

Post-Silicon Validation
Opportunities, Challenges and Recent Advances

Subhasish Mitra Sanjit A. Seshia Nicola Nicolici
Dept. of EE and Dept. of CS

Stanford University
Stanford, CA, USA
subh@stanford.edu

Dept. of EECS
University of California

Berkeley, CA, USA
sseshia@eecs.berkeley.edu

Dept. of ECE
McMaster University

Hamilton, ON, Canada
nicola@ece.mcmaster.ca

ABSTRACT
Post-silicon validation is used to detect and fix bugs in integrated
circuits and systems after manufacture. Due to sheer design complexity,
it is nearly impossible to detect and fix all bugs before manufacture.
Post-silicon validation is a major challenge for future systems. Today, it
is largely viewed as an art with very few systematic solutions. As a
result, post-silicon validation is an emerging research topic with several
exciting opportunities for major innovations in electronic design
automation. In this paper, we provide an overview of the post-silicon
validation problem and how it differs from traditional pre-silicon
verification and manufacturing testing. We also discuss major post-
silicon validation challenges and recent advances.

Categories and Subject Descriptors
B 7.2 Design Aids – Verification, B8.1 Reliability, Testing and Fault-
Tolerance, B 8.2 Performance Analysis and Design Aids

General Terms
Reliability, Verification.

Keywords
Post-silicon validation.

1. Opportunities
Ensuring correct operation despite rising levels of design

complexity has been a major focus of research and development since
the dawn of digital system design. These efforts led to remarkable
advances in the theory and practice of design verification and
manufacturing testing of digital systems over several decades. Post-
silicon validation of overwhelmingly complex systems of the future is
an emerging field of research with exciting opportunities for major
innovations.

Post-silicon validation involves operating one or more
manufactured chips in actual application environments to validate
correct behaviors over specified operating conditions. The objective is
to ensure that no bugs escape to the field. According to several industry
reports, post-silicon validation is becoming significantly difficult and
prohibitively expensive because existing techniques cannot cope with
the sheer complexity of future systems [Abramovici 06, Patra 07,
Yeramilli 06]. Post-silicon validation involves four major steps:

1. Detecting a problem by running test programs ranging from
random instruction sequences to end-user applications, e.g., operating
systems, games, and scientific applications, until a system failure occurs
(e.g., system crash, segmentation fault or exceptions).

2. Localizing the problem to a small region from the system failure.

For example, a program crash on a complex microprocessor might
be localized to errors produced by an instruction scheduler under a
certain application workload. The stimulus that exposes the bug, e.g.,
particular 10 lines of code from some application, is also important.

3. Identifying the root cause of the problem. For example, a bug
may be caused by power-supply noise slowing down some circuit
paths resulting in errors at the outputs of some design block only for
a certain input sequence.

4. Fixing or bypassing the problem by patching, circuit editing
or, as a last resort, re-spinning using a new mask.

Post-silicon validation has significant overlap with pre-silicon
design verification and manufacturing (or production) testing.
Traditionally, most hardware design bugs are detected during pre-
silicon verification, and manufacturing defects are targeted by
manufacturing testing. While both manufacturing testing and pre-
silicon verification continue to be essential, post-silicon validation is
becoming extremely important because of several unique aspects
(Table 1.1):

1. We cannot rely on pre-silicon design verification alone to
detect all design bugs. Simulation is several orders of magnitude
slower than actual silicon. Formal verification is very useful for
certain situations, such as the verification of individual arithmetic
units or protocols, it faces scalability challenges for full chip-level
verification. Hence, bugs that escape pre-silicon design verification
are often detected during post-silicon validation.

2. In advanced technologies, several interactions between a
design and the electrical state of a system are becoming significant,
e.g., signal integrity (cross-talk and power-supply noise), thermal
effects, and process variations. Such interactions can result in
incorrect behaviors and are often referred to as electrical bugs.
Accurate modeling of all these physical effects is usually very
difficult during pre-silicon design verification.

3. Unlike manufacturing defects, post-silicon bugs may be
caused by subtle interactions between a design and physical effects
(the so-called electrical bugs) or by design errors (the so-called logic
bugs). It may be very difficult to create accurate and effective fault
models for such bugs.

