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The emergence of new infections and resurgence of old onesFhealth threats stemming from
environmental contamination or purposeful acts of bioterrorismFcall for a worldwide effort in
improving early outbreak detection, with the goal of ameliorating current and future risks. In
some cases, the problem of outbreak detection is logistically straightforward and mathematically
easy: a single case of a disease of great concern can constitute an outbreak. However, for the vast
majority of maladies, a simple analytical solution does not exist. Furthermore, each step in
developing reliable, sensitive, effective surveillance systems demonstrates enormous complex-
ities in the transmission, manifestation, detection, and control of emerging health threats. In this
communication, we explore potential future innovations in early outbreak detection systems
that can overcome the pitfalls of current surveillance. We believe that modern advances in
assembling data, techniques for collating and processing information, and technology that
enables integrated analysis will facilitate a new paradigm in outbreak definition and detection.
We anticipate that moving forward in this direction will provide the highly desired sensitivity and
specificity in early detection required to meet the emerging challenges of global disease surveillance.

We cannot create observers by saying ‘observe,’ but by

giving them the power and the means for this observation

and these means are procured through education of the

senses.

Maria Montessori

Introduction: Three main challenges in outbreak
detection
Failure of biosurveillance systems to detect incipient out-

breaks at the earliest stages of spreading infection can lead

to otherwise avoidable increases in the incidence of and

mortality from a disease, whether that disease results from

environmental contamination, exposure to zoonotic patho-

gens, or purposeful acts of bioterrorism. Many different

mathematical and statistical techniques have therefore been

proposed1,2 to analyse incoming disease incidence reports

and detect a signal that is distinct from the unavoidable noise

as early as possible after the onset of any event. However,

the possibilities are far from exhausted and we have not yet

developed a demonstrably reliable early detection method.

The availability of better methods will invariably lead to

enhanced biosecurity and help government, policy makers,

and safety professionals in general to provide more effective

strategies to ensure public health and safety.

For some diseases of greatest concern, the problem of

outbreak detection is mathematically easy: a single case can

constitute an outbreak (for example, smallpox), and for

diseases for which this is the case, our efforts are geared

towards early biological detection and identification of the

single case, rather than mathematically or statistically

identifying an impending epidemic. However, for the vast

majority of diseases, including those responsible for frequent

and/or periodic epidemics and severe mortality (for example,

influenza, which claims B36 000 lives a year in the

United States under normal, non-epidemic conditions3),

our concern in biosurveillance and outbreak detection is

rather focused on finding ways to detect unusual patterns of

disease incidence soon after they begin to break from what

is expected, typical, or endemic. This brings us to our first

challenge in modern biosurveillance: the definition of ‘an

outbreak’. A large part of the effort for a number of diseases is

already spent in making the decision of what constitutes an

unusual pattern.4 Most modern disease surveillance systems

rely on static thresholds for outbreak detection. Outbreaks

are declared once a sufficient number of new cases are

reported over a certain period of time, within the confines of

a certain location. The determination of these thresholds

(that is, how many cases, over how long a period of time,

within how much space) relies on historical incidence data
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to set an expected baseline for ‘normal’ conditions. This

approach is instantly problematic when the disease of

concern has never been observed within the population at

risk, which means that no baseline can be established;

however, it also poses other challenges. No two outbreaks are

ever identical, even once corrections are made for popula-

tion size, demography, and preexisting protective immunity.

Similarly, endemic (or non-outbreak) disease occurrence can

fluctuate for a variety of reasons (for example, known

seasonal patterns). This means that there are large challenges

involved in both determining what is normal and determin-

ing what is unusual. Methods from the fields of operations

research and traditional statistics have helped somewhat,

although the usual goal in operations research is to detect

an event exceeding the ‘3 sigma’ threshold of detection,

based on the likelihood and frequency of the occurrence.5–7

In biosurveillance, however, the likelihood and frequency of

an event of interest are not actually determinants of concern.

