
Querying Objects Modeled by Arbitrary Probability
Distributions

Christian Böhm, Peter Kunath, Alexey Pryakhin, and Matthias Schubert

Institute for Computer Science, Ludwig-Maximilians Universität München
{boehm,kunath,pryakhin,schubert}@dbs.ifi.lmu.de

http://www.dbs.ifi.lmu.de

Abstract. In many modern applications such as biometric identification systems,
sensor networks, medical imaging, geology, and multimedia databases, the data
objects are not described exactly. Therefore, recent solutions propose to model
data objects by probability density functions(pdf). Since a pdf describing an un-
certain object is often not explicitly known, approximation techniques like Gaus-
sian mixture models(GMM) need to be employed. In this paper, we introduce a
method for efficiently indexing and querying GMMs allowing fast object retrieval
for arbitrary shaped pdf. We consider probability ranking queries which are very
important for probabilistic similarity search. Our method stores the components
and weighting functions of each GMM in an index structure. During query pro-
cessing the mixture models are dynamically reconstructed whenever necessary. In
an extensive experimental evaluation, we demonstrate that GMMs yield a com-
pact and descriptive representation of video clips. Additionally, we show that our
new query algorithm outperforms competitive approaches when answering the
given probabilistic queries on a database of GMMs comprising about 100.000
single Gaussians.

1 Introduction

In recent years, a large variety of database applications has emerged where it is benefi-
cial to consider the uncertainty of the given data. The object uncertainty might be caused
by the inexactness of feature measurement like in biometrical or biological databases.
Furthermore, object uncertainty is often introduced to obtain a compact description of
very large or complex objects. For example, in sensor networks, it is not feasible to
transmit an exact value at all points of time. Therefore, several points of time are ag-
gregated into a single uncertain description. In order to model this uncertainty, the data
objects are described by probability density functions (pdf) over a given feature space
(cf. [1,2,3,4,5,6]).

In most applications, there is no explicitly known pdf describing the uncertain data
object. Instead, the density function is given by a sample of feature values or in the case
of data compression, the set of feature values being compressed. Thus, approximation
techniques have to be employed in order to find an explicit density function. In other
words, we need to describe each object as a function instead of set of sample points. A
large number of database applications in all fields of science and industry approximate
the underlying data distributions by a Gaussian mixture model (GMM). The idea of a

D. Papadias, D. Zhang, and G. Kollios (Eds.): SSTD 2007, LNCS 4605, pp. 294–311, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Querying Objects Modeled by Arbitrary Probability Distributions 295

(a) 3D view. (b) 2D view.

Fig. 1. Approximation of an arbitrary complex bivariate probability density by a mixture of Gaus-
sians with independent attributes

GMM is to model a complex density function by a weighted sum of several Gaussian
distributions. If a GMM is not exact enough, the quality can be arbitrarily increased
by adding further Gaussians (cf. Figure 1). The popularity of GMMs can be explained
by the following characteristics. A GMM has the ability to approximate an arbitrary
statistical data distribution very closely [7,8]. An example for such an approximation
can be seen in Figure 1. In particular, GMMs are capable of modeling arbitrarily shaped
correlations in data (cf. [8]) by a mixture containing distributions with independent
attributes (cf. Figure 2). Moreover, GMMs can be efficiently derived by a variety of
mathematical methods from any given sample set. The widespread use of these methods
contributes to prevalent employment of GMMs in several applications.

In the following, we survey some of example application areas employing GMMs
more closely. The first example for using objects represented by GMMs is managing
multimedia data. An ordinary movie of about 90 minutes contains about 140.000 sin-
gle images, called frames. Storing all these images for content-based video retrieval
would require large storage capacities and an enormous computational effort for com-
paring videos. To avoid this problem, the multimedia community often employs sum-
marization techniques representing videos as mixture models [9]. Thus, a video clip
is described by a GMM over the feature space representing single frames. Storing the
videos as a GMM dramatically reduces the resource consumption and still allows ac-
curate content-based video retrieval. Moreover, the use of mixture models is justified
by the demand to consider high level or semantic features (cf. [10,11,12] for details) in
order to guarantee effectiveness in the retrieval of multimedia data. For instance, [13]
describes the usage of face detection and recognition techniques in order to calculate
a compact description of video data. Another example for the use of GMMs is biocli-
matic research. For instance, the authors of [14] propose the use of GMMs to describe
species ranges from mapped climatic variables. Moreover, authors of [15] employ a
GMM in order to describe drug dissolution profiles. They also discuss implications of
the GMMs for pharmaceutical product formulation tasks. Further application areas of
GMMs are sensor networks (e.g. [16,4]), audio signal analysis (e.g. [17]), economics
(e.g. [18]). Additionally, the authors of [7,8] list several examples of the use of GMMs
in the following application areas: medicine, psychology, geology, agriculture.

296 C. Böhm et al.

Fig. 2. A Gaussian mixture model representing correlated 2D data

In his paper, we propose a novel method for query processing on arbitrarily shaped
pdf modeling each data object as a GMM. Our new models aims to answer identifi-
cation queries of the following form: Given a query GMM and a database of GMMs,
return the k database objects which might describe the same data object with the high-
est probability. Unlike previous approaches, we additionally consider the case that no
database object describes the same object as the query. Thus, we can handle the case
that it is most likely that there is no object in the database resembling the given query.
To efficiently handle this type of query, we propose a method for storing GMMs in a
probabilistic index structure. The principal idea of this method is to store each compo-
nent (i.e., each Gaussian of a GMM and its weighting) as a separate object. To calculate
the probability that a given query object corresponds to a database object, the GMMs
are reconstructed during query time. Therefore, we store the information about the pos-
sible candidates in a so-called candidate table. The candidate table is located in main
memory and stores two values for each object that was touched but is not yet complete.
Based on these two values, it is possible to calculate a conservative approximation of
the probability for a database object (see Section 4 for details). When a component be-
longing to an object o is retrieved from the underlying index structure the information
about o (i.e., two values in the candidate table) is updated.