4. A primary reason behind the success of today’s
manufacturing testing techniques is the existence of test metrics such
as single-stuck-at coverage, transition fault coverage and N-detect
coverage, and experimental demonstration of the effectiveness of
such metrics using actual chips, e.g., work by [Ma 95] and others.
Such metrics enable automatic test pattern generation and fault
simulation. For pre-silicon design verification, such metrics are far
less standardized. Syntactic metrics, e.g., code coverage, and
semantic metrics, e.g., covering assertion goals, constitute an
integral part of the verification sign-off process. There exist new
opportunities for establishing coverage metrics for post-silicon
validation.

5. Unlike manufacturing testing where the primary objective is
to detect defects, post-silicon validation involves localizing, root-
causing and fixing bugs. Bug localization generally dominates post-

12

2.3

silicon validation effort and costs [Josephson 06]. While defect
diagnosis techniques may be somewhat applicable for bug localization,
most defect diagnosis techniques rely on scan design for testability
(DFT) which enables a sequential circuit to be treated as a
combinational circuit in test mode. Such opportunities may not be
available for bug localization during post-silicon validation. Moreover,
unlike defect diagnosis which targets manufacturing yield improvement,
the presence of one or more bugs may prevent detection of errors
caused by other bugs. Such bugs are also referred to as blocking bugs
because they may slow down the design / validation cycle [Anis 08,
Keshava 10].

Table 1.1: Qualitative comparison of pre-silicon verification vs.
manufacturing testing vs. post-silicon validation.

Pre-silicon
verification

Manufacturing
testing

Post-silicon
validation

Excellent
controllability and
observability because
any signal can be
accessed

Controllability
and
observability
primarily through
scan DFT

Insufficient
controllability and
observability due
to limited access
to internal
signals. Scan
DFT useful for
certain cases
when a failure
caused by a bug
is repeatable.

Complex physical
effects difficult to
model

Several defect
models exist

Accounts for
signal-integrity,
process
variations, non-
determinism

Simulation of full-chip
designs very slow;
formal verification
only selectively
applicable

Generally very
fast (few
seconds to
minutes per
chip)

Silicon speed
orders of
magnitude faster
than simulation

Some metrics exist
(e.g., code coverage,
assertion coverage,
mutation coverage)

Test Metrics
(e.g., stuck-at,
transition, N-
detect coverage)
widely used

Coverage metrics
for post-silicon
validation: Open
research question

Bug fixing
inexpensive

Bug fixing not
the primary
objective

Bug fixing can be
expensive

In spite of its unique challenges, post-silicon validation research

can be inspired by the successes in manufacturing testing and design
verification, as discussed next.

Manufacturing Testing
Examples of major successes in manufacturing testing include:
1. The concept of structural testing [Eldred 59] and scan design for

testability [Eichelberger 77, Williams 73] that are used in almost all
integrated circuits today.

2. Quick adoption of test compression techniques, e.g., Illinois
scan [Hamzaoglu 99], reseeding techniques [Koenemann 91], and X-
Compact [Mitra 02, 04], pointing to the success of systematic and
structured methods in overcoming manufacturing testing challenges for
complex systems.

3. Various flavors of self-test techniques, including Built-In Self-
Test (BIST) (pseudo-random and several enhancements) for general

designs ([Bardell 87] and several others), and native-mode testing /
software-based self-test [Krstic 02, Parvathala 02, Shen 98] targeting
microprocessors.

4. A wide variety of test metrics (and test experiments
demonstrating their effectiveness) that enabled automatic test pattern
generation (ATPG), fault simulation, and coverage estimation (as
discussed earlier).

Design Verification
Since the 1970s, several fundamental ideas in formal and semi-

formal verification have made their way from theoretical concept to
industrial practice. In the context of this paper, the arguably most
important idea is that of formal specifications – assertions. Temporal
logic [Pnueli 77] and similar automata-based specification languages
have made their way into standardized industrial use [Vardi 08].
Assertions are central to post-silicon validation as they provide a
precise method of specifying application requirements and system
functionality that could be adversely affected by post-silicon bugs.

Algorithmic verification techniques, based on advances in
Boolean reasoning such as Boolean Satisfiability (SAT) [Malik 09]
and Binary Decision Diagrams (BDDs) [Bryant 86], are also central
to post-silicon validation. Perhaps one of the biggest industrial
successes of formal hardware verification is combinational
equivalence checking. In addition, recent advances in SAT-based
algorithms and circuit simplification are scaling up sequential
equivalence checking greatly, as demonstrated by the ABC system
[Brayton 10]. Going beyond equivalence checking, model checking
[Clarke 00], i.e., deciding whether a system satisfies a property
specified usually in temporal logic, is now a key component of all
industrial formal verification tools. Formal techniques are often
combined with traditional random simulation methods. Finally,
theorem proving methods are also standard industrial practice today,
particularly in microprocessor design and verification (e.g., [Moore
98]). One of the major drivers for formal verification going forward,
both using theorem proving and model checking, will be
satisfiability modulo theories (SMT) solvers [Barrett 09].

