
Kernel-Based Sparse Representation for Gesture
Recognition

Yin Zhoua, Kai Liua,b,∗, Rafael E. Carrilloa, Kenneth E. Barnera,∗, Fouad
Kiamileva

aDepartment of ECE, University of Delaware, Newark, DE, 19716, USA
bSchool of Electrical Engineering and Information, Sichuan University, 610065, China

Abstract

In this paper, we propose a novel sparse representation based framework for clas-

sifying complicated human gestures captured as multi-variate time series (MTS).

The novel feature extraction strategy, CovSVDK, can overcome the problem of in-

consistent lengths among MTS data and is robust to the large variability within hu-

man gestures. Compared with PCA and LDA, the CovSVDK features are more ef-

fective in preserving discriminative information and are more efficient to compute

over large-scale MTS datasets. In addition, we propose a new approach to ker-

nelize sparse representation. Through kernelization, realized dictionary atoms are

more separable for sparse coding algorithms and nonlinear relationships among

data are conveniently transformed into linear relationships in the kernel space,

which leads to more effective classification. Finally, the superiority of the pro-

posed framework is demonstrated through extensive experiments.
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1. Introduction

Sparse representation has achieved state-of-the-art results in many fields, such

as image compression and denoising [1], face recognition [2, 3], video-based ac-

tion classification [4], etc. The success of this technique is partially due to its

robustness to noise and missing data. For example, sparse representation-based

classification (SRC) [2] yields impressive results in face recognition by encoding

a query face image over the entire set of training template images and identifying

the label of the query sample by evaluating which class yields the minimum re-

construction error. However, little effort has been made to apply this technique to

classifying multi-variate time series (MTS) data.

Classifying multivariate time series (MTS) is a challenging task in many areas,

e.g., pattern recognition [5] and computer vision [6]. An MTS is an m×n matrix,

where m is the number of observations on an individual event captured by sensors

such as video cameras, position trackers and cybergloves, while n denotes the

number of independent attributes [7], also known as variables [5, 8] or features [9,

10]. For each MTS, m is typically varying due to different motion durations for

each instance, while the number of attributes, n, is the same for all the series since

they are recorded by the same set of devices. For conventional feature extraction

methods, e.g., PCA and LDA, downsampling and interpolation are usually applied

on each MTS in order to normalize the data length. However, downsampling may

cause a loss of salient information [5], while interpolation may induce distortion

to the original data [8].

Gesture MTS data possess both spatial and temporal information. While spa-
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tial information depicts the entire static pattern, temporal information contains

the dynamic dependencies between adjacent recordings. Algorithms that exploit

chronological order within time series, e.g., Dynamic Time Warping (DTW) [11,

12] and Longest Common Subsequence (LCSS) [13], assume that similar signals

must be recorded in the same order. However, motion order and direction may

vary significantly among users presenting the same gesture. Consequently, such

algorithms need to store all possible permutations of each gesture in memory and

conduct pair-wise matching during recognition, resulting in excessive computa-

tion and storage requirements [14]. For example, a 2-stroke letter “t” requires

2! × 22 = 8 permutations to represent all possibilities, while an l-stroke gesture

takes l!× 2l permutations.

Notably, real-world gestures and movements, such as human gait and sign lan-

guage, are performed according to a strict “grammar”. This observation indicates

that effectively distinguishing complicated spatial patterns is the key to success-

ful recognition, rather than exploiting temporal order [7, 5, 8]. Motivated by this

observation and reasoning, we consider feature extraction for MTS data ignoring

the temporal ordering. More specifically, we generalize the capability of SRC to

classifying MTS data.

The performance of SRC relies on the quality of the dictionary. We propose a

novel feature extraction technique, called Covariance Matrix Singular Value De-

composition for Kernelization (CovSVDK), which possesses three notable mer-

its: CovSVDK is 1) invariant to inconsistent lengths and temporal disorder across

MTS data; 2) robust to the large variability within human gestures; 3) efficient

to compute. In particular, the robustness of the feature extraction strategy is at-

tributed to the fact that CovSVDK essentially enforces `1 minimization algorithms
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to favor training samples that are consistently close to the query sample in every

sub-feature space. Moreover, we propose a new approach to kernelize sparse rep-

resentation. With this method, dictionary atoms are more separable for sparse cod-

ing algorithms and nonlinear relationships among data can be conveniently trans-

formed into linear relations in kernel space, which leads to more effective classifi-

cation. Finally, we evaluate the proposed framework over extensive datasets. For

the Georgia-Tech HG database, a 100% recognition rate is stably achieved; over

the High-quality Australian Sign Language (HAuslan) database, the recognition

accuracy is greater than 91.2%; for the univariate UCR Time-Series Repository,

the proposed classifier outperforms competing methods by achieving the lowest

error rate on 10 out of 20 datasets.