The main contributions of this paper are: (1) A new probabilistic model for handling
uncertain objects represented by GMMs. (2) A method to allow unsuccessful search for
probabilistic queries. (3) A new query algorithm for efficiently answering probabilistic
ranking queries that are based on decomposing the GMMs.

The rest of the paper is organized as follows. In Section 2, we survey the related work
on managing and searching databases of uncertain objects. Section 3 introduces our new
uncertainty model and specifies the examined types of queries. Section 4 introduces a
new method for object indexing and query processing. Our experimental results are
shown in Section 5 and the paper concludes with a summary in Section 6.

2 Related Work

Statistical Modeling of Data in Sensor Networks. In [1], a new probabilistic abstract
datatype (ADT) based on a one-dimensional Gaussian is introduced. In order to han-
dle large amounts of data, the authors store the Gaussian ADT data in an ORDBMS.
For query processing, a two-stage process based on linear constraints is applied. How-
ever the GADT approach considers neither a mixture of probability density functions

Querying Objects Modeled by Arbitrary Probability Distributions 297

(pdf) nor multivariate probability distributions. The basic idea in [4] is to build a prob-
abilistic model from both historical and current sensor readings and to query the model
instead of the actual sensor network. The authors present an architecture, called BBQ,
that realizes this idea by a model based on time-varying multivariate Gaussians. Users
then submit one-shot queries to a relational database to request real-time information
about the network. However, the authors do not discuss the usage of index structures
for efficient query processing. The authors of [19] propose to use probabilistic mod-
els for acquisitional settings such as sensor networks and Internet monitoring. Such a
probabilistic model enables them to define new query types, exploit correlations when
answering queries and to provide probabilistic guarantees on the correctness of the an-
swers. While it is possible to use many different types of models, the authors explicitly
describe the time-varying multivariate Gaussian model as an example. However, the
authors do not consider an index structure for query processing.

Spatial Uncertainty. Authors of [2,3,5,20] deal with an uncertainty model for spatially
uncertain objects and propose queries which are specified by intervals in the query
space. In this setting a query retrieves uncertain objects w.r.t. the likelihood that the
uncertain object is indeed placed in the given query interval. Let us consider the con-
tributions more exactly. In [2] a new uncertainty model is introduced and several new
types of queries are described that allow the handling of inexact data. [5] introduced
the U-Tree for indexing uncertain 2D objects. Authors of [20] adapt the Gauss-tree pro-
posed in [6] to spatial uncertainty model and discuss probabilistic ranking queries. The
authors of [21] address the evaluation of probabilistic queries over uncertain data in
constantly-evolving environments and discuss among others the so-called probabilistic
nearest neighbor query that retrieves the set of objects being closest to a query object.
All of these contributions employ the so-called interval uncertainty model and pose
queries based on intervals in the data space. Thus, the mentioned approaches rather
deal with spatial uncertainty (i.e., the location of an object is considered to be uncer-
tain). Besides the mentioned methods for indexing spatially uncertain objects, [22] in-
troduces existential uncertainty. The idea of this approach is that the existence of each
data object is uncertain.

Uncertainty in Object Identification. In [6], the Gauss-tree is introduced which is
an index structure for managing large amounts of Gaussian distribution functions. The
proposed system aims at efficiently answering so-called identification queries. Addi-
tionally, [6] proposed probabilistic identification queries which are based on a Baysian
setting (i.e., given a query pdf, retrieve those pdfs in the database that correspond to the
query pdf with the highest probability). An example for this setting is: Given a facial
image represented by a normal distribution, retrieve the person in the database whose
face corresponds to the query image with the highest probability. However, the meth-
ods in [6] underly the limitation that each object can only be described by a single,
axis-parallel Gaussian. In this paper, we approximate arbitrary probability distributions
that are approximated by GMMs. Furthermore, unlike [6] our method facilitates un-
successful search which is an important feature for several application areas (e.g., the
content-based retrieval of multimedia data).

298 C. Böhm et al.

Fig. 3. Two uncertain objects (i.e., (dark) red object and (light) blue object) modeled by GMMs

Indexing Techniques for Uncertain Objects. The indexing methods introduced in
[3,5,6] have serious problems that strongly limit their use for applications with objects
modeled by GMMs. The first limitation of the introduced uncertainty models is that
each object is represented as a single multivariate distribution. Though this type of pdf
is rather common, it is for many of the above mentioned applications too simplifying.
Figure 3 illustrates two uncertain objects modeled by GMMs (object A in blue and ob-
ject B in red) in order to exemplify the problem. Each probabilistic object consists of
two distinct sets of Gaussians that are placed on a diagonal in oppositional edges of fea-
ture space. The indexing techniques described in [3,5,6] would approximate each object
with a node N that ranges over whole feature space (i.e., from 0 to 1 in each dimension).
Therefore, the selectivity of query processing algorithms is very low (i.e., we should ac-
cess all available nodes of an index structure while performing a probabilistic query).
Additionally, several of the existing methods (e.g., [3,6]) are based on distributions that
do not consider any correlation between the dimensions of the underlying feature space
which is a rather problematic assumption even for application were Gaussians are rather
well-suited. Last, but not least, the models derive probabilities based on the assumption
that the object which is searched for is always stored in the database. If the query object
is unknown, the model does not necessarily calculate a small probability because the
probability is relative to the total probability that the query belongs to at least one object
in the database. Recently, [23]introduced a method and a corresponding index structure
modeling pdfs using piecewise-linear approximations. This new approach also employs
linear functions as the U-Tree but is more exact in its approximation.