It is clear from the above discussions that fundamental research

enabled significant progress in the adoption of structured methods
for manufacturing testing and design verification. With growing
complexity of post-silicon validation, our hope is that new ideas will
emerge that will transform post-silicon validation from skilled art
practiced by a few experienced engineers to a discipline with strong
foundations enabled by structured approaches and design
automation. Such new techniques can have far reaching impact on
other fields related to post-silicon validation. Examples include
reliable system design, embedded systems, and software test and
verification.

2. Challenges
There are numerous challenges in post-silicon validation. We

do not attempt to present a comprehensive survey here. Instead, we
highlight a few important ones.

1. Failure reproduction: This step involves returning the
hardware to an error-free state, and re-executing the failure-causing
stimulus (including instruction sequences, interrupts, and operating
conditions) to reproduce the same failure. Unfortunately, many
electrical bugs are very hard to reproduce. The difficulty of bug
reproduction is exacerbated by the presence of asynchronous I/Os,

13

2.3

and multiple clock domains. Techniques to make failures reproducible
[Heath 04, Sarangi 06, Silas 03] are often intrusive to system operation,
and may not expose bugs.

2. System-level simulation: In order to obtain “golden responses,” i.e.,
correct signal values for every clock cycle for the entire system (e.g.,
processor and all peripheral devices on the board), one must run
expensive system-level simulation. Running system-level simulation
can be 7-8 orders of magnitude slower than actual silicon. In addition,
expensive external logic analyzers are required to record all signals
values that enter and exit the system through external pins [Silas 03].

Due to the above factors, a functional bug typically takes hours to
days to be localized vs. electrical bugs that require days to weeks and
more expensive equipment [Josephson 01].

3. Coverage metrics: As noted earlier, while coverage metrics are
well-established in manufacturing test, they are less standard in pre-
silicon design verification. Several methods exist for measuring pre-
silicon verification coverage, including code coverage (e.g., statement,
branch, path coverage in an RTL description), FSM coverage (e.g.,
transition or state coverage), assertion coverage, and mutation-based
coverage (e.g., checking whether an injected bug is caught during
verification). Quantifying coverage of post-silicon validation tests is
very challenging due to limited controllability and observability (hence,
it is harder to mutate a design or monitor an assertion failure).

4. Test Patterns for post-silicon validation: Several recent
techniques for improving real-time observability during post-silicon
validation, e.g., using assertion checkers and optimized embedded logic
analyzers, enable monitors from pre-silicon verification testbenches to
be reused during post-silicon validation. On-chip generation of post-
silicon validation tests can potentially enable reuse of controllability of
testbenches used for pre-silicon verification (structured and scalable, yet
slow) during post-silicon validation (fast, yet ad-hoc and labor-
intensive). Note that, there are key differences between such on-chip
generation of post-silicon validation tests vs. logic BIST for
manufacturing testing. This is because most logic BIST techniques rely
on scan DFT and target manufacturing test metrics.

3. Recent Advances
In this section, we present a brief overview of recent results in the

field of post-silicon validation. This survey is by no means exhaustive.
Our goal is just to highlight some results that could provide a basis for
further work in this field. We begin with challenges related to bug
localization because it is typically the most expensive step in post-
silicon validation.

Post-silicon bug localization for processor cores

A new technique called IFRA (Instruction Footprint Recording and
Analysis) [Park 08, 09, 10a, 10b] has been demonstrated to be highly
effective in overcoming major challenges associated with a very
expensive step in post-silicon validation of processors – pinpointing a
bug location and the instruction sequence that exposes the bug from a
system failure, such as a crash.

