for one
type of feature, our method simultaneously learns multiple
metrics for different descriptors, which better utilizes the
correlations of these descriptors. We also introduce the first
order continuous differentiable hinge loss to avoid unneces-
sary penalties on the pairs which satisfy the constraints. We
conduct the experiments on two real-world face datasets,
LFW [16] and YTF [37]. Extensive experiments demon-
strate the effectiveness of our new descriptors, SFRD and
STFRD, as well as our PMML metric learning method for
face verification under unconstrained conditions.

2. Related Work
The BoF framework has been widely applied in object

classification [24, 29]. It usually starts from low-level fea-
tures and then encodes them into a set of visual words us-
ing hard or soft assignment. After that, a spatial pooling

step is used to form the global representation. However,
only few BoF methods were used for face recognition, be-
cause face images are different only on very subtle textons.
Cao et al. [4] introduced the hard quantization by random-
projection tree. After that, Cui et al. [9] developed a soft
assignment method by using sparse coding. Similar meth-
ods were also proposed, such as block-based BoF [25] and
LQP by hash table [32].

Most of the existing work on metric learning focuses
on the Mahalanobis distance learning [12, 14, 21, 26, 36].
Specifically, the recently proposed methods such as In-
formation Theoretic Metric Learning (ITML) [12], Lo-
gistic Discriminant Metric Learning (LDML) [14], Unsu-
pervised metric learning [21], Pairwise Constrained Com-
ponent Analysis (PCCA) [26] and KISS Metric Learning
(KISSME) [21] were designed to deal with general pair-
wise constraints. However, they only optimize one metric
without considering how to jointly learn multiple metrics.

Video-based face recognition underwent explosive de-
velopments in recent years [6,7,10,15,20,34,35,37]. Such
approaches usually consider face images in a video as an
image set. Two major tasks are discussed in these methods:
how to represent an image set and how to measure the simi-
larity between two set representations. In the view of image
set representation, these algorithms can be divided into sub-
space [6,15,20] and manifold [7,10,34,35] based methods.
Accordingly, principal angles [20] or the closest Euclidean
distance [6, 15] are often used as the metric.

3. Overview

In this section, we take video based face verification as
an example to briefly introduce our proposed method, and
the image based face verification can be considered a spe-
cial case by assuming each video only contains one frame.

For the input of our system, we first crop out face images
by using Viola-Jones face detector [33] and then roughly
align them by fixing the coordinates of automatically detect-
ed facial feature points [37]2. As shown in Fig. 1, to address
the misalignment problem, we partition each video into sev-
eral spatial-temporal volumes and then represent each vol-
ume by using a set of position-free patches sampled from
each keyframe within the volume without considering the
spatial positions of these patches. For two videos, we on-
ly compare the corresponding volumes at the same spatial
position, thus leading to the robustness to the small mis-
alignments within the volumes.

To extract features from each volume, we employ the
bag-of-feature model. Specifically, in the training stage we
learn an overcomplete visual vocabulary by using k-means
clustering. In the feature extraction stage, all the sampled

2In this work, we use the roughly aligned faces provided in the LFW
and YTF datasets.



Figure 1: Illustration of the proposed approach for video
based face verification. The image based face verification is
a special case by treating each video as one frame.

patches are used as the input for the sparse coding method to
obtain their reconstruction coefficients. We then apply sum-
pooling over the reconstruction coefficients in each volume
to extract the token-frequency feature. After that, whitened
principal component analysis is utilized to further reduce
the feature dimension, which leads to our spatial-temporal
face region descriptor. For still images, spatial face region
descriptors are extracted by a similar process without con-
sidering the temporal dimension. More details for extract-
ing these descriptors can be found in Seciton 4.

Moreover, we further propose a pairwise-constrained
multiple metric learning method to integrate the descrip-
tors from all the volumes in each video. Different from the
existing methods which can only learn one distance metric
for one type of descriptor, we simultaneously learn multiple
distance metrics, which can better exploit the correlations
among the descriptors from different volumes. The detailed
formulation and algorithm of PMML are introduced in Sec-
tion 5.

Given a pair of samples, we decide whether they are from
the same subject or not by calculating the distance between
them using the learnt metrics. Moreover, by using multi-
ple volume-partitioning modes, we can obtain multiple dis-
tances for each pair of samples, which can be directly used
as the feature to train a classifier (e.g. SVM or Fisherface)
for face recognition.

