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ABSTRACT 
Post-silicon validation is used to detect and fix bugs in integrated 
circuits and systems after manufacture. Due to sheer design complexity, 
it is nearly impossible to detect and fix all bugs before manufacture. 
Post-silicon validation is a major challenge for future systems. Today, it 
is largely viewed as an art with very few systematic solutions. As a 
result, post-silicon validation is an emerging research topic with several 
exciting opportunities for major innovations in electronic design 
automation. In this paper, we provide an overview of the post-silicon 
validation problem and how it differs from traditional pre-silicon 
verification and manufacturing testing. We also discuss major post-
silicon validation challenges and recent advances. 

Categories and Subject Descriptors 
B 7.2 Design Aids – Verification, B8.1 Reliability, Testing and Fault-
Tolerance, B 8.2 Performance Analysis and Design Aids 

General Terms 
Reliability, Verification. 

Keywords 
Post-silicon validation. 

1.  Opportunities 
Ensuring correct operation despite rising levels of design 

complexity has been a major focus of research and development since 
the dawn of digital system design. These efforts led to remarkable 
advances in the theory and practice of design verification and 
manufacturing testing of digital systems over several decades. Post-
silicon validation of overwhelmingly complex systems of the future is 
an emerging field of research with exciting opportunities for major 
innovations. 

Post-silicon validation involves operating one or more 
manufactured chips in actual application environments to validate 
correct behaviors over specified operating conditions. The objective is 
to ensure that no bugs escape to the field. According to several industry 
reports, post-silicon validation is becoming significantly difficult and 
prohibitively expensive because existing techniques cannot cope with 
the sheer complexity of future systems [Abramovici 06, Patra 07, 
Yeramilli 06]. Post-silicon validation involves four major steps: 

1. Detecting a problem by running test programs ranging from 
random instruction sequences to end-user applications, e.g., operating 
systems, games, and scientific applications, until a system failure occurs 
(e.g., system crash, segmentation fault or exceptions). 

2. Localizing the problem to a small region from the system failure. 

For example, a program crash on a complex microprocessor might 
be localized to errors produced by an instruction scheduler under a 
certain application workload. The stimulus that exposes the bug, e.g., 
particular 10 lines of code from some application, is also important. 

3. Identifying the root cause of the problem. For example, a bug 
may be caused by power-supply noise slowing down some circuit 
paths resulting in errors at the outputs of some design block only for 
a certain input sequence.  

4. Fixing or bypassing the problem by patching, circuit editing 
or, as a last resort, re-spinning using a new mask. 

Post-silicon validation has significant overlap with pre-silicon 
design verification and manufacturing (or production) testing. 
Traditionally, most hardware design bugs are detected during pre-
silicon verification, and manufacturing defects are targeted by 
manufacturing testing. While both manufacturing testing and pre-
silicon verification continue to be essential, post-silicon validation is 
becoming extremely important because of several unique aspects 
(Table 1.1): 

1. We cannot rely on pre-silicon design verification alone to 
detect all design bugs. Simulation is several orders of magnitude 
slower than actual silicon. Formal verification is very useful for 
certain situations, such as the verification of individual arithmetic 
units or protocols, it faces scalability challenges for full chip-level 
verification. Hence, bugs that escape pre-silicon design verification 
are often detected during post-silicon validation. 

2. In advanced technologies, several interactions between a 
design and the electrical state of a system are becoming significant, 
e.g., signal integrity (cross-talk and power-supply noise), thermal 
effects, and process variations. Such interactions can result in 
incorrect behaviors and are often referred to as electrical bugs. 
Accurate modeling of all these physical effects is usually very 
difficult during pre-silicon design verification. 

3. Unlike manufacturing defects, post-silicon bugs may be 
caused by subtle interactions between a design and physical effects 
(the so-called electrical bugs) or by design errors (the so-called logic 
bugs). It may be very difficult to create accurate and effective fault 
models for such bugs. 

4. A primary reason behind the success of today’s 
manufacturing testing techniques is the existence of test metrics such 
as single-stuck-at coverage, transition fault coverage and N-detect 
coverage, and experimental demonstration of the effectiveness of 
such metrics using actual chips, e.g., work by [Ma 95] and others. 
Such metrics enable automatic test pattern generation and fault 
simulation. For pre-silicon design verification, such metrics are far 
less standardized. Syntactic metrics, e.g., code coverage, and 
semantic metrics, e.g., covering assertion goals, constitute an 
integral part of the verification sign-off process. There exist new 
opportunities for establishing coverage metrics for post-silicon 
validation. 