The remainder of the paper is organized as follows. First, we give a brief

review of related work and establish the problem formulation in Section 2. In

Section 3, the proposed method is presented. Experiments and comparison with

existing methods are presented in Sections 4 and 5. Finally, we summarize in

Section 6 and note future directions.

2. Related Work and Problem Formulation

2.1. Related Work

Many algorithms have been proposed to measure the similarity among multi-

dimensional time series, e.g., Hidden Markov models (HMMs) [15], DTW [11,

12], LCSS [13], and Mixture of Bayes Network Classifier [9], among others.

Principal components (PCs) based methods are, perhaps, the most widely known

similarity measure for multi-attribute time series, with the approach first defined

by Krzanowski [16] in 1979. Many subsequent PC efforts focused on comput-
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ing the similarity value using different weighting strategies to aggregate the inner

products between PC pairs [5, 7, 8].

For instance, Li et al. proposed a similarity measure for motion streams using

only the largest singular value and the corresponding singular vector [7]. In [6],

the authors further proposed k Weighted Angular Similarity (kWAS) by consid-

ering the k largest singular value/vector pairs. Yang and Shahabi [5] proposed a

similarity measure, called Extended Frobenius norm (Eros), which included all

the singular values by employing a heuristic aggregating function to compute uni-

versal weights for all MTS data. The similarity measure is a weighted sum of

inner products between each pair of singular vectors. In practice, however, vari-

ance is highly concentrated in the several largest eigenvalues and the small values

are typically considered as redundancy or noise. Hence, Eros is vulnerable to

noise. Yang and Shahabi further further extended their approach by using Eros

for Kernel PCA, termed KEros [8].

Recently, some researchers reported the limitation of SRC [2] in classifying

nonlinear data. Zhang et al. [17] proposed the kernel sparse representation-based

classifier (KSRC) by introducing the kernel trick. However, their approach re-

lies on kernel-based dimensionality reduction techniques and thus does not offer

a direct generalization to sparse representation in kernel space. Gao et al. [18]

proposed kernel sparse representation (KSR). However, the KSR objective func-

tion cannot be solved by standard sparse coding algorithms as it requires solving

a quadratic programming (QP) problem, which is of higher computational com-

plexity than `1 minimization.
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2.2. Problem Formulation

In a k-label MTS data classification problem, we define the training set as

T =
⋃k
i=1 Ti, where Ti =

⋃ni

j=1 ti,j is a subset for the i-th class with ni samples,

and define the query sample as x. Also, denote N =
∑k

i ni as the total number of

training samples.

There is significant current interest in using SRC [2] to classify audio, image

and video signals. It is therefore desirable to explore its capability in the field of

MTS data classification. To achieve this goal, several important issues must be ad-

dressed: 1) An effective feature extraction method is needed to process large-scale

MTS datasets. The method should be efficient in computation and memory con-

sumption, and invariant to inconsistent lengths and temporal disorder across MTS

samples. 2) A general formulation of sparse representation suitable for various

pattern recognition tasks is also desired. SRC assumes that training atoms reside

on a linear manifold and are distinguishable by `1 minimization algorithms. While

this premise holds for face images, it does not necessarily hold for other types of

data.

3. Proposed method

This section details methods for effectively extracting MTS data features and

present a novel approach to kernelizing sparse representation for classification.

3.1. Feature Extraction for MTS Data

3.1.1. SVD Properties of MTS Data

For an m × n MTS t with m observations and n attributes, m is typically

much larger than n and varies across different samples. In order to avoid perform-

ing SVD on m-varying t, we treat each attribute (columns in the t) as a random
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variable and compute the covariance matrix of t as

Σt = E[tT t]− ET [t]E[t], (1)

where E[·] denotes the mathematical expectation and Σt is of fixed dimension

n×n (here n ≥ 2). By calculating the Σt of t, we discard the ordering information

and thus overcome the problem of temporal disorder across MTS samples, since

each entry in Σt is an inner product between two columns in t that is invariant to

the row-switching of t.

Applying SVD to the covariance matrix yields Σt = UΛUT , where U =

[u1, . . . ,un] is a singular vector matrix with orthonormal columns and Λ = diag(ρ)

with ρ = [λ1, . . . , λn]T being a vector with singular values descendingly sorted.

diag is the operator that transforms ρ into a diagonal matrix by putting entries

of ρ along the main diagonal in the matrix. Similarly, the covariance matrix

Σp of MTS p can be expressed as Σp = VΩVT , where V = [v1, . . . , vn] and

Ω = diag(η) with η = [ω1, . . . , ωn]T . Since Σ is positive semi-definite, its SVD

is equivalent to eigenvalue decomposition.

If two MTS t and p are similar to each other, ‖Σt − Σp‖F should be close

to zero. In other words, the singular vector ui of Σt should resemble vi of Σp in

direction and the singular value λi of Σt should also be close to ωi of Σp. Further

discussions on the SVD properties of MTS can be found in Appendix A.