4. Face Region Descriptor
In this section, we introduce the details for extracting

SFRDs and STFRDs from still images and videos respec-

tively.

4.1. Spatial Face Region Descriptor

To enhance the facial textons and suppress Gaussian
noises, we first apply a DoG filter on each face image.
Then we uniformly partition each face image into K spatial
blocks. For each block, a set of patches are sampled from
a fixed grid of positions. We construct the intensity feature
vector from each patch by sampling the pixels column by
column, and each feature vector is further subtracted by its
mean and divided by its L2-norm for reducing the illumina-
tion changes and suppressing the scale effect in the subse-
quential sparse coding procedure. For better presentation,
we still call these feature vectors as “patches” hereinafter
unless necessary. Moreover, we denote each spatial block
as Sk for k = 1, . . . ,K and also denote a patch as p ∈ RD

where D is the length of the intensity feature vector of the
patch.

Nonnegative sparse coding: Since each patch only cap-
tures subtle facial textons, many patches are visually simi-
lar to each other. Directly using the intensity feature for
face recognition may not be favorable, because even a tiny
perturbation(e.g. expressions or noises) might induce a con-
siderable change on the distances between two patches. To
improve the robustness and enhance the discriminability, we
employ the sparse coding method to map the patches from
the low dimension feature space to a high dimension feature
space.

In order to perform encoding, an overcomplete visual
vocabulary (or dictionary) should be learnt in advance by
using the clustering algorithm (e.g., k-means). Let us de-
note the pre-learnt dictionary as D ∈ RD×M , where M is
the number of visual words in the dictionary and M ≫ D.
Given a patch p, to encode it into a high dimensional code,
we employ the sparse coding method with nonnegative con-
straints, which can be formulated as follows:

min
c
∥p−Dc∥2 + λ∥c∥1, s.t. c ≥ 0, (1)

where p is a patch and c is the vector of reconstructing co-
efficients (i.e., the code). The nonnegative constraint on the
code c allows us to directly sum a set of codes without con-
sidering their negative values. To solve the above model, in
our work we employ a greedy algorithm called Least Angle
Regression (LAR) [13].

Sum pooling: We have represented each block as a set
of high dimensional codes. To effectively describe the sta-
tistical properties of these position-free codes in each block,
we extract the TF feature for each block by using the sum-
pooling method. Specifically, the TF feature of the k-th
block can be obtained as,

xk =
∑

ci∈Sk

ci, k = 1, 2, · · · ,K, (2)



where ci is the sparse code of the i-th patch in Sk.
Whitened PCA: The dimension of the pooled TF fea-

ture (i.e., xk) can be very high since the dictionary is usu-
ally overcomplete (i.e., M is much larger than D). To re-
duce the feature redundancy for efficient face recognition,
we therefore seek a compact representation. A possible way
is to apply Principle Component Analysis (PCA), which
can remove some noises by discarding the eigenvectors cor-
responding to small eigenvalues. However, PCA is easi-
ly affected by high-frequent visual words [19]. Especially,
for face images, the same visual word usually recurs many
times in smooth facial areas, e.g. the cheek and the fore-
head. These high-frequent visual words contribute strong
responses for the corresponding eigenvectors and eigenval-
ues when using PCA. A better way is to use Whitened
PCA (i.e. WPCA) which suppresses the responses from
larger eigenvalues. Formally, let us denote the covariance
matrix of the TF features for the k-th block of all the
training images as Ck ∈ RM×M and represent the eigen-
decomposition of the covariance matrix as Ck = PkΛkP

T
k

where Λk ∈ RM×M is a diagonal matrix of eigenvalues
and Pk ∈ RM×M is the matrix constructed from the cor-
responding eigenvectors. Then we obtain the SFRD zk for
the k-th block by using WPCA as follows:

zk =
Λ̃

− 1
2

k P̃T
k x

k

∥Λ̃− 1
2

k P̃T
k x

k∥2
, (3)

where Λ̃k ∈ Rm×m is a diagonal matrix of the m < M
largest eigenvalues and P̃k ∈ RM×m is the matrix of the
corresponding eigenvectors. Thus we obtain a compact rep-
resentation (i.e., zk) for the k-th block of the face image.