5. Unlike manufacturing testing where the primary objective is 
to detect defects, post-silicon validation involves localizing, root-
causing and fixing bugs. Bug localization generally dominates post-
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silicon validation effort and costs [Josephson 06]. While defect 
diagnosis techniques may be somewhat applicable for bug localization, 
most defect diagnosis techniques rely on scan design for testability 
(DFT) which enables a sequential circuit to be treated as a 
combinational circuit in test mode. Such opportunities may not be 
available for bug localization during post-silicon validation. Moreover, 
unlike defect diagnosis which targets manufacturing yield improvement, 
the presence of one or more bugs may prevent detection of errors 
caused by other bugs. Such bugs are also referred to as blocking bugs 
because they may slow down the design / validation cycle [Anis 08, 
Keshava 10]. 
 

Table 1.1: Qualitative comparison of pre-silicon verification vs. 
manufacturing testing vs. post-silicon validation. 

Pre-silicon 
verification 

Manufacturing 
testing 

Post-silicon 
validation 

Excellent 
controllability and 
observability because 
any signal can be 
accessed 

Controllability 
and 
observability 
primarily through 
scan DFT 

Insufficient 
controllability and 
observability due 
to limited access 
to internal 
signals. Scan 
DFT useful for 
certain cases 
when a failure 
caused by a bug 
is repeatable. 

Complex physical 
effects difficult to 
model 

Several defect 
models exist 

Accounts for 
signal-integrity, 
process 
variations, non-
determinism 

Simulation of full-chip 
designs very slow; 
formal verification 
only selectively 
applicable 

Generally very 
fast (few 
seconds to 
minutes per 
chip) 

Silicon speed 
orders of 
magnitude faster 
than simulation 

Some metrics exist 
(e.g., code coverage, 
assertion coverage, 
mutation coverage) 

Test Metrics 
(e.g., stuck-at, 
transition, N-
detect coverage) 
widely used 

Coverage metrics 
for post-silicon 
validation: Open 
research question 
 

Bug fixing 
inexpensive 

Bug fixing not 
the primary 
objective 

Bug fixing can be 
expensive 

 
In spite of its unique challenges, post-silicon validation research 

can be inspired by the successes in manufacturing testing and design 
verification, as discussed next. 

 

Manufacturing Testing 
Examples of major successes in manufacturing testing include: 
1. The concept of structural testing [Eldred 59] and scan design for 

testability [Eichelberger 77, Williams 73] that are used in almost all 
integrated circuits today. 

2. Quick adoption of test compression techniques, e.g., Illinois 
scan [Hamzaoglu 99], reseeding techniques [Koenemann 91], and X-
Compact [Mitra 02, 04], pointing to the success of systematic and 
structured methods in overcoming manufacturing testing challenges for 
complex systems. 

3. Various flavors of self-test techniques, including Built-In Self-
Test (BIST) (pseudo-random and several enhancements) for general 

designs ([Bardell 87] and several others), and native-mode testing / 
software-based self-test [Krstic 02, Parvathala 02, Shen 98] targeting 
microprocessors. 

4. A wide variety of test metrics (and test experiments 
demonstrating their effectiveness) that enabled automatic test pattern 
generation (ATPG), fault simulation, and coverage estimation (as 
discussed earlier).  

 
 

Design Verification 
Since the 1970s, several fundamental ideas in formal and semi-

formal verification have made their way from theoretical concept to 
industrial practice. In the context of this paper, the arguably most 
important idea is that of formal specifications – assertions. Temporal 
logic [Pnueli 77] and similar automata-based specification languages 
have made their way into standardized industrial use [Vardi 08]. 
Assertions are central to post-silicon validation as they provide a 
precise method of specifying application requirements and system 
functionality that could be adversely affected by post-silicon bugs.  

Algorithmic verification techniques, based on advances in 
Boolean reasoning such as Boolean Satisfiability (SAT) [Malik 09] 
and Binary Decision Diagrams (BDDs) [Bryant 86], are also central 
to post-silicon validation. Perhaps one of the biggest industrial 
successes of formal hardware verification is combinational 
equivalence checking. In addition, recent advances in SAT-based 
algorithms and circuit simplification are scaling up sequential 
equivalence checking greatly, as demonstrated by the ABC system 
[Brayton 10]. Going beyond equivalence checking, model checking 
[Clarke 00], i.e., deciding whether a system satisfies a property 
specified usually in temporal logic, is now a key component of all 
industrial formal verification tools. Formal techniques are often 
combined with traditional random simulation methods. Finally, 
theorem proving methods are also standard industrial practice today, 
particularly in microprocessor design and verification (e.g., [Moore 
98]). One of the major drivers for formal verification going forward, 
both using theorem proving and model checking, will be 
satisfiability modulo theories (SMT) solvers [Barrett 09]. 