3.1.2. Simple features for sparse representation

For simplicity, we indicate the i-th training sample as ti. Applying SVD to

the covariance matrix, we get Σti = UiΛiUT
i , where Ui = [u1

i , . . . ,uni ] and Λi =

diag(ρi) with ρi = [λ1i , . . . , λ
n
i ]T . Note that uji ∈ Rn and λji stand for the j-th
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singular vector (principle component) and the j-th singular value of ti respectively.

We denote Bj = [uj1,u
j
2, . . . ,u

j
N ] ∈ Rn×N as the dictionary containing the j-th

singular vectors extracted from all ti with ‖uji‖2 = 1, for i = 1, . . . , N .

Given a query sample x and corresponding Σx = VΩVT , denote the j-th

singular vector of x as vj and let η = [ω1, . . . , ωn]T be the vector containing all

the singular values in Ω sorted in the descending order. A simple strategy for

classifying x is to treat a particular vj as the feature of x and employ SRC [2] to

identify the feature by solving

αj = arg min
αj
‖αj‖1 subject to Bjαj = vj, (2)

Obtaining αj ∈ RN , x can be classified by evaluating the class-wise reconstruction

error based on Bj .

The above strategy using one singular vector (e.g., the top one) may work

properly with well-separated data. However, real-world gesture recordings are

always vulnerable to noise or large variability among individuals. Therefore it is

desirable to take into account several most important singular vectors to improve

the robustness of the algorithm. In addition, the discriminative information within

the singular values should also be exploited.

3.1.3. Robust features for sparse representation

Consider a robust feature vector constructed by unifying the top s singular

values and the associated singular vectors (s ≤ n). Suppose that we have obtained

αj by solving Eq. (2), for all j = 1, . . . , s. Without violating the equality in the
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constraint of Eq. (2), we can equivalently rewrite Bjαj = vj as

B̂jα̂j = [
λj1
‖ρ1‖2

uj1,
λj2
‖ρ2‖2

uj2, . . . ,
λjN
‖ρN‖2

ujN ]α̂j =
ωj

‖η‖2
vj (3)

where α̂j = ∆αj with ∆ = diag([ω
j‖ρ1‖2
λj1‖η‖2

, . . . , ω
j‖ρN‖2
λjN‖η‖2

]). Applying the same

procedure to each pair of Bj and vj for all j = 1, . . . , s, we get

B̂1α̂1 =
ω1

‖η‖2
v1

B̂2α̂2 =
ω2

‖η‖2
v2

. . . = . . . (4)

B̂sα̂s =
ωs

‖η‖2
vs

Ideally, if x is sufficiently similar to ti, vj should resemble uji , so should ωj and

λji for all j = 1, . . . , s. Therefore, in reconstructing each vj , the uji of ti should be

coded with large coefficient. In other words, if each uji of ti contributes most in

representing vj of x, ti should be similar to x. Then, the class to which ti belongs

should yield the minimum error in reconstructing x, which indicates that x is of

the same label as ti.

Motivated by this intuition, we enforce each vj of x to be represented via a

universal sparse code α over the corresponding B̂j . By substituting α̂j with α for

all j = 1, . . . , s, Eq. (4) can thus be simplified as

[B̂1T , B̂2T , . . . , B̂sT ]Tα = [
ω1

‖η‖2
v1T ,

ω2

‖η‖2
v2T , . . . ,

ωs

‖η‖2
vsT ]T , (5)

where [B̂1T , B̂2T , . . . , B̂sT ]T is a vertical concatenation of all the sub-matrices
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B̂j and the right hand side is a super-vector by concatenating all vj . Thus the

classification scheme based on unifying the top s pairs of singular values/vectors

can be formulated as

α = arg min
α
‖α‖1 subject to Eq. (5), (6)

where columns in [B̂1T , B̂2T , . . . , B̂sT ]T are normalized to unit `2-norm.

Definition 1 (CovSVDK). Given an MTS t, its covariance matrix is decomposed

as Σt = UΛUT by SVD, where U = [u1, . . . ,un] is a singular vector matrix

with orthonormal columns and Λ = diag(ρ) with ρ = [λ1, . . . , λn]T is a diag-

onal matrix with singular values descendingly sorted on the main diagonal. The

CovSVDK feature for t is defined as

φ(t) =

[
λ1
‖ ρ ‖2

uT1 ,
λ2
‖ ρ ‖2

uT2 , . . . ,
λs
‖ ρ ‖2

uTs

]T
∈ Rsn, (7)

where s subjects to

s = arg min

{∑s
i=1 λi∑n
i=1 λi

≥ c

}
(8)

for a pre-selected energy threshold, c.

In practice, it is common to empirically set a universal s for all MTS data such that

most energy is preserved within the top s singular values. The name CovSVDK

stands for Covariance Matrix SVD for Kernelization.

Definition 2. Given s, define Φ as a collection of features extracted from the

training set T according to Definition 1, and write Φ as

Φ = [φ(t1,1), . . . , φ(ti,1), . . . , φ(ti,ni
), . . . , φ(tk,nk

)] ∈ Rsn×N . (9)
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Furthermore, define y = φ(x) as the feature of the query sample x.