GMMs in Multimedia Retrieval. In our experimental evaluation, we test our general
approach of indexing arbitrary probability functions on a database of video clips being
represented by GMMs. To demonstrate that this method is competitive with existing
approaches to video retrieval, we will sketch some relevant work in this area. In [9], a
summarization technique is presented which is based on GMMs. However, the authors
do not propose any technique for speeding up the search on these summarizations. Fur-
thermore, the named approach yields a specialized solution for video retrieval and is
thus not concerned with the efficient search in general probabilistic data sets. The au-
thors of [24] propose an approach for obtaining a compact representation of videos that
computes the optimal representatives by minimizing the Hausdorff distance between

Querying Objects Modeled by Arbitrary Probability Distributions 299

the original video and its representation. If the Euclidian metric is used, k-means can
be applied to summarize video clips [25] by a set of centroides. A randomized technique
for summarizing videos, called video signature, is proposed in [26]. A video sequence
in the database is described by selecting a number of its frames closest to a set of ran-
dom vectors. The authors of [26] also propose a specialized distance function on the
derived summarization vectors. However, to the best of our knowledge, none of these
techniques uses an index structure to accelerate query processing.

3 Probabilistic Similarity Search Using a Mixture of Gaussians

3.1 Gaussian Mixture Model (GMM)

We assume that our objects are given by a probability density function (pdf) over a d-
dimensional feature space R

d. The pdf is defined in terms of a mixture of Gaussians, as
specified in the following definition:

Definition 1 (Gaussian Mixture Model). Let x ∈ R
d be a variable from a d-dimens-

ional feature space. A Gaussian mixture model (GMM) GO of an object O is the fol-
lowing probability density function corresponding to a weighted sum of kO Gaussian
functions:

GO(x) =
∑

1≤i≤kO

WO,i · NO,i(x) (1)

where WO,i is a weight factor 0 ≤ WO,i ≤ 1 with

∑

1≤i≤kO

WO,i = 1 (2)

and NO,i(x) is the density of a multivariate normal distribution:

NO,i(x) =
∏

1≤l≤d

NμO,i,l ,σ2
O,i,l

(xl) =
∏

1≤l≤d

1√
2πσ2

O,i,l

· e
−(xl−μO,i,l)

2

2σ2
O,i,l . (3)

Note that we assume the attribute independence of the single Gaussians involved in a
GMM (i.e., axis-parallel Gaussians). This assumption does not limit the generality of
our approach, because it can be shown that a mixture of axis-parallel Gaussians is able
to model arbitrary pdfs including those distributions where some of the attributes are
strongly correlated to each other [8,7]. As an example, consider Figure 2 where a 2D
Gaussian distribution with a strong correlation is modeled by a mixture of k = 5 axis-
parallel Gaussians. Thus, the attribute independence assumption of the single Gaussian
does not imply an attribute independence of the pdf modeled by the complete GMM.

3.2 Similarity of Objects Described by GMMs

After defining a GMM for describing an uncertain object, we now turn to the question
how to determine the probability of an object O to be a hit for a query object Q. As a

300 C. Böhm et al.

GQ(x)

GO(x)

GQ(x).GO(x)

x

Fig. 4. An example of two GMM in univariate space

starting point, we assume that the query Q is provided as by an exact feature vector (i.e.,
a point x ∈ R

d). In this case, Formula 1 can be used in combination with the Bayes
theorem to determine this probability:

P (O|x) =
P (O) · GO(x)∑

U∈DB P (U) · GU (x)
.

Since it makes sense to assume that each database object is part of the answer with
the same prior probability, P (O) = P (U) for all O, U ∈ DB and thus, we can can-
cel out the prior probability from the formula. Please note that the use of probability
densities instead of probabilities is common practice in Bayes classification, as can be
verified in [27,28].

The situation becomes more complex if both data and query object (O and Q) are
given as a GMM. We have to find a probability measure which indicates the probability
that both GMMs O and Q correspond to the same unknown true object x (which is a
traditional vector, and is used as a stochastic variable here). In general, we know nothing
about x except that it is taken from R

d. For every position of x in this data space, we
can determine the probability density of O and Q, respectively. Both are given by a pdf
modeled as a GMM. But for every position x, we can also determine the probability
density with which x belongs to both O and Q. As belonging to O and belonging to Q
are independent events, this is simply the product of the two corresponding pdfs. Since
the true object x can be any point of R

d, we have to form a d-dimensional volume
integral over all possible positions of x to determine the overall probability that O and
Q correspond to the same unknown x.

A one-dimensional example is visualized in Figure 4: Two objects, Q and O, each
modeled as a mixture of k = 3 Gaussians are depicted. We have also indicated x, a
possible position of the unknown true object. We can see from the diagram the proba-
bility density with which x belongs to O (approximately 0.12), to Q (0.18) and to both
of them (0.12 · 0.18 � 0.02). Since all x ∈ R are possible, the overall probability of O
and Q to belong to the same object corresponds to the integral of GQ(x) ·GO(x) where
x = −∞.. + ∞ (i.e., the shaded area in Figure 4). We call this probability density
p(Q|O) with

p(Q|O) =
∫∫ +∞

−∞
GO(x) · GQ(x)dx. (4)

Querying Objects Modeled by Arbitrary Probability Distributions 301

The theorem of Bayes can again be used to determine the result probability of every
database object O like in the case of single-valued query objects (cf. Equation 3.2):

P (O|Q) =
p(Q|O)∑

P∈DB p(P |O)
. (5)

We follow the convention to use the abbreviation
∫∫ +∞

−∞ f(x)dx for the so-called

volume integral
∫ +∞
−∞ . . .

∫ +∞
−∞ f(x)dx1 . . . dxd. Note that, although only two integral

signs are written, they actually stand for a d-fold integral. In the following, we show
how the overall probability density p(Q|O) defined in Formula 4 can be computed
analytically:

p(Q|O) =
∫∫ +∞

−∞
GO(x) · GQ(x)dx

=
∫∫ +∞

−∞

⎛

⎝
∑

1≤i≤kO

WO,iNO,i(x)

⎞

⎠

⎛

⎝
∑

1≤j≤kQ

WQ,jNQ,j(x)

⎞

⎠ dx

=
∑

1≤i≤kO

∑

1≤j≤kQ

WO,i · WQ,j ·
∫∫ +∞

−∞
NO,i(x) · NQ,j(x)dx.