 
It is clear from the above discussions that fundamental research 

enabled significant progress in the adoption of structured methods 
for manufacturing testing and design verification. With growing 
complexity of post-silicon validation, our hope is that new ideas will 
emerge that will transform post-silicon validation from skilled art 
practiced by a few experienced engineers to a discipline with strong 
foundations enabled by structured approaches and design 
automation. Such new techniques can have far reaching impact on 
other fields related to post-silicon validation. Examples include 
reliable system design, embedded systems, and software test and 
verification. 

 

2. Challenges 
There are numerous challenges in post-silicon validation. We 

do not attempt to present a comprehensive survey here. Instead, we 
highlight a few important ones.  

1. Failure reproduction: This step involves returning the 
hardware to an error-free state, and re-executing the failure-causing 
stimulus (including instruction sequences, interrupts, and operating 
conditions) to reproduce the same failure. Unfortunately, many 
electrical bugs are very hard to reproduce. The difficulty of bug 
reproduction is exacerbated by the presence of asynchronous I/Os, 
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and multiple clock domains. Techniques to make failures reproducible 
[Heath 04, Sarangi 06, Silas 03] are often intrusive to system operation, 
and may not expose bugs.  

2. System-level simulation: In order to obtain “golden responses,” i.e., 
correct signal values for every clock cycle for the entire system (e.g., 
processor and all peripheral devices on the board), one must run 
expensive system-level simulation. Running system-level simulation 
can be 7-8 orders of magnitude slower than actual silicon. In addition, 
expensive external logic analyzers are required to record all signals 
values that enter and exit the system through external pins [Silas 03]. 

Due to the above factors, a functional bug typically takes hours to 
days to be localized vs. electrical bugs that require days to weeks and 
more expensive equipment [Josephson 01]. 

3. Coverage metrics: As noted earlier, while coverage metrics are 
well-established in manufacturing test, they are less standard in pre-
silicon design verification. Several methods exist for measuring pre-
silicon verification coverage, including code coverage (e.g., statement, 
branch, path coverage in an RTL description), FSM coverage (e.g., 
transition or state coverage), assertion coverage, and mutation-based 
coverage (e.g., checking whether an injected bug is caught during 
verification). Quantifying coverage of post-silicon validation tests is 
very challenging due to limited controllability and observability (hence, 
it is harder to mutate a design or monitor an assertion failure).  

4. Test Patterns for post-silicon validation: Several recent 
techniques for improving real-time observability during post-silicon 
validation, e.g., using assertion checkers and optimized embedded logic 
analyzers, enable monitors from pre-silicon verification testbenches to 
be reused during post-silicon validation. On-chip generation of post-
silicon validation tests can potentially enable reuse of controllability of 
testbenches used for pre-silicon verification (structured and scalable, yet 
slow) during post-silicon validation (fast, yet ad-hoc and labor-
intensive). Note that, there are key differences between such on-chip 
generation of post-silicon validation tests vs. logic BIST for 
manufacturing testing. This is because most logic BIST techniques rely 
on scan DFT and target manufacturing test metrics.  

3. Recent Advances 
In this section, we present a brief overview of recent results in the 

field of post-silicon validation. This survey is by no means exhaustive. 
Our goal is just to highlight some results that could provide a basis for 
further work in this field. We begin with challenges related to bug 
localization because it is typically the most expensive step in post-
silicon validation. 

 
Post-silicon bug localization for processor cores 

A new technique called IFRA (Instruction Footprint Recording and 
Analysis) [Park 08, 09, 10a, 10b] has been demonstrated to be highly 
effective in overcoming major challenges associated with a very 
expensive step in post-silicon validation of processors – pinpointing a 
bug location and the instruction sequence that exposes the bug from a 
system failure, such as a crash. 

Figure 1 presents an overview of IFRA. Special on-chip recorders, 
inserted in a processor during design, collect instruction footprints – 
special information about flows of instructions, and what the 
instructions did as they passed through various microarchitectural 
blocks of the processor. The recording is done concurrently during the 
normal operation of the processor in a post-silicon system validation 
setup. Upon detection of a system failure, the recorded information is 
scanned out and analyzed offline for bug localization. Special self-
consistency-based program analysis techniques, together with the test 
program binary of the application executed during post-silicon 

validation, are used for this purpose. 
Major benefits of using IFRA over traditional techniques for 

post-silicon bug localization are: 1. It does not require full system-
level reproduction of bugs, and, 2. It does not require full system-
level simulation. Hence, it can overcome major hurdles that limit the 
scalability of traditional post-silicon validation methodologies. 
Simulation results on a complex Alpha 21264-like superscalar 
processor demonstrate that IFRA is effective in localizing electrical 
bugs with 96% accuracy at 1% chip-level area impact. 