Discussion: If we define r = max(mn,N) and denote d as the reduced dimen-

sion, PCA is of computational complexityO(r2d) while CovSVDK is of complex-

ity O(n2dN). For the cases where m or N is large, O(r2d) � O(n2dN). Thus,

CovSVDK is substantially more efficient than PCA over large-scale datasets or

for MTS data with long durations. More importantly, the memory usage by PCA

is proportional to N2 or m2n2 while the memory consumption by CovSVDK is

proportional to n2. Hence, CovSVDK is also more memory efficient than PCA.

Revisiting Eq. (5), we can substitute y for
[
ω1

‖η‖2 v1, ω2

‖η‖2 v2, . . . , ωs

‖η‖2 vs
]T
∈ Rsn

and replace [B̂1T , B̂2T , . . . , B̂sT ]T ∈ Rsn×N with Φ. Finally, the classification

scheme based on CovSVDK features can be derived from Eq. (6) as

α = arg min
α
‖α‖1 subject to Φα = y, (10)

where α is the universal sparse code for representing the ωi

‖η‖2 vi over B̂iT for all i =

1, . . . , s. Limited by space, the robustness of CovSVDK features is demonstrated

in Appendix B.

3.2. Kernelizing Sparse Representation for Classification

The discrimination capability of SRC relies on the quality of the dictionary. In

other words, the atoms associated to different classes must be distinguishable or

separable from the perspective of `1 minimization algorithms. In some real-world

applications, however, computing the sparse representation over a dictionary of

original training features can yield undesirable classification results. One such

example is the Iris dataset (from UCI machine learning archive). As is commonly

used for analyzing the performance of various classifiers, two features for each

11



0 1 2 3 4 5 6 7
0

0.5

1

1.5

2

2.5

Pedal length

P
e
d

a
l 
w

id
th

Training Data of Iris Dataset

SRC loses discrimination
abililty

(a)
0 0.2 0.4 0.6 0.8 1

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

1st dimension

2
n

d
 d

im
e
n

s
io

n

Dictionary Atoms in SRC

Atoms overlap each
other

(b)
−0.2 0 0.2 0.4 0.6 0.8 1 1.2

0

0.2

0.4

0.6

0.8

1

1st dimension

2
n

d
 d

im
e
n

s
io

n

Kernelized Dictionary Atoms of SRC 

(c)

Figure 1: Training samples and dictionary atoms of SRC.

sample, regarding pedal length and pedal width, are extracted and formed into a

2D feature vector, as shown in Fig. 1(a). The three classes (points in red, green

and blue) are distributed closely along the same radius direction. Obviously, the

extracted 2D feature vectors are sufficiently discriminative for traditional classi-

fiers, e.g., k-Nearest-Neighbors (kNN) and Support Vector Machines (SVMs). On

the other hand, SRC normalizes training samples with unit `2-norm and employs

the normalized training samples as dictionary atoms1. As shown in Fig. 1(b), the

atoms are located on the unit circle with severe overlapping in the middle of the

point scatter. The atoms within the overlapping region are inseparable and con-

sequently cause `1 minimization algorithms the confusion in selecting the true

atoms. Thus, SRC neglects the magnitude information and suffers the drawback

of losing its discrimination capability in classifying data that are distributed along

the same radius direction [17, 19].

We propose the kernelized sparse representation to overcome this shortcoming

1Normalization is typically performed to avoid trivial solution and is reasonable in face recog-
nition, since images of a subject under different intensity levels are still considered to be same-
class. In other words, the magnitudes of feature vectors are not considered as discriminative
information in face recognition.
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of SRC. This is desirable since by kernelizing sparse representation, the classifica-

tion strategy of SRC can be applied to general pattern recognition tasks including

MTS gesture recognition, time series classification, etc.

Kernel trick is a widely applied technique in machine learning that can adapt

linear algorithms to nonlinear cases, by mapping training features φ(·) from the

original space X into some kernel space F , in which the new kernel features ψ(·)

are more separable for a certain type of classifiers and the nonlinear relationships

among φ(·) ∈ X can be transformed into linear ones among ψ(·) ∈ F .