The volume integral can be solved by the following re-arrangement of terms:
∫∫ +∞

−∞
NO,i(x) · NQ,j(x)dx = =

∫∫ +∞

−∞

∏

1≤l≤d

NμO,i,l,σO,i,l
(x) · NμQ,j,l,σQ,j,l

(x)dx

because of attribute independence

=
∏

1≤l≤d

∫ +∞

−∞

e
−(xl−μO,i,l)

2

2σ2
O,i,l · e

−(xl−μQ,j,l)
2

2σ2
Q,j,l

2πσO,i,lσQ,j,l
dxl

=
∏

1≤l≤d

1√
2π(σ2

O,i,l + σ2
Q,j,l)

· e
−(μQ,j,l−μO,i,l)

2

2(σ2
O,i,l

+σ2
Q,j,l

)

·
∫ +∞

−∞
NμO,i,lσ2

Q,i,l
+μQ,i,lσ2

O,i,l

σ2
Q,i,l

+σ2
O,i,l

,
σ2

O,i,l
σ2

Q,i,l

σ2
O,i,l

+σ2
Q,i,l

(xl)dxl

=
∏

1≤l≤d

1√
2π(σ2

O,i,l + σ2
Q,j,l)

· e
−(μQ,j,l−μO,i,l)

2

2(σ2
O,i,l

+σ2
Q,j,l

)
· 1

=
∏

1≤l≤d

NμO,i,l,σ2
O,i,l+σ2

Q,j,l
(μQ,j,l).

Therefore, the overall probability density p(Q|O) corresponds to

p(Q|O) =
∑

1 ≤ i ≤ kO

1 ≤ j ≤ kQ

WO,iWQ,j

∏

1≤l≤d

NμO,i,l,σ2
O,i,l+σ2

Q,j,l
(μQ,j,l).

302 C. Böhm et al.

3.3 Handling Unknown Objects

In many applications, we have to consider the case that the query object is not necessar-
ily stored in the database. Thus, an algorithm should allow that the result of the query is
empty (i.e., it is most likely that the given query does not fit to any of the database ob-
jects). In other words, no object can be considered as similar at all. Our solution to this
problem is to introduce an additional probability distribution modeling the likelihood
of an unknown data object.

When applying the Bayes theorem (cf. the Equation 5), we make the implicit as-
sumption that the object which is searched for is always stored in the database, and that
all stored database objects have the same a priori probability of being the result of the
search. Therefore, the sum of all result probabilities of all database objects equals 1 for
every query. If a query object is at a position of extremely low density , then some of
the database objects (particularly those with high overall variance) still may obtain high
result probabilities, which contradicts the intuition. In terms of the Bayesian probability
model, the conditional probability might become rather large if the total probability in
the denominator is very small. Since a conditional probability is normalized by the total
density, a small probability density might lead to a large probability if the total density
is very small.

This problem can be solved by modeling a placeholder for those objects which are
not stored in the database. This placeholder should have a high variance to cover the
complete data space and a prior probability PPH corresponding to the expected rate of
unsuccessful searches. For example, if 3 out of 4 search operations are not successful
(the intended object is not found in the database), then PPH = 0.75, and the remaining
prior probability (0.25) is shared by the database objects. The value of PPH can be set
at the begin of database usage to a default value. The value of PPH should be adapted
when collecting exact statistics about unsuccessful queries during database deployment.

The probability distribution of the placeholder can e.g. be selected to be uniformly
or normally distributed. Assuming that the data distribution of the unknown objects
follows that of the known objects, we can use the mean and the variance of the object set.
Let us not that these should not be confused with the intra-object variance describing
the uncertainty of the feature value of a single object:

μPH,l =
1

|DB|
∑

O∈DB

∑

1≤i≤kO

WO,i · μO,i,l

σ2
PH,l =

1
|DB| − 1

∑

O∈DB

∑

1≤i≤kO

WO,i · (μO,i,l − μPH,l)2.

To consider the placeholder, we have to extend our formula for calculating P (O|Q)
in the following way:

P (O|Q) =
1−PP H

|DB| · p(Q|O)

PPH · P (Q|PH) +
∑

P∈DB
1−PPH

|DB| · p(P |O)
. (6)

Querying Objects Modeled by Arbitrary Probability Distributions 303

3.4 Probabilistic Ranking Query on GMMs

A method for deciding containment in the query result is to retrieve the k most likely
results. An example for this type of query is: Retrieve the 5 objects from the database
having the highest probability for corresponding to the query object. We will call this
type of query probabilistic ranking query (PRQ). In the following we will formalize
PRQs:

Definition 2 (Probabilistic Ranking Query). Let DB be a database of GMMs M ,
let Q be a query GMM and let k ∈ N be a natural number. Then, the answer to a
probabilistic ranking query (PRQ) on DB is defined as the smallest set RQk(Q) ⊆ DB
with at least k elements fulfilling the following condition:

∀Ma ∈ RQk(Q), ∀Mdb ∈ DB \ RQk(Q) : P (Ma|Q) > P (Mdb|Q)

4 Indexing Mixtures of Gaussians

4.1 General Idea

Our method is based on the idea of decomposing each GMM into its components (i.e.,
the single Gaussians, and index the components separately). For instance, in order to
store a univariate GMM with W1 = 0.3, W2 = 0.7, μ1 = 0, μ2 = 1, σ1 = 2, σ2 = 3,
we decompose the GMM in two components g1 and g2. The first component g1 is
described by W1 = 0.3, μ1 = 0, σ1 = 2. The second component g2 is described
by W2 = 0.7, μ2 = 1, σ2 = 3. After decomposition, we can store two components
(i.e., g1 and g2) separately in an index that is appropriate for single pdfs. During query
processing, the complete GMMs can be processed componentwise and thus, we can
start excluding objects from the result set, even without retrieving the complete GMM.

To index the components of the stored GMMs, our method can employ any hierar-
chically organized index structure Δ that is capable to store single pdfs (e.g., [3,5,6]
that are based on the R-Tree [29] principle). Since Δ is designed to handle single pdf,
we have to extend it to additionally store the weights for each component. Thus, an
entry which corresponds to a GMM component Oi, consists of the parameters of the
underlying Gaussian μO,l and σ2

O,l (1 ≤ l ≤ d) and the weight of the component
WO,i. This way, it is possible to reconstruct the complete GMM after retrieving all of
its components from the index structure Δ. In addition to extending the entries in the
leaf nodes, we have to extend the node descriptions by the maximum weight W p

max of
any Gaussian being stored in the corresponding subtree.