4.2. SpatialTemporal Face Region Descriptor

For the videos, there are many similar patches along the
temporal dimension. Therefore, instead of using pixelwise
sampling, we adopt the sparse sampling along the spatial
dimension with a fixed step because it is sufficient to cap-
ture the texton information. We then perform the nonnega-
tive sparse coding as similarly used in SFRD. In the pooling
step, the sum pooling is applied to all the patches within the
entire spatial-temporal volume along both the spatial and
temporal dimensions. Such a spatial-temporal pooling strat-
egy essentially characterizes the statistics of a certain region
of the face in the video. Formally we extract the TF feature
from each volume as:

xk =
1

V

V∑
v=1

∑
ci∈Sv

k

ci, k = 1, 2, · · · ,K, (4)

where V is the number of keyframes of the video, Sv
k is

the v-th keyframe in the k-th volume, and ci represents the
i-th code in Sv

k . Finally, we perform WPCA on these TF
features to extract the STFRDs for the video.

5. Pairwise-constrained Multiple Metric
Learning

With above descriptors extracted for each block, we need
to further consider distance metric to compare them, as well
as the method fusing these block-wise descriptors. For
this purpose, we propose a new multiple metric learning
method to jointly learn a discriminative distance. Formally,
let us denote each image/video as z = {z1, . . . , zK} where
zk|Kk=1 is the face region descriptor and K is the total num-
ber of blocks/volumns for each image/video. Given a pair
of training samples, we define the distance as:

dW1,...,WK
(zi, zj) =

1

K

K∑
k=1

(zki − zkj )
TWk(z

k
i − zkj ), (5)

where zi and zj are respectively the i-th and j-th sam-
ples (i.e., two sets of face region descriptors from two
images/videos), zki and zkj are respectively the k-th face
region descriptors for the i-th and j-th samples, and Wk

is the Mahalanobis matrix. Intuitively, given two descrip-
tors zi and zj of two images/videos, their learnt distance
d(zi, zj) should be smaller than a certain threshold ρ when
the two images/videos are from the same person, and it must
be larger than the threshold ρ when the two images/videos
are from different subjects. Therefore, our task is to joint-
ly optimize the unknown Wk for k = 1, . . . ,K using the
provided intra-class pairs and inter-class pairs.

An alternative way is to separately learn a distance met-
rics Wk for each face region descriptor, and then fuse the
K distances as the final distance. However, considering
that these K face region descriptors are from the same face
image, jointly learning these distance metrics is more favor-
able by implicitly taking global information into account.
Another possible way is to concatenate the K descriptors
together into a single feature vector for each sample, howev-
er, which results in a very large distance metric (Km×Km).
In contrast, our proposed method reduces the number of pa-
rameters, and hence improves the generalization capability.

5.1. Formulation

In distance metric learning methods, a regularizer is usu-
ally imposed on the Mahalanobis matrix to prevent overfit-
ting due to the small training set and high model complexity.
In this work, we adopt the LogDet divergence [12], i.e.,

H(Wk,W0) = tr(WkW
−1
0 )− log |WkW

−1
0 | −m, (6)

where tr(·) is the trace norm, | · | is the matrix determinate
and m is the dimension of the descriptors. On one hand,
it controls the complexity of Mahalanobis matrix Wk by
forcing it to be close to a given matrix W0, which is usu-
ally defined as the identity matrix. On the other hand, the
LogDet divergence implicitly pushes Wk to be a symmetric
positive definite matrix during the optimization [22].



With the regularizer in (6), we formulate the multiple
metric learning problem as follows:

min
W1,...,WK

1

K

K∑
k=1

H(Wk,W0), (7)

s.t.
δij
K

K∑
k=1

dWk
(zki , z

k
j ) ≤ δijρ− τ, (8)

where dWk
= (zki − zkj )

TWk(z
k
i − zkj ) is the distance

between the two face region descriptors, ρ is the threshold
for distance comparison, τ > 0 is the margin, δij = 1 if
the two samples belong to the same subject, and δij = −1
otherwise. In other words, the distance of the two samples
should be smaller than ρ− τ if they are from the same sub-
ject, and larger than ρ+ τ otherwise.

However, there may not exist a feasible solution to the
above problem in some cases. To address this problem, we
introduce a slack variable ξij for each constraint, and refor-
mulate the objective as:

min
Wk,ξij

1

K

K∑
k=1

H(Wk,W0)+
γ

n

∑
i,j

ℓ(ξij , δijρ− τ), (9)

s.t.
δij
K

K∑
k=1

dWk
(zki , z

k
j ) ≤ ξij , (10)

where n is the number of pairs of training samples, γ is a
tradeoff parameter, and ℓ(·, ·) is the first order continuous
differentiable hinge loss function defined as:

ℓ(x, x0) =

{
0 x ≤ x0

(x− x0)
2 x > x0.