Let Ψ = [ψ(t1,1), . . . , ψ(ti,1), . . . , ψ(ti,ni
), . . . , ψ(tk,nk

)] be the collection of

training kernel features in F . Given a test sample x, we want to solve the sparse

representation α of ψ(x) over Ψ. However, this is typically infeasible, as 1) usu-

ally the mapping ψ is implicit, meaning that direct evaluation of the fitness term

ψ(x) = Ψα is impossible [17]; 2) F may be of infinite dimension, causing that

the computational complexity is intractable; 3) even though we know the map-

ping explicitly, ΨTΨ may not be invertible, resulting that the left inverse does not

exist and thus no explicit solution to ψ(x) = Ψα is available. To overcome these

difficulties, we introduce a relaxation to the fitness constraint term as

∥∥∥∥∥∥
ψ(x)

0

−
Ψ

γI

α
∥∥∥∥∥∥
2

≤ ε (11)

where 0 ∈ RN is a zero vector, I ∈ RN×N is the identity matrix, ε is an arbitrarily

small positive constant representing the error tolerance, γ is a small positive con-

stant. Satisfying Eq. (11) is equivalent to minimizing the ridge regression problem

L(α) = ‖ψ(x) − Ψα‖22 + γαTα. Setting the gradient of L(α) with respect to α
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equal to zero, the solution space of α is obtained as

ΨTψ(x) = (ΨTΨ + γI)α (12)

where ΨTψ(x) is an N × 1 vector and ΨTΨ is an N × N positive semi-definite

matrix. Regularized by γ, (ΨTΨ + γI) is invertible, yielding that α is the global

minimizer to L(α). In other words, enabling Eq. (12) is equivalent to satisfying

Eq. (11). Thus, we can employ Eq. (12) as the fitness constraint in sparse coding2.

To improve the efficiency in `1 minimization and to ensure the solution to be

sparse, a random matrix P ∈ Rd×N obeying Gaussian or Bernoulli distribution

(we use Gaussian here) is often employed to project vector ΨTψ(x) and columns

in (ΨTΨ + γI) into some d-dimensional random subspace, where d� N .

Define the K = ΨTΨ as a Gram matrix, with elements Ki,j = k
(
φ(ti), φ(tj)

)
,

where k(·, ·) is a valid kernel function. By denoting ỹ = ΨTψ(x) = k(·, x) ∈ RN

and substituting K for ΨTΨ in the new fitness constraint Eq. (12), the kernelized

sparse representation under random projection P is formulated as:

α = arg min
α
‖α‖1 subject to P(K + γI)α = Pỹ. (13)

From Eq. (13), we can see that the linear relationship between kernel features ψ(x)

and columns in Ψ has been depicted entirely in terms of the linear combination

between the kernel function values in vector ỹ and the corresponding ones in

matrix K. For the purpose of effectively classifying MTS gestures and time series

2Note that the proposed relaxation to fitness constraint (Eq. (11) and Eq. (12)) is a general strat-
egy and is applicable to kernelizing other sparse coding algorithms, such as Orthogonal Matching
Pursuit (OMP), but in this paper we only focus on `1 minimization algorithms.
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data, we further propose two kernel functions based on the CovSVDK features.

Proposition 1 (Kernel Function). Let t and p be two samples and let φ(t) and

φ(p) be their extracted feature vectors. The proposed kernel function is defined as

k
(
φ(t), φ(p)

)
= exp

{
kL
(
φ(t), φ(p)

)}
= ψ(t)Tψ(p) (14)

where ψ(t) ∈ F and ψ(p) ∈ F are kernel features for t and p, via some implicit

nonlinear mapping ψ. In particular, for MTS data, φ(t) and φ(p) are extracted

according to Definition 1 and the kernel function kL(·, ·) can be written as

kL
(
φ(t), φ(p)

)
= φ(t)Tφ(p) =

s∑
i=1

(
λiωi

‖ρ‖2‖η‖2

)
uTi vi. (15)

Note that kernel features ψ(·) ∈ F are of infinite dimension. By working directly

on the kernel function however, we can implicitly exploit the kernel space of high,

or even infinite dimension, without the need of knowing mapping ψ. By using the

proposed kernel function k(·, ·), the atoms embedded in a 2D random subspace for

the Iris dataset are separable for `1 minimization algorithms, as shown in Fig. 1(c).

By incorporating the classification rule of SRC into Eq. (13), we obtain the

newly proposed classifier, called Kernelized SRC, which shall be discussed in the

following two sections.

3.3. Training

Building a discriminative dictionary is critical to the effectiveness of sparse

representation based classifiers. Given a training set T, we now describe how to

construct such a dictionary via kernel trick based on specific feature extraction

methods. To elaborate, we first use median filter to preprocess each sample (in the
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noisy case). Then we loop through all training samples to compute the features.

For MTS data, the CovSVDK feature is extracted individually from each training

sample. For the case of univariate time series data, we simply employ each raw

time series as a feature vector, since CovSVDK is effective only when n ≥ 2.

Next, we construct a dictionary as the regularized kernel matrix K + γI. Finally,

we may employ a random matrix P to improve the efficiency in classification.

The whole training process is summarized in Alg. 1.