The key idea of our proposed query algorithms is that it is possible to calculate the
probability P (O|Q) componentwise. Thus, if we can calculate a conservative approxi-
mation of the components of P (O|Q),

comp(O, i, Q, j) = WO,iWQ,j

∏

1≤l≤d

NμO,i,l,σ2
O,i,l+σ2

Q,j,l
(μQ,j,l)

it is possible to calculate conservative approximations for completely and partially re-
trieved GMMs during query processing.

304 C. Böhm et al.

Sketch of Formula for NLB(P,Q, j)Idea of Approximation
(P - Directory Node)

Index
Structure

Gauss-tree

U-tree

Approach of
[R. Cheng,
Y. Xia,
S. Prabhakar
et al.]

I2I1 In……

h2
h1

hn: Q n

k

I

I
kjQLB

k

k

dxhxNjQPN
1

,

1

))((),,(

Q
y(x)=a*x-b

.....))()((),,(,

c

b

b

a
jQLB dxxyxNjQPN

a b c d

Q
)(ˆ

,,, xN

dxxNxNjQPN jQLB))(ˆ)((),,(,,,,

Fig. 5. Idea of the approximation and sketch of the conservative approximation calculation
(NLB(P, Q, j)) for different index structures that handle single pdfs

Therefore, we define a conservative approximation for any component Qi and a
given page P in the index structure Δ which maximizes comp(O, i, Q, j) over all Oi

that are stored in the subtree corresponding to P :

compP
max(Q, j) = WP

maxWQ,j

∏

1≤l≤d

NLB(P, Q, j)

≥ max
O,i∈P

WO,iWQ,j

∏

1≤l≤d

NμO,i,l,σ2
O,i,l+σ2

Q,j,l
(μQ,j,l)

where NLB(P, Q, j) is lower bound or maximum of probability density that can be
achieved in a node or subtree of the underlying index structure and WP

max is the maxi-
mum of the weights of all components stored in P . In particular, NLB(P, Q, j) can be
calculated by:

– evaluation of one or several entries in so-called ratio table w.r.t. x-bounds if em-
ploying the indexing technique described in [3],

– using the so-called U-Catalog and the function e.MBR(.) that allows pruning sub-
trees if employing the U-tree [5],

– using the density of the hull function N̂... if employing the Gauss-tree [6].

Figure 5 depicts the general idea of the computation of the conservative approximation
NLB(P, Q, j) for the above mentioned index structures.

Furthermore, we define compP
max(Q) approximating the probability for the com-

plete query GMM Q and an arbitrary component stored in P as:

compP
max(Q) = |Q| · max

1≤j≤|Q|
compP

max(Q, j)

Thus, we have found a way to estimate the maximum influence of any GMM com-
ponent stored in page P on the probability P (O|Q) for any object O in the database

Querying Objects Modeled by Arbitrary Probability Distributions 305

Object ID
Step 1: initialize candidate table (empty)

)2,1,1,0,7.0,3.0(212121
AAAAAA WW

Store GMMs A, B, C in an index structure IS.

A =
Objects (modeled by GMMs).

)4,3,2,1,6.0,4.0(212121
BBBBBB WWB =
)6,5,6,5,8.0,2.0(212121

CCCCCC WWC =

insert components of A into IS
)1,0,3.0(111

AAAWinsert 1st component A1:

:

insert 2nd component A2:)2,1,7.0(222
AAAW

Q – query: query processing

insert components of B into IS

||1 ||1
),,,(

Qj Ri
jQiOcomp

||1
,

Ri
iOw

Step 2: after index traversing, we get B1

0.4……B

Object ID
||1 ||1

),,,(
Qj Ri

jQiOcomp
||1

,
Ri

iOw

Step 3: we get A2

0.4……B

0.7……A

Object ID

Step 4: we get A1 (object A is complete)

0.4……B

Object ID

||1
,

Ri
iOw

||1 ||1
),,,(

Qj Ri
jQiOcomp

||1
,

Ri
iOw

||1 ||1
),,,(

Qj Ri
jQiOcomp

Fig. 6. General idea of the candidate table used in our query algorithms on GMMs

that has not yet been retrieved completely. For query processing, compP
max(Q) is use-

ful for several tasks. First of all, we can use compP
max(Q) to estimate the maximum

probability P (O′|Q) for the GMM O′ which is stored in P and there is no component
of O′ that has been retrieved during query processing yet.

P (O′|Q) = kmax · compP
max(Q)

where kmax denotes the maximum number of components in any GMM in the database.
Furthermore, we can approximate the maximal probability of a partially retrieved GMM
O to match Q. This is important for pruning candidate GMMs as early as possible:

P (O|Q) =
∑

1≤j≤|Q|

∑

1≤i≤|R|
comp(O, i, Q, j) + (1.0 −

∑

1≤i≤|R|
WO,i) · compP

max(Q)

where R is the set of already retrieved components of O and P is the page having the
maximum value of compP

max(Q). Note, that the use of 1.0 −
∑

1≤i≤|R| wO,i for all
remaining weights is justified by Formula 2. The estimation of the sum of all densi-
ties is necessary to apply Formula 6. We can sum up the densities or their conservative
approximations as described above during query processing. Thus, it is possible to de-
termine a conservative approximation of the complete density of a candidate GMM at
all times.

Before we explain our probabilistic query processing on GMMs in detail, we take
a closer look at the data structure which manages the result candidates. This candidate
table can either be located in main memory or on secondary storage, depending on the
size of a particular dataset. Every component of a GMM which is fetched from the
underlying index structure is stored in this table. An object is removed from the table
under two conditions. Either all components of a particular object are in the candidate
table (cf. Figure 5) or the object is pruned based on the conservative approximation of
the object probability.