Even if local outbreaks of severe acute respiratory syndrome

or Ebola haemorrhagic fever became frequent, and even

expected, it would still be a logical requirement of any

biosurveillance system to detect these events as soon as

possible.

Some more sensitive methods (compared with a fixed

threshold approach) for outbreak detection have proposed

the use of adaptive thresholds, incorporating information on

patterns in disease incidence over some past units of time, as

well as the current scenario, to determine whether observed

patterns of incidence signal an incipient outbreak.5,8 These

methods, however, involve complications of their own: not

only are historical data needed for both outbreak and

nonoutbreak conditions of the past against which current

trends must be compared, but also the trajectories must be

considered. This implies a requirement for much greater

richness in historical data. If not all possible paths for the

spread of infection have occurred within the period for

which historical records are used for comparison, these

methods may be unable to classify an outbreak simply

because the trajectory of increased incidence is unfamiliar.

Naturally, the number of different possible trajectories is

much larger than the number of different current threshold

scenarios, requiring a much longer and richer historical data

set before a meaningful baseline can be set than would be

required to detect outbreaks were all trajectories naturally

identical. Hybrid systems, separately using both current

threshold violations and adaptive trajectory responses, have

solved some of these problems. (For example, when shifts

in health-care utilization during epidemics and major

public events are expected, an integrated network model of

epidemiological data streams might have the potential to

improve localized outbreak detection.9)

However, the definition of an outbreak is not the only

major stumbling block to implementing a practical biosur-

veillance system to support the efforts of public health

officials. Even if we assume that, for each disease, we have a

very good definition of what constitutes normal, endemic

levels and what should constitute an outbreak worthy of our

attention, various incredibly complex challenges remain.

This brings us to our second challenge: heterogeneity in the

sources of data. Diversity in incoming data provides a

multifaceted source of information, and also challenges

any system by providing variation in the timing and scale of

reported incoming values. For example, daily, weekly, and

monthly counts of cases may be reported as signals of the

same disease, covering the same population. As we develop

truly multifaceted sources of input into detection systems,

involving data from such varied sources as medication sales,

hospital admissions, doctors visits, web queries, and school

or office absenteeism, integrating signals requires compensa-

tion for the existence of single cases contributing to multiple

signals, not always simultaneously. Furthermore, not all of

these signals will have equal significance to outbreak

detection, nor is it reasonable to expect that actual incidence

of infection will be the only factor affecting their dynamics.

Finally, even if the difficulties in defining an outbreak and

integrating and appropriately weighing the various sources

of incoming surveillance data can be overcome, there still

remains our third challenge: timely detection of outbreaks.

Different diseases will require different lead times in order to

allow officials to mount effective and appropriate public

health response measures. However, common to all possible

outbreaks is the desire for reliable outbreak detection as early

as can be managed. Naturally, making the system reliable is

one of the key constraints against providing the earliest

possible warning of a coming problem. A system that

routinely issues false alarms is potentially even more harmful

than a system that fails to notice an outbreak until it is

already past its epidemic peak. Finding an appropriate

balance between sensitivity and specificity is the last great

challenge to the creation of effective measures in outbreak

detection.

Overview of traditional and upcoming data
sources and data streams
Worldwide disease surveillance systems are historically

supported by a reliable network of hospitals, outpatient

clinics, and diagnostic facilities, and are operated in

cooperation with local and regional public health institu-

tions. Overall, the established infrastructure facilitates con-

sistent improvement in data quality, essential for reliable

monitoring of well-controlled diseases. Most data-monitor-

ing systems that form the basis for many national surveil-

lance programmes strive to ensure a complete and

comprehensive coverage of the general population. Typi-

cally, medical and social care facilities, diagnostic services

networks, schools, universities, workplaces, and correctional

facilities constitute the core of data sources for universal data

repositories (see Table 1 for more examples). Their ability to

reflect how an outbreak progresses varies substantially with

different data sources, and the selection of a single source to

provide reliable early outbreak detection is problematic. For

example, highly specialized and disease-oriented systems are
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likely to detect a change in a disease of interest and to offer