Algorithm 1 Kernelized SRC: Training
Require: Training set T

1: Preprocess each training sample with median filter (optional)
2: for i = 1 to k do
3: for j = 1 to ni do
4: Feature extraction for each ti,j → φ(ti,j)

(for MTS data, φ(ti,j) is extracted according to Definition 1)
5: end for
6: end for
7: Compute K according to Proposition 1
8: Construct dictionary as K + γI
9: Secure sparsity in the solution vector by employing P for dimensionality re-

duction (optional)
10: return P and P(K + γI)

3.4. Classification

In this section, we discuss how to classify a query sample using the proposed

Kernelized SRC. Having x as a test sample, we first preprocess it with the same

technique as in training and extract its feature as y = φ(x). Then based on the ker-

nel function defined in Proposition 1, we have ỹ = k(·, x) = [k(φ(t1), φ(x)), . . . ,

k(φ(tN), φ(x))]T ∈ RN . Next, random projection can be performed to reduce

dimensionality. Then, we find the sparse representation α of ỹ over P(K + γI)
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by solving the optimization problem Eq. (13), which is called Basis Pursuit De-

noising (BPD) [20]. Notice that the sparse coefficients, α, can be computed by

other fast iterative algorithms, such as Orthogonal Matching Pursuit [21] or Com-

pressive Sampling Matching Pursuit [22]. Experimental results reported in the

following sections are based on the the `1 Magic implementation of BPD [23].

Finally, we identify x as class i based on the decision rule as:

i = arg min
i∈{1,...,k}

‖Pỹ−P(K + γI)δi(α)‖2, (16)

where δi(α) = [0, . . . , αi,1, . . . , αi,ni
, . . . , 0]. To cope with unbalanced classes, an

alternative decision rule i = arg mini∈{1,...,k}
‖Pỹ−P(K+γI)δi(α)‖2

‖δi(α)‖1 can be employed.

The classification procedure is summarized in Alg. 2.

Algorithm 2 Kernelized SRC: Classification

Require: Test sample x, random matrix P and dictionary P(K + γI)
1: Preprocess test sample with median filter (optional)
2: Feature extraction for x→ y = φ(x) according to Definition 1
3: Based on the kernel function defined in Proposition 1, compute

ỹ = k(·, x) = [k(φ(t1), φ(x)), . . . , k(φ(tN), φ(x))]T

4: Random subspace embedding via P (optional)
5: Find the sparse coefficient vector α by solving Eq.(13)
6: i = arg mini∈{1,...,k} ‖Pỹ−P(K + γI)δi(α)‖2
7: return i

4. Experiments on Classifying Real-World MTS Data

In this section, we conduct experiments to demonstrate the promising perfor-

mance of the proposed framework, i.e., CovSVDK + Kernelized SRC, over three

online public-access databases, i.e., the Georgian-Tech Human Gait (Georgia-
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Tech HG) database1, Australian Sign Language (Auslan) database2 and High-

quality Australian Sign Language (HAuslan) database2. The Georgia-Tech HG

database was obtained via 12 video cameras; the Auslan was generated by Pow-

ergloves; and the HAuslan was generated by two 5DT gloves and two position

trackers. To verify the effectiveness of the proposed CovSVDK feature, we use

the linear kernel kL(·, ·) for all experiments in this section. Feature vector φ(·)

for each MTS is extracted according to Definition 1. For each particular database,

the parameter s is manually selected and is consistent for all MTS data within the

database. As in [2], atoms in P(K + γI) are normalized to unit `2-norm prior to

`1 minimization. γ is set to 0.001.

We evaluate and compare the proposed CovSVDK, with Principle Component

Analysis (PCA) and Linear Discriminant Analysis (LDA). For PCA and LDA,

all MTS data are interpolated or downsampled to the average length, in each

database. We compare the proposed classifier Kernelized SRC with two popu-

lar classifiers, i.e., K-Nearest-Neighbor (KNN) with k = 3, Support Vector Ma-

chines (SVM) and with the coding strategy by computing the least square solution

to Eq. (12), termed LS. For Kernelized SRC and LS, the decision rule is Eq. (16).

For KNN and SVM, columns in Φ are employed as training data and φ(x) is used

as the test sample. The SVM toolbox can be found at [24]. As shown in the fol-

lowing, our method consistently achieves high performance over these databases.

1Published by the Computational Perception Laboratory at Gatech at
http://www.cc.gatech.edu/cpl/projects/hid/

2Published by UCI KDD at http://kdd.ics.uci.edu/summary.data.date.html
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4.1. Georgia-Tech HG database

The Georgia-Tech HG database, used for human identification from a distance,

is a collection of human gaits from 15 subjects. Samples of subjects were captured

by cameras at 4 different controlled speeds [9]. Every subject was required to walk

9 times at every controlled speed and finally, 36 samples were obtained for every

subject. A sample is a time series of gaits with varying length. By means of 22

markers on the subject, a gait is defined by 66 attributes (variables), i.e., the 3-D

coordinates of those markers [25, 26]. The evaluation uses all the 540 samples

in the database. Among the 36 samples per subject, 30 samples are randomly

collected into the training set while the remaining 6 samples are used for testing.
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Figure 2: Recognition rate for the Georgia-Tech HG database. (a) 15-class problem recognition rate versus selected features
(markers) under various random projections. The horizontal axis represents the number of randomly chosen features,
ranging from 2 to 22. The curves in different colors represents recognition rate over 5 different random subspaces. (b)
15-class problem recognition rate versus dimensions of random subspace; 22 features (markers) are employed.