(11)

Compared with the original LogDet divergence loss in
[12], this hinge loss not only avoids unnecessary penalties
on those pairs that already satisfy the constraint, but also ac-
celerates the algorithm when only considering the violated
constraints in each cyclic projection (See Section 5.2).

5.2. Optimization

To solve the problem in (9), we adopt the cyclic projec-
tion method [3, 5], in which we iteratively update Wk and
ξij by projecting the current solution into the feasible do-
main of one violated constraint. The convergence of cyclic
projection method can be found in [3,5]. The updating rules
for our PMML are shown in the following proposition:

Proposition 1. Given the solution at the t-th iteration Wt
k

for k = 1, . . . ,K, if there exists a pair of descriptors (zi,
zj) for which the constraint in (10) is not satisfied, then we
update Wk’s and the corresponding ξij as follows: Wt+1

k = Wt
k + µ(Wt

k(z
k
i − zkj )(z

k
i − zkj )

TWt
k), (12)

ξt+1
ij = ξtij −

n

2γ
α, (13)

where µ = δijα/(1 − δijαdWt
k
(zki , z

k
j )) and α can be

solved by

δij
K

K∑
k=1

dWt
k
(zki , z

k
j )

1− δijαdWt
k
(zki , z

k
j )
− (ξtij −

n

2γ
α) = 0. (14)

Proof. Based on the cyclic projection method [3,5], we can
project our current solution Wt

k into the feasible domain of
the violated constraint to obtain Wt+1

k and simultaneously
update ξij by solving the following equations [22]:

∇H(Wt+1
k )=∇H(Wt

k) + αδij(z
k
i − zkj )(z

k
i − zkj )

T,(15)
γ

n
∇ℓ(ξt+1

ij )=
γ

n
∇ℓ(ξtij)− α, (16)

δij
K

K∑
k=1

(zki − zkj )
TWt+1

k (zki − zkj ) = ξt+1
ij . (17)

Then, we can derive (12) and (13) from (15) and (16), re-
spectively. Substituting (12) and (13) into (17), we obtain
the the equation related to α as in (14).

We list the algorithm in Algorithm 1. The main time
cost is to update Wt+1

k in the step 6, which is O(Km2) for
each constraint. Therefore, the total time cost is O(LKm2)
where L is the total number of the updating in Step 6 exe-
cuted by the algorithm. In practice, L is not very large since
we only need to deal with the pairs for which the constrains
are not satisfied.

Algorithm 1 Pairwise-constrained Multiple Metric Learn-
ing

Input: Training pairs {(zki , zkj ), δij}, and ρ, τ , γ, W0

1: Initialize t = 1, W1
k = W0, ηij = 0, ξtij = δijρ− τ .

2: repeat
3: Pick a pair of samples (zi, zj) and compute the dis-

tances dWt
k
(zki , z

k
j ) for k = 1, . . . ,K.

4: if δij
K

∑K
k=1 dWt

k
(zki , z

k
j ) > δijρ− τ then

5: Solve α in (14), and set α ← min(α, ηij) and
ηij ← ηij − α

6: Update Wt+1
k by using (12) and set Wk = Wt+1

k

for k = 1, . . . ,K.
7: Update ξt+1

ij by using (13).
8: t = t+ 1.
9: end if

10: until The objective converges.
Output: Mahalanobis matrices W1, . . . ,WK .

6. Experiments
We evaluate our method for the unconstrained face

verification task by using two real-world face datasets:
LFW [16] and YTF [37] datasets.



6.1. Experimental Setup

LFW is an image dataset for unconstrained face verifi-
cation. It contains more than 13,000 face images collected
from the web with large variations in pose, age, expression,
illumination, etc. We consider the restricted protocol and
follow the standard setting in [16], which splits the dataset
into ten subsets with each subset containing 300 intra-class
pairs and 300 inter-class pairs. The performances are mea-
sured by using 10-fold cross validation.

YTF is a video dataset which contains 3,425 videos of
1,595 different subjects downloaded from YouTube. The
average length of each video clip is about 180 frames. It
is collected for unconstrained VFR and also contains large
variations in pose, age, expression, illumination, etc. We
also consider the restricted mode and strictly follow the s-
tandard setting in [37]. We use the 5,000 video pairs ran-
domly selected in [37] for unconstrained face verification,
in which one half of the pairs of videos are from the same
subject, while the remaining half of the pairs are from dif-
ferent subjects. These pairs are also officially divided into
10 splits [37] with each split containing 250 intra-class pairs
and 250 inter-class pairs.