Figure 1 presents an overview of IFRA. Special on-chip recorders,
inserted in a processor during design, collect instruction footprints –
special information about flows of instructions, and what the
instructions did as they passed through various microarchitectural
blocks of the processor. The recording is done concurrently during the
normal operation of the processor in a post-silicon system validation
setup. Upon detection of a system failure, the recorded information is
scanned out and analyzed offline for bug localization. Special self-
consistency-based program analysis techniques, together with the test
program binary of the application executed during post-silicon

validation, are used for this purpose.
Major benefits of using IFRA over traditional techniques for

post-silicon bug localization are: 1. It does not require full system-
level reproduction of bugs, and, 2. It does not require full system-
level simulation. Hence, it can overcome major hurdles that limit the
scalability of traditional post-silicon validation methodologies.
Simulation results on a complex Alpha 21264-like superscalar
processor demonstrate that IFRA is effective in localizing electrical
bugs with 96% accuracy at 1% chip-level area impact.

A new Bug Localization Graph (BLoG) framework [Park 10b]
enables systematic application of IFRA to new processor
microarchitectures with reduced engineering time and less expert
knowledge. Results obtained from an industrial microarchitectural
simulator modeling a state-of-the-art complex commercial
microarchitecture (Intel Nehalem, the foundation for the Intel
Core™ i7 and Core™ i5 processor families) demonstrate the
effectiveness of IFRA in localizing electrical bugs in complex
microarchitectures with 90% accuracy (Fig. 2 taken from [Park
10b]).

Figure 1. Post-silicon bug localization flow using IFRA.

Figure 2. BLoG-assisted IFRA results obtained from an
industrial simulator modeling the Intel Nehalem

microarchitecture (details in [Park 10b]).

Observability enhancement for post-silicon
validation

The IFRA approach discussed earlier utilizes the structured
architecture of a processor to perform bug localization without
requiring system-level simulation or failure reproduction. For post-
silicon bug localization in general designs, the debug infrastructure
must collect real-time response data in an effective manner for
efficient failure reproduction and root-cause analysis. The amount of

14

2.3

data that can be collected during a single post-silicon validation run is
ultimately limited by the capacity of on-chip trace buffers. Data
compression techniques can increase the amount of data that may be
collected in a single post-silicon validation run by 20-30% [Anis 07].
Moreover, special state restoration (or data expansion or visibility
enhancement) techniques can further enhance the amount of
information made available to the post-silicon validation engineer [Ko
08a, Liu 09].

These techniques are currently applicable for logic bugs, and
understanding how to extend these approaches for electrical bugs is a
key open challenge. Another technique for enhancing observability is to
use multiple trace buffers with programmable priorities. [Ko 08b]
presents a case study of a video decoder demonstrating how dynamic
sharing (i.e., during post-silicon validation) of trace buffers can double
the amount of acquired data when compared to static trace buffer
allocation.

Formal methods for error localization
Assertions can play an important role in localizing post-silicon

bugs, especially as we move from processor cores to general designs.
An obvious approach is to write assertions on module interfaces, and
then synthesize on-chip monitors to check whether those assertions are
satisfied or violated. This output may be made available in the event of
a failure. The failing assertions can then help localize the failure to
module boundaries. The challenge with this approach, though, is to
obtain relevant assertions in the first place. Very recent work [Li 10]
has shown how formal assertions can be mined automatically simulation
traces in a scalable manner and can be effectively used in localizing
errors (caused by bugs) to module boundaries. The overall idea,
illustrated in Fig. 3, is to find assertions that are satisfied by correct
system traces (e.g., recorded pre-silicon), but not by the error trace.
Such distinguishing assertions are then ranked according to some
metric, such as time of first failure. The location of the bug is then
hypothesized to be the modules with the highest-ranked distinguishing
assertions.

Figure 3. Assertion mining for failure diagnosis.

The following representative result from [Li 10] shows the promise
of this assertion-based bug localization approach. For an experimental
MIPS core with over 20,000 signals, the approach correctly localized
single-bit and multiple-bit flips in the logic to the single faulty module
out of a total of 278 modules. While this work is only a first step, it can
be very effective especially when combined with reconfigurable on-chip
infrastructure, e.g., [Abramovici 06], for application-specific error
monitors (that may be software-controlled).

Formal methods can also be useful for system replay. Specifically,
algorithms developed for model checking can be useful during the root-
cause step as well. For example, one challenge during the root-cause
step is to reconstruct an error trace backward from a failing state. The
problem is similar to that of performing backward reachability analysis

in model checking, where, starting from an error state, we seek to
find a trace that begins in some valid initial state and which can end
in that error state. This analogy has been explored recently in the
Backspace technique [de Paula 08]. In essence, the Backspace
approach involves recording a crash state, computing its expected
predecessor state (based on RTL), setting that state as a breakpoint,
and then repeating this procedure so as to reconstruct the error trace
backwards. This approach has shown promise, generating
diagnostic traces for two open-source processor cores: a Motorola
68HC05 and an Intel 8051. In both cases, the Backspace system
could reconstruct the error traces for hundreds of cycles backwards
from a crash state.