By transforming the kernel matrix into a low dimensional random subspace,

we can reduce the computation cost of `1 minimization. In order to evaluate the

effectiveness of random projection, we randomly select parts of the overall 22

markers and set the parameter s = 5 uniformly, such that 5 singular value/vector

pairs are extracted by CovSVDK for each MTS. Figure 2(a) indicates that the
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Figure 3: Recognition rate for various methods over the Georgia-Tech HG database.

proposed approach can achieve 100% recognition rate when a random subspace

is of only 20 dimensions and only 11 markers are utilized. Hence, in the follow-

ing experiments over this database, kernel matrices are projected onto a random

subspace with dimension 20 to improve computation efficiency.

Remark: It is worthy to point out that, for `1 minimizers, the dimensionality

reduction induced by random projection is not a requisite. The purpose of em-

bedding the dictionary atoms into some low-dimensional subspace is two-fold:

1) speed-up `1 minimization; 2) enforce the dictionary to be overcomplete such

that the solution tends to be sparse. The first concern is desired from a practical

efficiency perspective while the second concern is preferred by the decision rule

(Eq.(16)) so as to secure satisfactory recognition rate. We can see from Figure 2(b)

that the recognition rate increases as the dimension of the random subspace be-

comes higher. For completeness, we also evaluate the proposed approach over the

Georgia-Tech HG database without performing dimensionality reduction. Fig-

ure 2(a) illustrates that the accuracy obtained without dimensionality reduction is

similar to those with dimensionality reduction.

To evaluate the proposed framework in a more challenging scenario, we down-
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Figure 4: Recognition rate on the Georgia-Tech HG database. (a) PCA feature (b) LDA feature (c) CovSVDK feature
(proposed method). All three feature extraction methods are fed to four classifiers, i.e., SVM, KNN, LS, the proposed
Kernelized SRC.

Database Proposed kL Exponential Poly.(d = 3) Gaussian
Gait 100% 92.2% 85.6% 80.4%

Table 1: Comparison among different kernel functions over the Georgia-Tech HG database.

sample the raw gesture data into 1/5 of its original length and utilize only part of

the overall 66 attributes. As shown in Figure 3, our method robustly achieves

98.9% recognition, leading SVM by approximately 10% in accuracy.

As shown in Figure 4, at 9, 4, and 1 dimension(s) of the feature subspace re-

spectively, PCA, LDA and CovSVDK achieve 100% recognition rate. Therefore,

compared with PCA and LDA, the proposed CovSVDK is more effective in pre-

serving discriminative information for classification. Finally, Table 1 shows that

in classifying MTS data, the proposed linear kernel function kL(·, ·) significantly

outperforms three other popular kernel functions, i.e., exponential, polynomial

and Gaussian kernel functions.

4.2. Australian Sign Language (Auslan) database

Contributed by 5 individual signers, the Auslan database contains 95 one-hand

signs. 70 samples were collected for each sign and a sample is comprised of

varying-length time series for a single hand gesture. There are 15 attributes or
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features for each gesture, i.e., the x, y and z coordinates of the palm, the angles

(roll, pitch and yaw) of the palm, the bend values of the 5 fingers and 4 additional

setting values. Over this database, we conduct comparative study by evaluating

the proposed approach (CovSVDK + Kernelized SRC) against several state-of-

the-art algorithms, i.e., discriminative mixture learning (MixCML [9]), Dynamic

Time Warping (DTW) [11], Fourier Descriptors [27] and SRC [2]. Recognition

rates are cited from literature for the first three methods. Results for SRC are

reported based on our own implementation.
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Figure 5: 3D trajectories for 8 signs. (a) Eat, (b) Exit, (c) Forget, (d) Give (e) Hello, (f) Know, (g) Love (h) No.

In the first experiment over the Auslan database, we consider a binary classi-

fication task. With the same experiment setup as [9], we form a subset by using

10 signs and choose, from the 15 attributes, 8 attributes, namely the x, y and z

coordinates of the palm, the roll angle of the palm, the bend values of the fingers

of thumb, fore, index and ring.

For each of the 10 signs, i.e., “eat”, “exit”, “forget”, “give”, “hello”, “know”,

“love”, “no”, “sorry” and “yes”, we select approximately 4 samples from each

signer. Conducting 10-fold cross-validation yields a training set of 36 samples

(18 per sign) and a test set of 4 samples. The proposed framework is compared
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with MixCML [9] and DTW [11], and the results are listed in Table 2. For com-

pleteness, the proposed method is further examined by performing binary classifi-

cation over various selection of attributes. The results are summarized in Table 3.

Consistent with the argument made by Kim and Pavlovic [9], our observation also

reveals that the 7th−10th attributes are less discriminative than others as they only

provide the finger flexion information.