high-quality data on pathogen specifications by using

molecular genetic typing.10 However, such systems might

not be flexible enough to track a novel pathogen or to collect

and process new information associated with an outbreak in

a timely manner and at reasonable cost. On the other hand,

systems focusing on a search for an aberration in ‘noisy’

environments, for example, syndromic surveillance, might

detect a change at an appropriate time, but fail to specify

the cause.11

Each data source provides one or more data streams that

differ by a number of characteristics important for early

outbreak detection. Efforts to better understand the magni-

tude and severity of emerging and reemerging health threats

force the search for various proxies to diseases. A rapid

incorporation of novel data streams into disease surveillance

systems has demonstrated the potential of an increasing

information exchange.12–15 The list of prospective candi-

dates for disease monitoring is growing and includes not

only traditional hospitalization records and laboratory-

confirmed tests but also the data streams driven by novel

information technologies. Personal digital assistant-based

records collected directly from an outbreak investigation,16

hits and queries targeting specific websites (http://www.

google.org/flutrends/),17 satellite imagery,18 and searches for

media and news items are examples of these new data

streams (http://www.healthmap.org/about.php).

The inadequacy of existing infrastructure to provide early

warning even with a combination of standard and new

health measures is a problem that cannot be easily resolved.

A blend of new and traditional data streams offers a wide

range of measurable health and disease outcomes with

highly desirable characteristics in specificity; however, the

breadth and diversity of new measures and their composites

come with the price of presenting new challenges in data

processing. Each additional data stream has its own char-

acteristics, including timing, sensitivity and specificity,

accuracy, population coverage, and overlap with other

sources. Data streams that originate from various sources

might have differences in their properties, for example, a

different pattern of delays, population coverage, weekly or

seasonal cycles. The dynamics observed in these streams

have to be carefully evaluated, and their interpretation

might depend on our knowledge of the participating

population (for example, monitoring disjoint portions of

the same population might provide seemingly contrary

results). With an increase in the diversity of prospective

disease markers and a relative ease in collecting such

information electronically through blogs, mailing lists,

feeds, and queries,19 a diligent control for data quality and

trustworthiness has to be established. In fact, these systems

are likely to be sensitive to factors that modify human

behaviour but are unrelated to true disease incidence.

Unconfirmed data streams can be prone to false alarms

because of our limited knowledge on proper signal cali-

brations.20 To understand the interrelationship among

various data streams and data sources, it is essential to have

an automated support system with auxiliary information

related to the population at risk and to spatio-temporal

patterns of disease spread. Such information might

include demographic profiles and dynamics, population

migration and travel patterns, vaccination coverage and herd

immunity, calendar of social activities and anticipated

mass gatherings. Availability of this information can contri-

bute to the ability to detect an imminent outbreak early

(see Table 1 for more examples).

Overview of modern and cutting-edge methods

Every outbreak is initiated by the introduction of a pathogen

to a susceptible population, and represents a unique

sequence of elementary events in time and space forming a

unique signature, which depends on a multitude of factors.

Each outbreak can be characterized by the duration,

magnitude, and shape of an epidemic curve. Early detection

implies that it is possible to detect a change at the initial

stages of an outbreak as it progresses; in other words, to

Table 1 Examples of data sources, streams, curators, and supplementary information supporting surveillance systems

Data sources Data streams Data curators Auxiliary data

Medical care facilities (hospitals,

health-care and rehabilitation centres,

ambulatory clinics, drug dispensaries)

Diagnostic testing facilities

(laboratories, mobile diagnostic units)

Social-care facilities (day care centres,

assisted living and nursing homes,

hospice services)

Correctional facilities (jails, prisons)