Detecting a problem
For error detection, the following two questions must be

answered: (i) what input stimulus should be applied to the circuit?
and, (ii) how to detect if a failure has occurred?

While the first problem is still largely open, online in-hardware
assertion checking has shown promise in answering the second. In
recent years assertions have been proposed for in-system hardware
validation and debugging [Bayazit 05] and [Boule 05]. The basic
idea is to reuse the assertions written in a software environment
during the pre-silicon phase, map them onto hardware and let them
run in the background to detect errors at runtime. However, two
challenges arise. The first has to do with signal locality. Pre-silicon
assertions can reference signals that are not spatially nearby in actual
silicon. Due to this, if one must use pre-silicon assertions for
monitoring, the assertions must be suitably decomposed into
localized assertions. The second challenge lies in minimizing the
area investment. The number of assertions to be placed in hardware,
as well as the locations where they may be placed to enable effective
sharing between different hardware blocks, are open questions. An
equally important problem is determining compact input sequences
that can improve bug detection and coverage using hardware
assertion checkers.

Root cause identification

Once a bug is localized to a design block from a system failure,
scan chains are extensively used for finding the root cause. System
states are scanned out at pre-programmed clock cycles and compared
against golden signatures in consecutive clock cycles in order to
identify the failing flip-flops and failing cycles. Subsequently, logic
cone analysis is used to identify the erroneous signals. While such an
approach can benefit from existing fault diagnosis techniques, the
sequential nature of the problem (unlike scan-based manufacturing
testing) creates several complications. A key challenge is that system
states are not necessarily deterministic, i.e., it may not be possible to
determine expected logic values of all state bits by simulation. This
is due to the presence of several sources of unknown logic values
(X’s). Examples include multiple clock domains, uninitialized
embedded memory blocks or mixed-signal blocks. X’s are known to
complicate manufacturing testing as well [Mitra 02, 04]. A
technique known as latch divergence analysis [Dahlgren 03] may be
used to “filter-out” state deviations during post-silicon validation.
The information obtained from these “filtered” states can be
subsequently processed using modified backtrace procedures for
logic cone analysis [Caty 05].

When debugging speedpaths, it is common to collect responses
at multiple clock frequencies where the clock signal is selectively
stretched/shrunk only for certain logic cones or selected paths. This
can be achieved using special clock tuning elements that inserted in
the design [Naffziger 06]. Accelerating speedpath debugging

15

2.3

through automated insertion and configuration of clock tuning
elements, as well as the analysis of failure traces are open challenges in
this context.

Bug fixing
After a bug has been localized, analyzed, and root-caused, one can

attempt to patch the problem in the design itself without a re-spin. For
microprocessors, one way to achieve this goal is through microcode
patches or special design techniques such as the Field-Repairable
Control Logic (FRCL) approach [Wagner 08]. State sequences that
trigger a bug are recorded during detection and localization phases and
subsequently used for in-field patches. State matcher circuitry is
employed to monitor the states that are known to trigger the bug. When
the matcher reports a match, the processor pipeline is flushed and
instruction execution is resumed in a low-performance serial mode (i.e.,
with only one instruction at a time in the pipeline). After the bug is
bypassed, the microprocessor resumes execution in its normal high-
performance mode (i.e., with multiple instructions at a time in the
pipeline). The assumption is that most bugs are introduced by complex
interactions between instructions and a serial low-performance serial
execution mode may be generally expected to be bug-free.

Another approach called FogClear [Chang 08] enables post-silicon
metal fixes allowed by engineering change order (ECO) routing and
spare cell insertion. [Chang 08] show that by pre-placing spare cells in
70% of the unused regions in the layout, FogClear can repair 70% of
the injected functional errors.