A new Bug Localization Graph (BLoG) framework [Park 10b] 
enables systematic application of IFRA to new processor 
microarchitectures with reduced engineering time and less expert 
knowledge. Results obtained from an industrial microarchitectural 
simulator modeling a state-of-the-art complex commercial 
microarchitecture (Intel Nehalem, the foundation for the Intel 
Core™ i7 and Core™ i5 processor families) demonstrate the 
effectiveness of IFRA in localizing electrical bugs in complex 
microarchitectures with 90% accuracy (Fig. 2 taken from [Park 
10b]).  
 

 
Figure 1. Post-silicon bug localization flow using IFRA. 

 

 
 

Figure 2. BLoG-assisted IFRA results obtained from an 
industrial simulator modeling the Intel Nehalem 

microarchitecture (details in [Park 10b]). 
 

Observability enhancement for post-silicon 
validation 

The IFRA approach discussed earlier utilizes the structured 
architecture of a processor to perform bug localization without 
requiring system-level simulation or failure reproduction. For post-
silicon bug localization in general designs, the debug infrastructure 
must collect real-time response data in an effective manner for 
efficient failure reproduction and root-cause analysis. The amount of 
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data that can be collected during a single post-silicon validation run is 
ultimately limited by the capacity of on-chip trace buffers. Data 
compression techniques can increase the amount of data that may be 
collected in a single post-silicon validation run by 20-30% [Anis 07]. 
Moreover, special state restoration (or data expansion or visibility 
enhancement) techniques can further enhance the amount of 
information made available to the post-silicon validation engineer [Ko 
08a, Liu 09]. 

These techniques are currently applicable for logic bugs, and 
understanding how to extend these approaches for electrical bugs is a 
key open challenge. Another technique for enhancing observability is to 
use multiple trace buffers with programmable priorities.  [Ko 08b] 
presents a case study of a video decoder demonstrating how dynamic 
sharing (i.e., during post-silicon validation) of trace buffers can double 
the amount of acquired data when compared to static trace buffer 
allocation.  

 

Formal methods for error localization 
Assertions can play an important role in localizing post-silicon 

bugs, especially as we move from processor cores to general designs. 
An obvious approach is to write assertions on module interfaces, and 
then synthesize on-chip monitors to check whether those assertions are 
satisfied or violated. This output may be made available in the event of 
a failure. The failing assertions can then help localize the failure to 
module boundaries. The challenge with this approach, though, is to 
obtain relevant assertions in the first place. Very recent work [Li 10] 
has shown how formal assertions can be mined automatically simulation 
traces in a scalable manner and can be effectively used in localizing 
errors (caused by bugs) to module boundaries. The overall idea, 
illustrated in Fig. 3, is to find assertions that are satisfied by correct 
system traces (e.g., recorded pre-silicon), but not by the error trace. 
Such distinguishing assertions are then ranked according to some 
metric, such as time of first failure. The location of the bug is then 
hypothesized to be the modules with the highest-ranked distinguishing 
assertions. 

 

 
Figure 3. Assertion mining for failure diagnosis. 
 

The following representative result from [Li 10] shows the promise 
of this assertion-based bug localization approach. For an experimental 
MIPS core with over 20,000 signals, the approach correctly localized 
single-bit and multiple-bit flips in the logic to the single faulty module 
out of a total of 278 modules. While this work is only a first step, it can 
be very effective especially when combined with reconfigurable on-chip 
infrastructure, e.g., [Abramovici 06], for application-specific error 
monitors (that may be software-controlled). 

Formal methods can also be useful for system replay. Specifically, 
algorithms developed for model checking can be useful during the root-
cause step as well. For example, one challenge during the root-cause 
step is to reconstruct an error trace backward from a failing state. The 
problem is similar to that of performing backward reachability analysis 

in model checking, where, starting from an error state, we seek to 
find a trace that begins in some valid initial state and which can end 
in that error state. This analogy has been explored recently in the 
Backspace technique [de Paula 08]. In essence, the Backspace 
approach involves recording a crash state, computing its expected 
predecessor state (based on RTL), setting that state as a breakpoint, 
and then repeating this procedure so as to reconstruct the error trace 
backwards.  This approach has shown promise, generating 
diagnostic traces for two open-source processor cores: a Motorola 
68HC05 and an Intel 8051. In both cases, the Backspace system 
could reconstruct the error traces for hundreds of cycles backwards 
from a crash state. 
 