306 C. Böhm et al.

ALGORITHM PRQ(Query Q, integer k)
BEGIN

hits := new PriorityQueue(ascending)
drops := new List()
candidates := new List()
APL := new PriorityQueue(descending)
APL.insert(root,1 − PP H)
REPEAT

currNode := APL.removeFirst()
IF currNode.isDirectoryNode() = ’TRUE’ THEN

FOR EACH node ∈ currNode DO
APL.insert(node, compnode

max (Q))
END FOR

IF currNode.isDataNode() = ’TRUE’ THEN
FOR EACH c ∈ currNode DO

IF drops.contains(c.ObjectID) = ’TRUE’ THEN
CONTINUE

END IF
candidates.update(c.ObjectID, c, Q)
entry := candidates.get(c.ObjectID)
IF entry.isComplete() = ’TRUE’ THEN
prob := entry.probability(Q)

IF prob ≥ hits.topProbability THEN
IF hits.Size() = k THEN

hits.removeFirst()
END IF
hits.add(c.ObjectID, prob)

END IF
candidates.delete(c.ObjectID)

ELSE
IF entry.approximation(Q) ≤

hits.topProbability THEN
drops.add(c.ObjectID)
candidates.delete(c.ObjectID)

END IF
END IF

END FOR
END IF

UNTIL((candidates.Size() > 0
or APL.topProbability > hits.topProbability)
and APL.Size() > 0)

report hits;
END

Fig. 7. Pseudo code: Probabilistic Ranking Query on GMMs

In the following we will introduce our algorithm for processing PRQs. For this type
of query, the minimum probability for a result depends on the object having the k-
highest probability for corresponding to the query GMM Q. Therefore, we employ
two priority queues: The first priority queue is used for traversing the probabilistic in-
dex structure storing the components of the GMMs. We will refer to this queue as the
traversal queue. The second priority keeps those k GMMs which currently have the
largest probabilities for corresponding to Q. We will sort this second priority queue in
ascending order and refer to it as the result queue. The pseudo code for the algorithm is
displayed in Figure 7. We start by ordering the descendant nodes of the root page w.r.t.
compp

max(Q). Afterwards we enter the main loop of the algorithm and remove the top
element of the traversal queue. If this element is a node, we load its child nodes. If these
child nodes are nodes themselves, we determine compp

max(Q) and update the traversal
queue. If the child nodes are components of GMMs, we check the candidate table for

Querying Objects Modeled by Arbitrary Probability Distributions 307

a corresponding GMM M and insert a new descriptor, in the case that there is not al-
ready a descriptor for M . Afterwards, we can update the candidate table as mentioned
before. If a GMM M has been read completely, we can delete it from the candidate
table and compare its probability P (M |Q) to the probability of the top element of the
result queue (i.e., the GMM encountered so far having the k highest probabilities). If
the probability of M is higher than that of the top element, we need to add M to the
queue. However, to make sure that we do not retrieve more than k elements, we have to
check the size of the result queue. If there are already k elements, we have to remove
the previous top element before inserting M . In the case, that the entry in the candidate
table does not contain the complete information about M yet, we still can calculate a
probability estimation and compare it to the top element of the result queue. If P (M |Q)
is smaller than the k highest probability in the result queue, we can guarantee that M is
not a potential result. Thus, M is deleted from the candidate table and stored in our list
for excluded GMMs. The algorithm terminates if the top of the traversal queue provides
a lower value than the top of the result queue and the candidate table is empty. Please
note that it is not necessary to calculate any complex integral functions during query
processing. As shown in Section 3.2 it is sufficient to compute a weighted product of
probability densities during query execution.

5 Experimental Evaluation

To demonstrate the effectiveness and efficiency of our new approach, we implemented
the proposed methods in Java 1.5. All experiments were performed on a workstation
equipped with a 2.2 GHz Opteron CPU and 8GB RAM. In order to store components
of GMMs, we implemented an X-Tree [30] variant that uses split and insert methods
as proposed in [6], and the technique for calculation of conservative approximations on
Gaussians (i.e., for calculation of NLB in Formula 7 of Section 4) as described in [6].

Testbed. In order to demonstrate, that our new uncertainty model yields an competitive
solution for content-based object retrieval in multimedia databases, we tested our un-
certainty model based on GMMs on a dataset of 1,050 music video clips. The average
length of a video is 4 minutes 14 seconds. To transform the videos into GMMs, we first
of all extracted the set of all frames contained in a video and transformed each frame
into a color histogram. Thus, each video was represented by a set of 3,000 up to 10,000
single images. To model these set of images as a GMM, we applied Expectation Max-
imization clustering. Afterwards each video was represented by a GMM consisting of
100 Gaussians. Let us note that some of the videos are described by a smaller number
of Gaussians because the clustering generated empty clusters without any weight in the
GMM. Thus, the testbed consists of about 100,000 16-dimensional Gaussians which
correspond to approximately 150 GB of video data. To demonstrate that our new un-
certainty model is competitive to other methods for content-based video retrieval, we
additionally generated a database representing each video as a set of color histograms.
However, since using thousands of feature vectors for representing a video clip of 3
to 5 minutes is not feasible, we had to reduce the number of employed feature vectors
considerably. Thus, each video is described by selecting every 50th frame in chronolog-
ical order. To query a database describing a video as set of feature vectors, we employ

308 C. Böhm et al.

0

0.2

0.4

0.6

0.8

1

1 2 3 4
k

Pr
ec

is
io

n
GMMs
One Gaussian
SMD
HD

(a) Precision.

0

0.1

0.2

0.3

0.4

0.5

0.6

1 2 3 4
k

R
ec

al
l

GMMs
One Gaussian
SMD
HD

(b) Recall.

Fig. 8. Precision and recall for PRQ on GMMs and comparison partners

well known distance functions for set-valued objects like the sum of minimum dis-
tances (SMD) and the Hausdorff distance (HD) [31]. Furthermore, we generated a third
database representing each data object as a single Gaussian, instead of a GMM.