Error-Resilient System Design

While mainstream post-silicon validation activities focus on
detecting, localizing and fixing post-silicon bugs before product
shipment, the ultimate objective may be to design robust systems that
are resilient to design errors. There exists a large body of literature on
robust system design and fault-tolerant computing techniques in this
context (e.g., [Iyer 05, Li 09, Mitra 10, Siewiorek 98] and several
others). For such resilience techniques to be cost-effective, it is essential
to perform pre-silicon analysis to identify the most vulnerable
components of a system. Formal methods offer a promising approach
for this purpose for two reasons. First, formal assertions can precisely
capture “critical” application-level requirements on the design that must
hold at all times. Second, formal verification techniques can perform
exhaustive search over the faulty behavior space as well as the input
space. In this context, the verification-guided error resilience (VGER)
approach [Seshia 07] has demonstrated how formal specifications and
model checking can be used to perform such analysis for transient
errors. VGER can pinpoint components (e.g., latches or gates) that are
most vulnerable to soft errors in the sense that a soft error in those
components will cause the system/application-level requirements to fail
severely. Such analysis can be useful for diagnosis – for pinpointing the
most likely areas in which a post-silicon error might occur. It is also
very useful for synthesizing a low power robust design: in experiments
on an implementation of the SpaceWire protocol, the VGER approach
showed how a robust design could be synthesized for one-fifth the
power overhead of a traditional fault-tolerance technique.

4. Conclusion
Post-silicon validation is an emerging research topic with several

outstanding challenges that can create opportunities for exciting
research contributions. Systematic techniques for post-silicon validation
together with coverage metrics for quantifying the effectiveness of
various post-silicon validation approaches can transform this field from
an art requiring considerable skill and experience to a discipline with
strong foundations enabled by structured approaches and design
automation.

Acknowledgment
This work is supported in part by the Semiconductor Research

Corporation (SRC), the Gigascale Systems Research Center, one of
six research centers funded under the Focus Center Research
Program (FCRP), an SRC entity, the National Science Foundation
(NSF), and the National Science and Engineering Research Council
(NSERC) of Canada.

References
[Abramovici 06] Abramovici, M., P. Bradley, K. N. Dwarakanath, P.

Levin, G. Memmi and D. Miller, “A Reconfigurable Design-for-
Debug Infrastructure for SoCs,” Proc. Design Automation Conf.,
pp. 7-12, 2006.

[Anis 07] Anis, E., and N. Nicolici, “On Using Lossless Compression
of Debug Data in Embedded Logic Analysis,” Proc. Intl. Test
Conf., 2007.

[Anis 08] Anis E., and N. Nicolici, “On By-passing Blocking Bugs
during Post-silicon Validation,” Proc. European Test Symp., pp.
69-74, 2008.

[Bardell 87] Bardell, P.H., W.H. McAnney and J. Savir, Built-In Test
for VLSI: Pseudo-random Techniques, John Wiley & Sons, 1987.

[Barrett 09] Barrett, C., R. Sebastiani, S. A. Seshia, and C. Tinelli,
“Satisfiability Modulo Theories,” Handbook of Satisfiability, IOS
Press, 2009.

[Bayazit 05] Bayazit, A.A., and S. Malik, “Complementary Use of
Runtime Validation and Model Checking,” Proc. Intl. Conf. CAD,
pp. 1052-1059, 2005.

[Boule 05] Boule, M., and Z. Zilic, “Incorporating Efficient
Assertion Checkers into Hardware Emulation,” Proc. Intl. Conf.
Computer Design, pp. 221-228, 2005.

 [Brayton 10] Brayton, R.K., et al., Berkeley Logic Synthesis and
Verification Group, ABC: A System for Sequential Synthesis and
Verification. http://www.eecs.berkeley.edu/~alanmi/abc/

[Bryant 86] Bryant, R.E., “Graph-based Algorithms for Boolean
Function Manipulation,” IEEE Trans. Computers, Vol. C-35, No.
8, pp. 677-691, Aug. 1986.

[Caty 05] Caty, O., P. Dahlgren and I. Bayraktaroglu,
“Microprocessor Silicon Debug Based on Failure Propagation
Tracing,” Proc. Intl. Test Conf., pp. 293-302, 2005.

[Chang 08] Chang, K.H., I.L. Markov and V. Bertacco, “Automating
Post-silicon Debugging and Repair,” IEEE Computer, Vol. 41, No.
7, pp.47-54, July 2008.

[Clarke 00] Clarke, E.M., O. Grumberg and D. Peled, Model
Checking, MIT Press, 2000.

[Dahlgren 03] Dahlgren, P., P. Dickinson and I. Parulkar, “Latch
Divergency in Microprocessor Failure Analysis in Microprocessor
Failure Analysis,” Proc. Intl. Test Conf., pp. 755-763, 2003.