Detecting a problem 
For error detection, the following two questions must be 

answered: (i) what input stimulus should be applied to the circuit? 
and, (ii) how to detect if a failure has occurred? 

While the first problem is still largely open, online in-hardware 
assertion checking has shown promise in answering the second. In 
recent years assertions have been proposed for in-system hardware 
validation and debugging [Bayazit 05] and [Boule 05]. The basic 
idea is to reuse the assertions written in a software environment 
during the pre-silicon phase, map them onto hardware and let them 
run in the background to detect errors at runtime. However, two 
challenges arise. The first has to do with signal locality. Pre-silicon 
assertions can reference signals that are not spatially nearby in actual 
silicon. Due to this, if one must use pre-silicon assertions for 
monitoring, the assertions must be suitably decomposed into 
localized assertions. The second challenge lies in minimizing the 
area investment. The number of assertions to be placed in hardware, 
as well as the locations where they may be placed to enable effective 
sharing between different hardware blocks, are open questions. An 
equally important problem is determining compact input sequences 
that can improve bug detection and coverage using hardware 
assertion checkers. 

 
Root cause identification 

Once a bug is localized to a design block from a system failure, 
scan chains are extensively used for finding the root cause. System 
states are scanned out at pre-programmed clock cycles and compared 
against golden signatures in consecutive clock cycles in order to 
identify the failing flip-flops and failing cycles. Subsequently, logic 
cone analysis is used to identify the erroneous signals. While such an 
approach can benefit from existing fault diagnosis techniques, the 
sequential nature of the problem (unlike scan-based manufacturing 
testing) creates several complications. A key challenge is that system 
states are not necessarily deterministic, i.e., it may not be possible to 
determine expected logic values of all state bits by simulation. This 
is due to the presence of several sources of unknown logic values 
(X’s). Examples include multiple clock domains, uninitialized 
embedded memory blocks or mixed-signal blocks. X’s are known to 
complicate manufacturing testing as well [Mitra 02, 04]. A 
technique known as latch divergence analysis [Dahlgren 03] may be 
used to “filter-out” state deviations during post-silicon validation. 
The information obtained from these “filtered” states can be 
subsequently processed using modified backtrace procedures for 
logic cone analysis [Caty 05]. 

When debugging speedpaths, it is common to collect responses 
at multiple clock frequencies where the clock signal is selectively 
stretched/shrunk only for certain logic cones or selected paths. This 
can be achieved using special clock tuning elements that inserted in 
the design [Naffziger 06]. Accelerating speedpath debugging 
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through automated insertion and configuration of clock tuning 
elements, as well as the analysis of failure traces are open challenges in 
this context. 
 

Bug fixing  
After a bug has been localized, analyzed, and root-caused, one can 

attempt to patch the problem in the design itself without a re-spin. For 
microprocessors, one way to achieve this goal is through microcode 
patches or special design techniques such as the Field-Repairable 
Control Logic (FRCL) approach [Wagner 08]. State sequences that 
trigger a bug are recorded during detection and localization phases and 
subsequently used for in-field patches. State matcher circuitry is 
employed to monitor the states that are known to trigger the bug. When 
the matcher reports a match, the processor pipeline is flushed and 
instruction execution is resumed in a low-performance serial mode (i.e., 
with only one instruction at a time in the pipeline). After the bug is 
bypassed, the microprocessor resumes execution in its normal high-
performance mode (i.e., with multiple instructions at a time in the 
pipeline). The assumption is that most bugs are introduced by complex 
interactions between instructions and a serial low-performance serial 
execution mode may be generally expected to be bug-free.  

Another approach called FogClear [Chang 08] enables post-silicon 
metal fixes allowed by engineering change order (ECO) routing and 
spare cell insertion. [Chang 08] show that by pre-placing spare cells in 
70% of the unused regions in the layout, FogClear can repair 70% of 
the injected functional errors. 
 