Effectiveness. We compare the results of our new method to the mentioned compari-
son partners for video retrieval w.r.t. precision and recall. Therefore, we posed ranking
queries, subsequently retrieving the 4 objects in the database that most likely match the
query object. The queries consist of 40 videos for which there exist multiple versions
in the database corresponding to different versions or having a different recording qual-
ity. Thus, we can measure precision and recall for these query videos. For each size
of the result set (k = 1, . . . , 4), we measured precision and recall. Figure 8 displays
the precision and the recall achieved by all 4 compared methods. Our new approach for
modeling uncertain objects as GMMs outperformed all other methods w.r.t. precision as
well as recall. For example, the GMM based model displayed a more than 20 % better
precision for k = 1 than the best of its comparison partners. Thus, we can state that
modeling a video as a GMM instead of a single Gaussian significantly increased the
quality of object representation and therefore, the precision and the recall of the result
sets improved as well. Furthermore, the result indicates that modeling videos as GMMs
is superior to modeling videos as sets of feature vectors.

We additionally tested the capability, of our new method to cope with query objects
that are not stored in the database. The result indicates a probability for unsuccessful
queries that is less than 6%. Since such a small probability value is not observed for any
result of a successful search, we assume an unsuccessful search for result probabilities
of less then 10 %.

Efficiency. After demonstrating the usefulness of our new approach for uncertain ob-
jects, we now examine the efficiency of our new method to index GMMs. To the best
of our knowledge, the method proposed in this paper is the first approach for efficiently
managing large sets of GMMs. Thus, we compare our method to the basic approach
that no index is available and the result set has to be determined by a sequential scan
over the database. Since measuring real disc accesses is often not significant due to
the existence of disc caches, we measure the IO performance in this section by count-
ing IO operations and afterwards add up the cost for the counted disk accesses based

Querying Objects Modeled by Arbitrary Probability Distributions 309

0

2

4

6

8

10

12

14

10000 20000 60000 100000

DB size

C
PU

 T
im

e
[s

ec
]

Decomposition

Seq. Scan

(a) CPU-time.

0

2

4

6

8

10

12

14

10000 20000 60000 100000

DB size

C
PU

+I
/O

 T
im

e
[s

ec
] Decomposition

Seq. Scan

(b) CPU+IO time

Fig. 9. Efficiency for PRQ (k=3) on synthetic data for varying database size

0

5

10

15

20

25

30

1 2 3 4

k

C
PU

+I
/O

 T
im

e
[s

ec
] Decomposition Seq. Scan

Fig. 10. CPU+IO time for PRQ on the video dataset

on a transfer rate of 50 MB/s and an access time of 6 ms. We evaluated the effi-
ciency of our new approach on the real world video data set. The result is displayed in
Figure 10. For all query parameters our new PRQ method was capable to speed up
query processing to a factor of approximately 2. Furthermore, the query time was com-
parably stable for the given query parameters, e.g. the query time did not significantly
increase for larger values of k. Since the video data set is rather small, we generated an
artificial data set of up to 100,000 GMMs to examine the scalability of our approach.
These GMMs consisted of up to 10 Gaussians over an 2D data space. The results are
displayed in Figure 9. In this figure, we distinguish between the CPU query time (cf.
Figure 9(a)) and the complete query time (cf. Figure 9(b)). The speedup of our new
approach increased with the size of the database. Thus, using our approach is more
beneficial for larger data sets.

6 Conclusion

In this paper, a new uncertainty model is proposed which represents uncertain objects
by Gaussian mixture models (GMM). A GMM can approximate arbitrary multivariate
probability distribution and thus, GMMs are applicable in a wide variety of new applica-
tions like multimedia retrieval, sensor networks, medicine, geology. To use GMMs for

310 C. Böhm et al.

query processing, we demonstrate that the probability that a query GMM corresponds
to a database GMM can be calculated analytically. Furthermore, our model is capable of
handling unsuccessful queries (i.e., if the database does not contain a similar data object
the results will have a very low result probability). Thus, we can recognize that there is
most likely no corresponding object in the database. After introducing the uncertainty
model, we examine probabilistic ranking queries as an important query type. To speed
up these queries, we propose a new indexing technique which is based on object de-
composition. The key idea of this method is to store each component of each GMM
separately in an index structure for single pdfs like [3,5,6]. During query processing,
we can prune certain GMMs based on their already retrieved components. Addition-
ally, the result GMMs are reconstructed while searching the database. Thus, our new
method is capable of efficiently retrieving the GMMs in the database that resemble a
query GMM with maximum likelihood. In our experimental evaluation, we demonstrate
the effectiveness of our new approach for content-based multimedia retrieval on a data
set of 1,050 video clips. Additionally, we show that the new query algorithm employ-
ing object decomposition yields a significant speed up compared to sequential query
processing on a synthetic data set and the named data set of video clips.

References

1. Faradjian, A., Gehrke, J., Bonnet, P.: GADT: A Probability Space ADT For Representing and
Querying the Physical World. In: Proc. 18th Int. Conf. on Data Engineering (ICDE’02),San
Jose, CA, USA p. 201 (2002)

2. Cheng, R., Kalashnikov, D.V., Prabhakar, S.: Evaluating Probabilistic Queries over Impre-
cise Data. In: Proc. ACM SIGMOD Int. Conf. on Management of Data (SIGMOD’03), San
Diego, CA, USA pp. 551–562 (2003)

3. Cheng, R., Xia, Y., Prabhakar, S., Shah, R., Vitter, J.S.: Efficient Indexing Methods for Prob-
abilistic Threshold Queries over Uncertain Data. In: Proc. 30th Int. Conf. on Very Large Data
Bases (VLDB’04), Toronto, Cananda pp. 876–887 (2004)

4. Deshpande, A., Guestrin, C., Madden, S., Hellerstein, J., Hong, W.: Model-driven data ac-
quisition in sensor networks. In: Proc. 30th Int. Conf. on Very Large Data Bases (VLDB’04),
Toronto, Cananda (2004)