[de Paula 08] de Paula, F.M., M. Gort, A.J. Hu, S.E. Wilton and J.
Yang, “BackSpace: Formal Analysis for Post-Silicon Debug,”
Proc. Intl. Conf. Formal Methods in CAD, 2008.

[Eichelberger 77] Eichelberger, E.B., and T.W. Williams, “A Logic
Design Structure for LSI Testability,” Proc. Design Automation
Conf., pp. 462-468, 1977.

[Eldred 59] Eldred, R.D., “Test Routines based on Symbolic Logic
Statements,” Journal ACM, Vol. 6, No. 1, pp. 33-37, Jan. 1959.

[Hamzaoglu 99] Hamzaoglu, I., and J.H. Patel, “Reducing Test
Application Time for Full Scan Embedded Cores,” Proc. Intl.
Symp. Fault-Tolerant Computing, pp. 260-267, 1999.

[Heath 04] Heath, M.W., W.P. Burleson and I.G. Harris, “Synchro-
Tokens: Eliminating Nondeterminism to Enable Chip-Level Test of

16

2.3

Globally-Asynchronous Locally-Synchronous SoC’s,” Proc. Design,
Automation and Test in Europe, pp. 1532-1546, 2004.

[Iyer 05] Iyer, R.K., N. Nakka, Z. Kalbarczyk and S. Mitra, “Recent
Advances and New Avenues in Hardware-Level Reliability Support,”
IEEE MICRO, Vol. 25, No. 6, pp. 18-29, Nov.-Dec. 2005.

[Josephson 01] Josephson, D., S. Poehlman and V. Govan, “Debug
Methodology for the McKinley Processor,” Proc. Intl. Test Conf., pp.
451-460, 2001.

[Josephson 06] Josephson, D., “The Good, the Bad, and the Ugly of
Silicon Debug,” Proc. Design Automation Conf., pp. 3-6, 2006.

[Keshava 10] Keshava, K., N. Hakim and C. Prudvi, “Post-Silicon
Validation Challenges: How EDA and Academia Can Help,” Proc.
Design Automation Conf., 2010.

[Ko 08a] Ko, H.F., and N. Nicolici, “Automated Trace Signals
Identification and State Restoration for Improving Observability in
Post-silicon Validation,” Proc. Design Automation and Test in
Europe, pp. 1298-1303, 2008.

[Ko 08b] Ko, H.F., A.B. Kinsman and N. Nicolici, “Distributed
Embedded Logic Analysis for Post-silicon Validation of SOCs,” Proc.
Intl. Test Conf., 2008.

[Koenemann 91] Koenemann, B., “LFSR-Coded Test Patterns for Scan
Designs,” Proc. European Test Conf., pp. 237-242, 1991.

[Krstic 02] Krstic, A., W.C. Lai, K.T. Cheng, L. Chen and S. Dey,
“Embedded Software-Based Self-Test for Programmable Core-Based
Designs,” IEEE Design and Test of Computers, Vol. 19, No. 4, pp.
18-27, July-Aug. 2002.

[Li 09] Li, Y., Y.M. Kim, E. Mintarno, D.S. Gardner and S. Mitra,
“Overcoming Early-Life Failure and Aging Challenges for Robust
System Design,” IEEE Design and Test of Computers, Vol. 26, No. 6,
pp. 28-39, Nov.-Dec. 2009.

[Li 10] Li, W., A. Forin and S. A. Seshia, “Scalable Specification
Mining for Verification and Diagnosis,” Proc. Design Automation
Conf., 2010.

[Liu 09] Liu, X., and Q. Xu, “Trace Signal Selection for Visibility
Enhancement in Post-Silicon Validation,” Proc. Design Automation
and Test in Europe, pp. 1338-1343, 2009.

[Ma 95] Ma, S.C., P. Franco and E.J. McCluskey, “An Experimental
Test Chip to Evaluate Test Techniques: Experimental Results,” Proc.
Intl. Test Conf., pp. 663-672, 1995.

[Malik 09] Malik, S., and L. Zhang, “Boolean Satisfiability: From
Theoretical Hardness to Practical Success,” Communications of the
ACM, Vol. 52, No. 8, pp. 76-82, Aug. 2009.

[Mitra 02] Mitra, S., and K.S. Kim, “X-Compact: An Efficient Response
Compaction Technique for Test Cost Reduction,” Proc. Intl. Test
Conf., pp. 311-320, 2002.