Error-Resilient System Design 

While mainstream post-silicon validation activities focus on 
detecting, localizing and fixing post-silicon bugs before product 
shipment, the ultimate objective may be to design robust systems that 
are resilient to design errors. There exists a large body of literature on 
robust system design and fault-tolerant computing techniques in this 
context (e.g., [Iyer 05, Li 09, Mitra 10, Siewiorek 98] and several 
others). For such resilience techniques to be cost-effective, it is essential 
to perform pre-silicon analysis to identify the most vulnerable 
components of a system. Formal methods offer a promising approach 
for this purpose for two reasons. First, formal assertions can precisely 
capture “critical” application-level requirements on the design that must 
hold at all times. Second, formal verification techniques can perform 
exhaustive search over the faulty behavior space as well as the input 
space. In this context, the verification-guided error resilience (VGER) 
approach [Seshia 07] has demonstrated how formal specifications and 
model checking can be used to perform such analysis for transient 
errors. VGER can pinpoint components (e.g., latches or gates) that are 
most vulnerable to soft errors in the sense that a soft error in those 
components will cause the system/application-level requirements to fail 
severely. Such analysis can be useful for diagnosis – for pinpointing the 
most likely areas in which a post-silicon error might occur. It is also 
very useful for synthesizing a low power robust design: in experiments 
on an implementation of the SpaceWire protocol, the VGER approach 
showed how a robust design could be synthesized for one-fifth the 
power overhead of a traditional fault-tolerance technique. 
 

4. Conclusion 
Post-silicon validation is an emerging research topic with several 

outstanding challenges that can create opportunities for exciting 
research contributions. Systematic techniques for post-silicon validation 
together with coverage metrics for quantifying the effectiveness of 
various post-silicon validation approaches can transform this field from 
an art requiring considerable skill and experience to a discipline with 
strong foundations enabled by structured approaches and design 
automation. 

 

Acknowledgment 
This work is supported in part by the Semiconductor Research 

Corporation (SRC), the Gigascale Systems Research Center, one of 
six research centers funded under the Focus Center Research 
Program (FCRP), an SRC entity, the National Science Foundation 
(NSF), and the National Science and Engineering Research Council 
(NSERC) of Canada. 

 

References 
[Abramovici 06] Abramovici, M., P. Bradley, K. N. Dwarakanath, P. 

Levin, G. Memmi and D. Miller, “A Reconfigurable Design-for-
Debug Infrastructure for SoCs,” Proc. Design Automation Conf., 
pp. 7-12, 2006. 

[Anis 07] Anis, E., and N. Nicolici, “On Using Lossless Compression 
of Debug Data in Embedded Logic Analysis,” Proc. Intl. Test 
Conf., 2007. 

[Anis 08] Anis E., and N. Nicolici, “On By-passing Blocking Bugs 
during Post-silicon Validation,” Proc. European Test Symp., pp. 
69-74, 2008.  

[Bardell 87] Bardell, P.H., W.H. McAnney and J. Savir, Built-In Test 
for VLSI: Pseudo-random Techniques, John Wiley & Sons, 1987. 

[Barrett 09] Barrett, C., R. Sebastiani, S. A. Seshia, and C. Tinelli, 
“Satisfiability Modulo Theories,” Handbook of Satisfiability, IOS 
Press, 2009. 

[Bayazit 05] Bayazit, A.A., and S. Malik, “Complementary Use of 
Runtime Validation and Model Checking,” Proc. Intl. Conf. CAD, 
pp. 1052-1059, 2005. 

[Boule 05] Boule, M., and Z. Zilic, “Incorporating Efficient 
Assertion Checkers into Hardware Emulation,” Proc. Intl. Conf. 
Computer Design, pp. 221-228, 2005. 

 [Brayton 10] Brayton, R.K., et al., Berkeley Logic Synthesis and 
Verification Group, ABC: A System for Sequential Synthesis and 
Verification. http://www.eecs.berkeley.edu/~alanmi/abc/ 

[Bryant 86] Bryant, R.E., “Graph-based Algorithms for Boolean 
Function Manipulation,” IEEE Trans. Computers, Vol. C-35, No. 
8, pp. 677-691, Aug. 1986. 

[Caty 05] Caty, O., P. Dahlgren and I. Bayraktaroglu, 
“Microprocessor Silicon Debug Based on Failure Propagation 
Tracing,” Proc. Intl. Test Conf., pp. 293-302, 2005. 

[Chang 08] Chang, K.H., I.L. Markov and V. Bertacco, “Automating 
Post-silicon Debugging and Repair,” IEEE Computer, Vol. 41, No. 
7, pp.47-54, July 2008. 

[Clarke 00] Clarke, E.M., O. Grumberg and D. Peled, Model 
Checking, MIT Press, 2000. 

[Dahlgren 03] Dahlgren, P., P. Dickinson and I. Parulkar, “Latch 
Divergency in Microprocessor Failure Analysis in Microprocessor 
Failure Analysis,” Proc. Intl. Test Conf., pp. 755-763, 2003. 