Schools

Work places

Locations of intentional screening

Death records

Chief complains for emergency

room visits

Medical service and equipment use

records

Prescription records

Insurance claims

Laboratory tests

Pharmaceutical sale

records

Absenteeism reports

Hotline calls

PDA records

Website queries

Media news clips

Forensic records

Public health institutions

Local and regional

departments of vital statistics

National health statistics

institutions

Insurance industry

Pharmaceutical industry

Governmental and non-

governmental organizations

Academic institutions

Demographic profiles

Vaccination coverage records

Calendars of social activities

Environmental samples

Population migration and

displacement patterns

Land use, climate, and

meteorological information

Domestic animals and wildlife

surveillance data
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detect an expectation of change. Analytical approaches that

address this task can be framed as detection of aberrations at

various temporal or spatial or spatio-temporal scales.

The detection of aberrationsFchanges in the current

disease distribution as compared with historical or baseline

information that may include trend, impulse, spike, and step

shiftsFis based on understanding and on the ability to

measure the signal-to-noise ratio, where noise represents an

underlying trend and a ‘signal’ reflects an outbreak signa-

ture. In analyses of time series data, representing both noise

and a signal, or a composition of a baseline endemic level

with embedded epidemic curve, the use of moving averages,

adaptive thresholds, cumulative sums, etc. aims to separate a

noise from a signal by removing underlying trends of a

presumably ‘known form’. For example, in fitting a harmo-

nic regression to a time series of disease counts with

well-pronounced seasonal oscillations,21,22 it is assumed that

a trajectory can be approximated by a periodic cosine

function. Thus, the removal of underlying trends can be

advantageous in removing expectations based on preexisting

knowledge, and can also be misleading if the ‘known form’ is

chosen incorrectly. In reality, the rationale for the removal of

expectation might be questionable: just because we expect

a specific pattern does not mean our algorithms should

not detect it as an aberration or an outbreak. We may be

compromising our algorithms’ sensitivity arbitrarily, when

instead we should be using human decision making to

complement the system, and know when to adjust for or

throw away an ‘expected pattern’. This is similar to decision

making in expert-assisted reading of imagery, pattern

recognition, and interpretation in medical diagnostics, or

object identification in security screening (for example, see

Levy and Valleron23).

Early detection implies an ability to shorten notification

time for an outbreak before extensive damage is done. The

more rapid the detection goals, the shorter the temporal

scale of data collection and reporting required to support

those goals. This implies that weekly or daily data itself may

soon be insufficient for desired detection and response,

requiring instead hourly reporting. In replacing the surveil-

lance standard of weekly reporting with a shorter response

time, a wide range of factors have to be taken into account.

Dealing with daily reporting requires an understanding

of the effects that the day of the week, scheduled social

activities, and holidays might have on the expected

temporal pattern. For example, depending on the type of

hospital admissionFemergency, in-patient, or outpatient

careFthe effect of the day of the week on baseline disease

patterns can be different. Thus, an analysis of in-patient and

outpatient data streams has to be supplemented with an

assessment of timing for provisional updates, population

mobility, instantaneous effects of the media on seeking

medical care behavioural patterns, etc.

Many existing and widely implemented analytical

methods for assessing temporal trends, seasonal patterns,

and non-periodic aberrations are based on historical records:

the longer the monitoring is in place, the faster an unusual

pattern can be detected.24,25 For example, diseases that are

relatively frequently observed and have a long and well-

established history of monitoring, such as illness caused by

Salmonella and Campylobacter bacteria, are good candidates

for traditional detection techniques that use historical limits

methods or moving-window methods.26 In such situations,

traditional approaches are appropriate and can produce

reliable predictions. However, the detection of events that

are rare or have never been observed poses a challenge for

model specification. Most existing models rely on a gradual

change in numbers of observed events and are not adapted

for data exhibiting a sudden spike in case numbers at an

unexpected point in time.27 The nature of emerging health

threats requires more sophisticated methods that are sensi-

tive to rapid change and capable of taking into account

specific features of an anticipated outbreak (for example, see

Martinez-Beneito et al.28).