We directly crop the face images according to the provid-
ed data and then resize them into 110×60 pixels for LFW
and 40×24 pixels for YTF. The DoG filter is set to σ1 = 0
(i.e. no filter) and σ2 = 2. The sampling template size is
set to 9×9 pixels. The parameter λ in sparse coding is set
to 0.1. For the dictionary size, we set M = 512 as the de-
fault value for a good tradeoff between the performance and
the efficiency (see Fig. 4(a)). The dimension of WPCA is
set to m = 60. For our PMML, the parameters τ and γ
are decided by using the cross validation within the range
of {1.0, 1.2, 1.4, 1.6} and the range of {0.1, 1, 50, 100}, re-
spectively. To fuse multiple partition modes, the SVM clas-
sifier is used with RBF kernel by setting the bandwidth pa-
rameter as the mean distance and the regularization param-
eter C = 1.

6.2. Face Region Descriptor and PMML

Our approach consists of two key components: face re-
gion descriptors and the learning algorithm PMML. So we
evaluate our approach from the two aspects by taking LFW
dataset as an example. For descriptors, we compare our s-
patial face region descriptor (SFRD) with four types of fea-
tures: intensity feature, LBP and Gabor in [27] as well as
“Single LE + comp” in [4], in which the first three features
are extracted from the whole face images and Single LE is
extracted from facial components (e.g. eyes, nose, etc.). For
our SFRD, we set the number of blocks for each image as
K = 8 × 4. Following [4, 27], the performances are mea-
sured by using 10-fold cross validation with Euclidean dis-
tance and we report the accuracies in Fig. 2(a). The results
of intensity, LBP and Gabor are from [27] and the result of
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Figure 2: Comparisons between our work and other features
and metrics on the LFW dataset.

“Single LE + comp” is from [4]. We observe that our SFRD
is the best and the improvement over the second best (i.e.
“Single LE + comp”) is 2.09% (84.81% v.s. 82.72%) while
“Single LE + comp” requires more accurate face alignmen-
t technique for cropping the facial components. Moreover,
we also observe that the learnt descriptors (i.e. our SFRD
and “Single LE + comp”) are better than the hand-crafted
descriptors (i.e. intensity feature, LBP and Gabor), which
indicates that it is beneficial to learn the descriptors for un-
constrained face recognition.

For the distance metric learning method, we compare
our PMML with three baselines: SFRD, SFRD+SVM and
SFRD+ITML. SFRD uses the Euclidean distance based on
the original spatial face region descriptor; SFRD+SVM us-
es the SVM classifier for multiple SFRDs; SFRD+ITML
is the average of distance metrics which are individually
learnt by using ITML [12] for each face region descriptor.
Fig. 2(b) shows the results with different partition modes,
i.e., 2 × 1, 4 × 2, 6 × 3 and 8 × 4. Our SFRD+PMML
is the best for all cases, which demonstrates that PMML
can better integrate the descriptors from different facial re-
gions. It is worth noting that our method only using 8 × 4
blocks achieves the accuracy of 88.41%, which outperform-
s the current state-of-the-art on LFW dataset by using the
restricted protocol3. Moreover, our method only uses one
single type of feature without requiring any reference set.

6.3. Experimental Comparisons on LFW

We compare our proposed method with the state-of-the-
art methods [4, 8, 14, 23, 27, 28, 30, 38, 42] under the re-
stricted protocol. Some baseline methods exploited mul-
tiple features to improve the performances, e.g. “CSM-
L+SVM” [27] fused three features: intensity, LBP and Ga-
bor, “High-Throughput Brain-Inspired Features” [8] select-
ed the robust features by searching a large set of features,
“Multiple LE + comp” [4] fused multiple local descrip-
tors extracted from different facial regions, “DML-eig com-
bined” [42] combined four types of descriptors. Moreover,

3Currently, the best result in the official website of LFW is 88.13% as
reported in [8].
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Figure 3: Comparisons of ROC curves between our work
and the state-of-the-art methods on the LFW dataset by us-
ing the standard restricted protocol.

some work also learnt the metrics, e.g., LDML [14], DM-
L [42], and cosine metric [27]. For our SFRD+PMML, we
use four different partitions, 2× 1, 4× 2, 6× 3 and 8× 4,
and two different scales of face images, i.e., 110 × 60 and
75×40, and finally concatenate the eight distances for each
pair of samples as the feature for the SVM classifier.