[de Paula 08] de Paula, F.M., M. Gort, A.J. Hu, S.E. Wilton and J. 
Yang, “BackSpace: Formal Analysis for Post-Silicon Debug,” 
Proc. Intl. Conf. Formal Methods in CAD, 2008. 

[Eichelberger 77] Eichelberger, E.B., and T.W. Williams, “A Logic 
Design Structure for LSI Testability,” Proc. Design Automation 
Conf., pp. 462-468, 1977. 

[Eldred 59] Eldred, R.D., “Test Routines based on Symbolic Logic 
Statements,” Journal ACM, Vol. 6, No. 1, pp. 33-37, Jan. 1959. 

[Hamzaoglu 99] Hamzaoglu, I., and J.H. Patel, “Reducing Test 
Application Time for Full Scan Embedded Cores,” Proc. Intl. 
Symp. Fault-Tolerant Computing, pp. 260-267, 1999. 

[Heath 04] Heath, M.W., W.P. Burleson and I.G. Harris, “Synchro-
Tokens: Eliminating Nondeterminism to Enable Chip-Level Test of 

16

2.3



 

Globally-Asynchronous Locally-Synchronous SoC’s,” Proc. Design, 
Automation and Test in Europe, pp. 1532-1546, 2004. 

[Iyer 05] Iyer, R.K., N. Nakka, Z. Kalbarczyk and S. Mitra, “Recent 
Advances and New Avenues in Hardware-Level Reliability Support,” 
IEEE MICRO, Vol. 25, No. 6, pp. 18-29, Nov.-Dec. 2005. 

[Josephson 01] Josephson, D., S. Poehlman and V. Govan, “Debug 
Methodology for the McKinley Processor,” Proc. Intl. Test Conf., pp. 
451-460, 2001. 

[Josephson 06] Josephson, D., “The Good, the Bad, and the Ugly of 
Silicon Debug,” Proc. Design Automation Conf., pp. 3-6, 2006. 

[Keshava 10] Keshava, K., N. Hakim and C. Prudvi, “Post-Silicon 
Validation Challenges: How EDA and Academia Can Help,” Proc. 
Design Automation Conf., 2010.  

[Ko 08a] Ko, H.F., and N. Nicolici, “Automated Trace Signals 
Identification and State Restoration for Improving Observability in 
Post-silicon Validation,” Proc. Design Automation and Test in 
Europe, pp. 1298-1303, 2008. 

[Ko 08b] Ko, H.F., A.B. Kinsman and N. Nicolici, “Distributed 
Embedded Logic Analysis for Post-silicon Validation of SOCs,” Proc. 
Intl. Test Conf., 2008. 

[Koenemann 91] Koenemann, B., “LFSR-Coded Test Patterns for Scan 
Designs,” Proc. European Test Conf., pp. 237-242, 1991. 

[Krstic 02] Krstic, A., W.C. Lai, K.T. Cheng, L. Chen and S. Dey, 
“Embedded Software-Based Self-Test for Programmable Core-Based 
Designs,” IEEE Design and Test of Computers, Vol. 19, No. 4, pp. 
18-27, July-Aug. 2002. 

[Li 09] Li, Y., Y.M. Kim, E. Mintarno, D.S. Gardner and S. Mitra, 
“Overcoming Early-Life Failure and Aging Challenges for Robust 
System Design,” IEEE Design and Test of Computers, Vol. 26, No. 6, 
pp. 28-39, Nov.-Dec. 2009. 

[Li 10] Li, W., A. Forin and S. A. Seshia, “Scalable Specification 
Mining for Verification and Diagnosis,” Proc. Design Automation 
Conf., 2010. 

[Liu 09] Liu, X., and Q. Xu, “Trace Signal Selection for Visibility 
Enhancement in Post-Silicon Validation,” Proc. Design Automation 
and Test in Europe, pp. 1338-1343, 2009. 

[Ma 95] Ma, S.C., P. Franco and E.J. McCluskey, “An Experimental 
Test Chip to Evaluate Test Techniques: Experimental Results,” Proc. 
Intl. Test Conf., pp. 663-672, 1995. 

[Malik 09] Malik, S., and L. Zhang, “Boolean Satisfiability: From 
Theoretical Hardness to Practical Success,” Communications of the 
ACM, Vol. 52, No. 8, pp. 76-82, Aug. 2009. 

[Mitra 02] Mitra, S., and K.S. Kim, “X-Compact: An Efficient Response 
Compaction Technique for Test Cost Reduction,” Proc. Intl. Test 
Conf., pp. 311-320, 2002.  