The ability to recognize clusters of events of public health

concern adds a valuable dimension to early outbreak

detection. New methods that enable spatial scanning for

potential clusters that are well tailored to the effective

detection of localized events are ready for integration into

surveillance systems.29 The practical implementation of

these methods boosts the demand for better-quality geo-

referenced data on events of interest.30,31 Where did an

exposure occur? Where did symptoms first manifest?

Where was health care provided? How were these important

spatial identifiers collected, stored, shared, and interpreted?

Answers to these questions have become increasingly

important. In many surveillance systems, the location of

a patient’s residence is often used as a proxy for exposure

and transmission, which is often a wrong assumption. In

instances in which detailed geo-referenced information is

available, traditional analytical tools have a limited capacity

to use such information effectively, as many of them were

developed before complex interlinked geographical informa-

tion could be routinely collected. New methods have to take

into consideration non-euclidean topologies of an outbreak

signature. Such topologies are very likely to be observed in

spatio-temporal patterns of disease when transmission is

amplified by transit, for example, in air travel connecting

hubs at non-geographically adjacent places. Complex spatial

patterns of geo-referenced exposure–transmission–detection

pathways have to be better understood to guide the design of

adaptive surveillance systems. Novel techniques such as

dynamic mapping,32 multivariate visualization, flow map-

ping,33,34 outbreak signature forecasting,35,36 and large-scale

simulations of infection spread37–39 have the potential to

shed light on the complexity of spatial disease clustering.

Ideas for the future

Although there is a plethora of opportunities to expand

and refine existing methods, and to develop new ones in

completely novel directions as yet unconsidered, we believe

that the future of outbreak detection will (at least in the
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short term) take three very exciting and interrelated paths

(see Figure 1).

Redefining the goal of an outbreak detection system

Although the traditional meaning of ‘outbreak detection’

involves only the detection of incipient ‘greater than

normal’ disease incidence, we believe that it may prove

vastly important to redefine our target for detection.40

Recent advances in the science of risk assessment (We refer

the readers to two prominent targeted journals in the field:

International Journal of Risk Assessment and Management

(http://www.inderscience.com/browse/index.php?journalCODE¼
ijram) and Risk Analysis (http://www.wiley.com/bw/journal.

asp?ref¼0272-4332), which cover various issues of risk

detection.) have led to the understanding that compre-

hensive plans to ensure public safety are the result of

characterizing both the probability of an event and the

severity of the outcome should the event occur. We propose

that there may be benefit in adapting this insight to the field

of biosurveillance.

This perspective provides two possible paths for

fine-tuning our surveillance efforts: (a) likelihood of event:

It may be that particular outbreaks are always introduced

through the same pathways. In that case, we may benefit

by enhancing the sensitivity of our surveillance in areas

in which we know these pathways exist (for example, it

may make sense to monitor regions with particular native

animals for certain zoonotic infections more closely); and

(b) potential result: It may be that we would benefit

by focusing on particular populations (for example, the

immunocompromised or elderly) for which there is

heightened concern based on a lack of herd immunity, the

Figure 1 The schematic view of early outbreak detection.
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potential for extreme adverse outcomes, or other potentially

compromising characteristics. This perspective has been

already incorporated into public health planning, but has

not yet been incorporated directly into surveillance methods.

However, more intriguingly, we can push this idea even

further by sliding the sensitivity of our outbreak detection

algorithms to reflect areas in which we believe that curtailing

an outbreak may be most effective if we identify it sufficiently

rapidly. This may even come at the expense of sensitivity in

areas in which we understand that we will never have enough

advanced warning to effectively alter the course of an

epidemic, and could lead to vastly different but more practical

and efficient systems. Rather than curtailing the transmission

of disease in certain areas, we may aim instead to improve the

capability of providing sufficient medical care for all those

affected (for example, surge capacity). The possibilities are vast

and unexplored. We believe that this more complex goal for

outbreak detection algorithms may lead to very different

surveillance systems from those already in use.