[Mitra 04] Mitra, S., and K.S. Kim, “X-Compact: An Efficient Response
Compaction Technique,” IEEE Trans. CAD, Vol. 23, issue 3, pp. 421-
432, March 2004.

[Mitra 10] Mitra, S., “Robust System Design,” Proc. Intl. Conf. VLSI
Design, pp. 434-439, 2010.

[Moore 98] Moore, J., T. Lynch, and M. Kaufmann, “A mechanically
checked proof of the AMD5 K86(TM) floating-point division
program,” IEEE Trans. Computers, Vol. 47, No. 9, pp. 913-926, Sept.
1998.

[Naffziger 06] Naffziger, S., B. Stackhouse, T. Grutkowski, D.
Josephson, J. Desai, E. Alon and M. Horowitz, “The Implementation
of a 2-core, Multi-threaded Itanium Family Processor,” IEEE Journal
Solid-State Circuits, Vol. 41, No. 1, pp. 197-209, Jan. 2006.

[Park 08] Park, S.B., and S. Mitra “IFRA: Instruction Footprint
Recording and Analysis for Post-Silicon Bug Localization in
Processors,” Proc. Design Automation Conf., 2008.

[Park 09] Park, S.B., T. Hong and S. Mitra, “Post-Silicon Bug
Localization in Processors using Instruction Footprint Recording
and Analysis (IFRA),” IEEE Trans. CAD, Vol. 28, Issue 10, pp.
1545-1558, Oct. 2009.

[Park 10a] Park, S.B., and S. Mitra, “Post-silicon Bug Localization
for Processors using IFRA,” Communications of the ACM, Vol. 53,
No. 2, pp. 106-113, Feb. 2010.

[Park 10b] Park, S.B., A. Bracy, H. Wang and S. Mitra, “BLoG:
Post-Silicon Bug Localization in Processors using Bug
Localization Graphs,” Proc. Design Automation Conf, 2010.

[Parvathala 02] Parvathala, P., K. Maneparambil and W. Lindsay,
“FRITS – A Microprocessor Functional BIST Method,” Proc. Intl.
Test Conf., pp. 590-598, 2002.

[Patra 07] Patra, P., “On the Cusp of a Validation Wall,” IEEE
Design and. Test of Computers, Vol.24, No.2, pp.193-196, March-
April 2007.

[Pnueli 77] Pnueli, A., “The Temporal Logic of Programs,” Proc.
Symp. Foundations of Computer Science, pp. 46-57, 1977.

[Sarangi 06] Sarangi, S., B. Greskamp and J. Torrellas, “CADRE:
Cycle-Accurate Deterministic Replay for Hardware Debugging,”
Proc. Dependable Systems and Networks, pp. 301-312, 2006.

[Seshia 07] Seshia, S.A., W. Li and S. Mitra, “Verification-Guided
Soft Error Resilience,” Proc. Design Automation and Test in
Europe, pp. 1442-1447, 2007.

[Shen 98] Shen, J., and J. A. Abraham, “Native Mode Functional
Test Generation for Processors with Applications to Self Test and
Design Validation,” Proc. Intl. Test Conf., pp. 990-999, 1998.

[Silas 03] Silas, I., I. Frumkin, E. Hazan, E. Mor and G. Zobin,
“System-Level Validation of the Intel Pentium M Processor,” Intel
Technology Journal, Vol. 7, No.2., pp. 37-43, May 2003.

[Siewiorek 98] Siewiorek, D.P., and R.S. Swarz, Reliable Computer
Systems: Design and Evaluation, A.K. Peters, 1998.

[Vardi 08] Vardi, M., “From Church and Prior to PSL,” Proc. 25
Years of Model Checking, pp. 150-171, 2008.

[Wagner 08] Wagner, I., V. Bertacco and T. Austin, “Using Field-
Repairable Control Logic to Correct Design Errors in
Microprocessors,” IEEE Trans. CAD, Vol. 27, Issue 2, pp.380-
393, Feb 2008.

[Williams 73] Williams, M.J.Y., and J.B. Angell, “Enhancing
Testability of Large Scale Integrated Circuits via Test Points and
Additional Logic,” IEEE Trans. Computers, Vol. C-22, Issue 1, pp.
46-60, Jan. 1973.

[Yerramilli 06] Yerramilli, S., “Addressing Post-Silicon Validation
Challenge: Leverage Validation and Test Synergy,” Keynote, Intl.
Test Conf., 2006.

17

2.3