The ROC curves of different methods are shown in
Fig. 3. The results of baselines are obtained from the of-
ficial website of LFW. The improvement of our method
over other state-of-the-art methods is about 2∼3 percent-
ages when the false positive rate ranges from 0.1 to 0.2.
Note that the recognition accuracy of our method reach-
es 89.35%, which is better than the current state-of-the-
art on LFW dataset by 1.22% using the restricted protocol.
The above results clearly demonstrate the effectiveness of
the proposed SFRD descriptor and the pairwise-constrained
multiple metric learning method.

6.4. Experimental Comparisons on YTF

For video-based face verification on the YTF dataset,
we compare our proposed method with the several exist-
ing VFR methods, including MSM [39], DCC(pair) [20],
MMD [35], AHISD [6], CHISD [6] and SANP [15]. We
run experiments using the source codes provided by the au-
thors and follow their parameter settings. Among them, an
important parameter is the PCA dimension which is used
in the image set representation. We search the PCA ener-
gy in the range of {80%, 85%, 90%, 95%}, and report the
best results for their methods. For MMD, the threshold θ
is searched in the range of {1.1, 1.4, 1.7, 2.0}. Since DC-
C [20] was not specifically designed for face verification ,
we modify it by constructing the within-class scatter matrix
from intra-class pairs and the between-class scatter matrix
form inter-class pairs. For our method, due to the small

Table 1: The comparisons on the YouTube Faces dataset
(Mean Accuracy ± Standard Deviation in %).

Method Result
LBP(Min dist) [37] 65.70±1.70
MBGS+LBP [37] 76.40±1.80
MSM [39] 62.54±1.47
DCC(pair) [20] 70.84±1.57
MMD [35] 64.96±1.00
AHISD [6] 66.50±2.03
CHISD [6] 66.24±1.70
SANP [15] 63.74±1.69
STFRD 75.92±2.00
STFRD+PMML 79.48±2.52

2x1 4x2 6x3 8x4
70

75

80

85

90

A
c
c
u
ra

c
y
(%

)

 

 

64

128

256

512

1024

(a)

70

72

74

76

78

A
c
c
u

ra
c
y
(%

)

 

 

STFRD(step1)

STFRD(step2)

STFRD(step3)

STFRD(step4)

STFRD(step5)

(b)

Figure 4: The performances of our SFRD and STFRD fea-
tures using the Euclidean distance under different settings:
(a) different codebook sizes on the LFW dataset. (b) differ-
ent sampling steps on the YTF dataset.

image size, we use three partitions, K = 2 × 1, 4 × 2 and
6 × 3. The sparsely sampling step is set as 3 pixels, which
can achieve the comparable performance with denser sam-
pling steps as shown in Fig. 4(b). The other parameters are
the same as that in the LFW dataset.

The recognition accuracies and standard deviations of d-
ifferent methods are reported in Table 1. We also report the
results of two methods from [37], LBP(Min dist) and M-
BGS+LBP, which are the current published state-of-the-art
results on YTF 4. Note that LBP(Min dist) and MBGS+LBP
are generally better than other baselines, possibly because
higher resolution face images were used in their method-
s. From this table, the performance of STFRD can reach
75.92%, which demonstrates the effectiveness of our pro-
posed STFRD. By combining STFRD with PMML, the per-
formance can be further improved to 79.48%, which out-
performs the current state-of-the-art methods on the YTF
dataset.

7. Conclusion
In this paper, we have proposed two robust face region

descriptors SFRD and STFRD for image-based and video-
based face recognition, respectively. To handle the mis-
alignment problem, we partition each image (resp. video)

4More results can be found in: http://www.cs.tau.ac.il/ wolf/ytfaces/



into several spatial blocks (resp. spatial-temporal volumes),
and then apply the BoF model and the sum pooling method
in each block (resp. each volume) to extract the TF fea-
tures. WPCA is finally adopted to generate robust face re-
gion descriptors. Furthermore, we develop a new pairwise-
constrained multiple metric learning (PMML) method to in-
tegrate the face region descriptors from different regions.
Our proposed method achieves the state-of-the-art perfor-
mances on two public real-world datasets LFW and YTF.
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