Expanding the richness of interface between

autonomous methods and analysts

Traditional tools of outbreak detection have been designed

to operate in two separate stagesFwith an automatic,

computational component in which red flags are raised in

the case of a coming outbreak, followed by a distinct human-

analyst component in which a person considers the

recommendation of the machine and responds by enacting

public health responses or dismissing the particular flag as

being of low priority or concern. However, we believe that

the most effective systems will integrate the input of

computational tools with that of human decision makers.

Autonomous components of a surveillance system could

constantly analyse and organize vast quantities of otherwise

overwhelming data, and present the results to a human

analyst in ways that may highlight possible anomalies,

allowing the analyst to decide which of these directions may

be most valuable to pursue. Novel methods for such tools are

currently under development within the newly rising field of

visual analytics (http://nvac.pnl.gov/, http://www.purdue.

edu/discoverypark/vaccine/research/vaat.php),16,30 and we

eagerly anticipate further developments in these areas. We

believe that these methods will provide drastically more

effective tools for biosurveillance.

Expanding the roles of autonomous methods leading

to truly self-organizing systems for outbreak detection

Many of the complications inherent in determining an

a priori, human understanding-based definition of ‘outbreak’

may, in fact, be irrelevant. As with many fields of data

mining, we believe that there may be vast, untapped

potential in the idea of using historical data, not to set

thresholds (whether static or dynamic), the violation of

which would constitute an outbreak, but instead as training

data, that is, data used for sensitivity calibration by a

detection algorithm. By introducing concepts of machine

learning, it may be that we can allow software to decide

where the most useful signals of incipient outbreaks lie in

the available data. This can be carried out by providing only

the data and points in time during which human analysts

concluded ‘manually’ that outbreak conditions were present.

Using these methods may lead to surprising and counter-

intuitive definitions of an outbreak (perhaps having nothing

to do with any signal of understood biological relevance).

Yet, for practical purposes, it would be unlikely to matter, so

long as the detection algorithm arrived at by the autono-

mous system provided consistent, sensitive, specific warn-

ings of coming outbreaks.

Furthermore, the exploration of autonomous systems need

not lie only in the definition of an outbreak itself. As the

heterogeneity of data sources increases, it may be that a

similarly automated dynamic weighting method for assessing

the relative contribution to overall signal strength from each

data source could lead to a far more sophisticated and

sensitive system for outbreak detection. Again, along the

same lines, the underlying topology of data sources could be

autonomously explored, allowing clustering algorithms to be

applied over different configurations of both time and space.

These methods could reveal previously concealed travel

patterns, or mechanisms of contaminationFor even perhaps

cultural similarities that enable enhanced transmission of an

infectious agent. Each of these potentially critical facets,

contributing to the spread of infection, would need to be

understood and defined manually under the current detection

systems; however, by allowing dynamic methods of ongoing

machine learning to operate, we may be able to enhance our

ability to detect outbreaks while potentially furthering our

understanding of the contributing factors driving the disease

dynamics. A fully autonomous system, allowed to learn by

continual, dynamic exploration of the complete space of

incoming surveillance data, could be a prototype for a very

powerful self-organizing surveillance system. (For more

information on ‘self-organizing systems’, see Levin41.)

Conclusion
We believe that modern advances in assembling data,

techniques for collating and processing information for mean-

ingful analysis, and technology to enable integrated analysis

and surveillance will support a new paradigm in outbreak

definition and detection. We anticipate that these perspectives

will provide the highly desired sensitivity and specificity in

early detection required by the emerging challenges of global

disease surveillance. Although foundational research in these

areas is already underway, now that data access and computa-

tional power are improving, we believe that the next five to

10 years will be very exciting as these systems are implemented

and brought to fruition for practical use.
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