5. Tao, Y., Cheng, R., Xiao, X., Ngai, W.K., Kao, B., Prabhakar, S.: Indexing Multi-
Dimensional Uncertain Data with Arbitrary Probability Density Functions. In: Proc. 30th
Int. Conf. on Very Large Data Bases (VLDB’05), Trondheim, Norway, pp. 922–933. (2005)

6. Böhm, C., Pryakhin, A., Schubert, M.: The Gauss-Tree: Efficient Object Identification of
Probabilistic Feature Vectors. In: Proc. 22nd Int. Conf. on Data Engineering (ICDE’06),
Atlanta,GA,US, p. 9 (2006)

7. Titterington, D.M., Smith, A.F.M., Makov, U.E.: Statistical analysis of finite mixture distri-
bution. Wiley, new york (1985)

8. Lindsay, B.G.: Mixture models: Theory, geometry, and applications (1995)
9. Greenspan, H., Goldberger, J., Mayer, A.: A probabilistic framework for spatio-temporal

video representation & indexing. In: Heyden, A., Sparr, G., Nielsen, M., Johansen, P. (eds.)
ECCV 2002. LNCS, vol. 2350, pp. 461–475. Springer, Heidelberg (2002)

10. Yang, M., Ahuja, N.: Gaussian mixture model for human skin color and its application in
image and video databases. In: Proc. of the Conf. on Storage and Retrieval for Image and
Video Databases (SPIE 99), vol. 3656, pp. 458–466. Springer, Heidelberg (1999)

Querying Objects Modeled by Arbitrary Probability Distributions 311

11. Chen, S.-C., Kashyap, R.L., Ghafoor, A.: Semantic Models for Multimedia Database Search-
ing and Browsing. Kluwer Academic Publishers, Dordrecht (2002)

12. Srinivasan, U., Nepal, N.: Managing Multimedia Semantics. IRM Press (2005)
13. Deb, S.: Video Data Management and Information Retrieval. Idea Group Publishing (2005)
14. Gavin, D.G., Hu, F.S.: Bioclimatic modelling using gaussian mixture distributions and mul-

tiscale segmentation. Global Ecology and Biogeography 14, 491 (2005)
15. Lim, P., Quek, S., Peh, K.: Application of the gaussian mixture model to drug dissolution

profiles prediction. Neural Comput. Appl. 14(4), 345–352 (2005)
16. Zajdel, W., Kröse, B.: Gaussian mixture model for multi-sensor tracking. In: Proc. of the

15th Dutch-Belgian Artificial Intelligence Conference (BNAIC’03), pp. 371–378 (2003)
17. Reynolds, D.A., Quatieri, T.F., Dunn, R.B.: Speaker verification using adapted gaussian mix-

ture models. Digital Signal Processing 10(1), 19–41 (2000)
18. Yoo, S-H.: Application of a mixture model to approximate bottled water consumption distri-

bution. Applied Economics Letters 10(3), 181–184 (2003)
19. Deshpande, A., Guestrin, C., Madden, S.R.: Using Probabilistic Models for Data Manage-

ment in Acquisitional Environments. In: Proc. CIDR (2005)
20. Böhm, C., Pryakhin, A., Schubert, M.: Probabilistic Ranking Queries on Gaussians. In: Proc.

of the 18th Int. Conf. on Scientific and Statistical Database Management (SSDBM’06), pp.
169–178 (2006)

21. Cheng, R., Kalashnikov, D.V., Prabhakar, S.: Evaluation of Probabilistic Queries over Impre-
cise Data in Constantly-Evolving Environments 32(1), 104–130 (2007)

22. Dai, X., Yiu, M.L., Mamoulis, N., Tao, Y., Vaitis, M.: Probabilistic Spatial Queries on Exis-
tentially Uncertain Data. In: Bauzer Medeiros, C., Egenhofer, M.J., Bertino, E. (eds.) SSTD
2005. LNCS, vol. 3633, pp. 400–417. Springer, Heidelberg (2005)

23. Ljosa, V., Singh, A.K.: APLA: Indexing arbitrary probability distributions. In: Proc. of the
23rd Int. Conf. on Data Engineering (ICDE 2007) (2007)

24. Chang, H.S., Sull, S., Lee, S.U.: Efficient Video Indexing Scheme for Content-Based Re-
trieval. In: IEEE Transactions on Circuits and Systems for Video Technology, vol. 9, pp.
1269–1279. IEEE Computer Society Press, Los Alamitos (1999)

25. Zhuang, Y., Rui, Y., Huang, T.S., Mehrotra, S.: Adaptive key frame extraction using unsu-
pervised clustering. In: ICIP (1), pp. 866–870 (1998)

26. Cheung, S.S., Zakhor, A.: Efficient video similarity measurement with video signature. In:
IEEE International Conference on Image Processing (ICIP 02), vol. 1, pp. 621–624. IEEE
Computer Society Press, Los Alamitos (2002)

27. Han, J., M., K.: Data Mining: Concepts and Techniques. Morgan Kaufmann, San Francisco
(2006)

28. Witten, I.H., E., F.: Data Mining. Practical Machine Learning Tools and Techniques. Morgan
Kaufmann, San Francisco (2005)

29. Guttman, A.: R-trees: A Dynamic Index Structure for Spatial Searching. In: Proc. ACM
SIGMOD Int. Conf. on Management of Data, pp. 47–57. ACM Press, New York (1984)

30. Berchtold, S., Keim, D.A., Kriegel, H.P.: The X-Tree: An Index Structure for High-
Dimensional Data. In: Proc. 22nd Int. Conf. on Very Large Data Bases (VLDB’96), Bombay,
India, pp. 28–39 (1996)

31. Eiter, T., Mannila, H.: Distance measures for point sets and their computation. Acta Infor-
matica 34(2), 103–133 (1997)

	Querying Objects Modeled by Arbitrary Probability Distributions
	Introduction
	Related Work
	Probabilistic Similarity Search Using a Mixture of Gaussians
	Gaussian Mixture Model (GMM)
	Similarity of Objects Described by GMMs
	Handling Unknown Objects
	Probabilistic Ranking Query on GMMs

	Indexing Mixtures of Gaussians
	General Idea

	Experimental Evaluation
	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