[Mitra 04] Mitra, S., and K.S. Kim, “X-Compact: An Efficient Response 
Compaction Technique,” IEEE Trans. CAD, Vol. 23, issue 3, pp. 421-
432, March 2004.  

[Mitra 10] Mitra, S., “Robust System Design,” Proc. Intl. Conf. VLSI 
Design, pp. 434-439, 2010. 

[Moore 98] Moore, J., T. Lynch, and M. Kaufmann, “A mechanically 
checked proof of the AMD5 K86(TM) floating-point division 
program,” IEEE Trans. Computers, Vol. 47, No. 9, pp. 913-926, Sept. 
1998. 

[Naffziger 06] Naffziger, S., B. Stackhouse, T. Grutkowski, D. 
Josephson, J. Desai, E. Alon and M. Horowitz, “The Implementation 
of a 2-core, Multi-threaded Itanium Family Processor,” IEEE Journal 
Solid-State Circuits, Vol. 41, No. 1, pp. 197-209, Jan. 2006. 

[Park 08] Park, S.B., and S. Mitra “IFRA: Instruction Footprint 
Recording and Analysis for Post-Silicon Bug Localization in 
Processors,” Proc. Design Automation Conf., 2008. 

[Park 09] Park, S.B., T. Hong and S. Mitra, “Post-Silicon Bug 
Localization in Processors using Instruction Footprint Recording 
and Analysis (IFRA),” IEEE Trans. CAD, Vol. 28, Issue 10, pp. 
1545-1558, Oct. 2009. 

[Park 10a] Park, S.B., and S. Mitra, “Post-silicon Bug Localization 
for Processors using IFRA,” Communications of the ACM, Vol. 53, 
No. 2, pp. 106-113, Feb. 2010. 

[Park 10b] Park, S.B., A. Bracy, H. Wang and S. Mitra, “BLoG: 
Post-Silicon Bug Localization in Processors using Bug 
Localization Graphs,” Proc. Design Automation Conf, 2010. 

[Parvathala 02] Parvathala, P., K. Maneparambil and W. Lindsay, 
“FRITS – A Microprocessor Functional BIST Method,” Proc. Intl. 
Test Conf., pp. 590-598, 2002. 

[Patra 07] Patra, P., “On the Cusp of a Validation Wall,” IEEE 
Design and. Test of Computers, Vol.24, No.2, pp.193-196, March-
April 2007. 

[Pnueli 77] Pnueli, A., “The Temporal Logic of Programs,” Proc. 
Symp. Foundations of Computer Science, pp. 46-57, 1977. 

[Sarangi 06] Sarangi, S., B. Greskamp and J. Torrellas, “CADRE: 
Cycle-Accurate Deterministic Replay for Hardware Debugging,” 
Proc. Dependable Systems and Networks, pp. 301-312, 2006. 

[Seshia 07] Seshia, S.A., W. Li and S. Mitra, “Verification-Guided 
Soft Error Resilience,” Proc. Design Automation and Test in 
Europe, pp. 1442-1447, 2007. 

[Shen 98] Shen, J., and J. A. Abraham, “Native Mode Functional 
Test Generation for Processors with Applications to Self Test and 
Design Validation,” Proc. Intl. Test Conf., pp. 990-999, 1998. 

[Silas 03] Silas, I., I. Frumkin, E. Hazan, E. Mor and G. Zobin, 
“System-Level Validation of the Intel Pentium M Processor,” Intel 
Technology Journal, Vol. 7, No.2., pp. 37-43, May 2003. 

[Siewiorek 98] Siewiorek, D.P., and R.S. Swarz, Reliable Computer 
Systems: Design and Evaluation, A.K. Peters, 1998. 

[Vardi 08] Vardi, M., “From Church and Prior to PSL,” Proc. 25 
Years of Model Checking, pp. 150-171, 2008. 

[Wagner 08] Wagner, I., V. Bertacco and T. Austin, “Using Field-
Repairable Control Logic to Correct Design Errors in 
Microprocessors,” IEEE Trans. CAD, Vol. 27, Issue 2, pp.380-
393, Feb 2008. 

[Williams 73] Williams, M.J.Y., and J.B. Angell, “Enhancing 
Testability of Large Scale Integrated Circuits via Test Points and 
Additional Logic,” IEEE Trans. Computers, Vol. C-22, Issue 1, pp. 
46-60, Jan. 1973. 

[Yerramilli 06] Yerramilli, S., “Addressing Post-Silicon Validation 
Challenge: Leverage Validation and Test Synergy,” Keynote, Intl. 
Test Conf., 2006. 

 

17

2.3