Method Training Set Test Set Recognition Rate
Proposed 36 4 96.3%

MixCML [9] 39 1 95.5%∗
DTW [11] 39 1 88%∗

Table 2: Binary Classification comparison among various methods over the Auslan database. Recognition rates with ∗ are
cited from [9].

Method Selected Attributes Recognition Rate
Proposed 1th − 4th, 7th − 10th 96.3%

1th − 6th 94.5%
1th − 4th 96.3%
7th − 10th 70.0%
1th − 3th 96.3%

Table 3: Binary classification result over the Auslan database for various selection of attributes.

In literature, we notice that this database has been widely applied to evaluate

spatial trajectory recognition algorithms. In the second experiment, for fair com-

parison, we only keep 3 attributes, i.e., x, y and z coordinates. Figure 5 gives

some examples for 8 signs. Using the same CovSVDK features, we first compare

two classifiers i.e., Kernelized SRC and SRC based on 10-fold cross-validation.

Then keeping the experiment setup consistent as in [27], the proposed approach

(CovSVDK + Kernelized SRC) is compared with DTW [11] and Fourier Descrip-

tor [27] based on 2-fold cross-validation. Classification results for aforementioned
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methods are summarized in Table 4, which indicates that the proposed algorithm

is competitive among these advanced trajectory recognition algorithms.
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Figure 6: Illustrations of manifolds in multi-class classification tasks. Top row: the 3-label task; bottom row: the 4-label
task. (a) 2D manifold with the kernel trick, (b) 2D manifold without the kernel trick, (c) 3D manifold with the kernel trick,
(d) 3D manifold without the kernel trick.

The effectiveness of Kernelized SRC is illustrated in Figure 6, in which, for

better visualization, 15 samples per sign are utilized for training while the remain-

ing 5 samples are for testing. The 2/3D manifolds are obtained by projecting the

dictionaries (with and without the kernel trick) into random subspace. Clearly,

with kernel trick, samples from different classes are more separable than those

without the kernel trick, which reveals that the proposed classifier is more robust
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Method Train set : Test set Classes
2 3 4 8

Proposed 1 0.9 : 0.1 96.3% 93.3% 90.6% 80.0%

SRC [2] 0.9 : 0.1 78.5% 73.3% 70.9% 63.0%

Proposed 2 0.5 : 0.5 96.0% 92.7% 88.0% 75.4%

DTW [11] 0.5 : 0.5 89.8%∗ N/A 83.8%∗ 75.9%∗
Fourier Descriptor [27] 0.5 : 0.5 82.1%∗ N/A 63.7%∗ 52.3%∗

Table 4: Multi-class Classification comparison among various methods over the Auslan database. Recognition rates with ∗
are cited from [27]. Proposed 1 is based on 10-fold cross-validation; For proposed 2, the data pool is divided into 2 folds,
i.e., one fold for training and the other fold for test, according to [27].

than SRC [2] when dealing with cluttered data.

4.3. High-quality Australian Sign Language (HAuslan) database

The HAuslan database consists of 95 two-hand signs. Compared with the

Auslan database, the number of samples per sign is reduced to 27 and the number

of attributes is increased to 22, (11 attributes for each hand). The 11 attributes for

one hand are the same as those in Auslan database excluding the 4 setting values.

First, to illustrate the capability of our method in classifying large-scale databases,

all 95 sign classes are used. Since the HAuslan database contains much more

classes but fewer samples per class than previous two databases, 24 randomly se-

lected samples are assigned to training set for each sign, while the remaining 3

samples are collected into the test set. Note that the kernel matrix contributed by

all training samples is of size 2280× 2280, to which performing `1 minimization

is computationally expensive. For efficient classification, we employ random pro-

jection to reduce the row dimension of the kernel matrix to 40, which is just 1.8%

of its original size. In addition, considering that the subtle differences among

some signs, we set c = 99.9% so as to involve sufficient gesture details to enable

effective classification. To improve robustness and remove outlier atoms from the
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Figure 7: Recognition rate for the HAuslan Database.

dictionary, we apply a refinement process to the dictionary by only preserving the

atoms with large reconstruction coefficients, based on the solution to Eq. (13).

Then, the newly formed sub-dictionary is fed to the classifier. The recognition

rates of the proposed framework (CovSVDK + Kernelized SRC) are presented in

Table 5 and in Figure 7.

Classes:samples 20:540 25:675 40:1080 95:2565
Recognition rate 98.2% 97.6% 94.3% 91.2%

Table 5: Recognition rate on the HAuslan database. The dimension of random subspace is fixed at 40 for all the classifica-
tion tasks.

Next, we compare CovSVDK + Kernelized SRC with various combinations of

feature extraction strategies and classifiers. For CovSVDK, we set the parameter

smax = 6 and for PCA, we set the energy preservation ratio cmax = 99.9%, which

results in a maximal 30 features. The maximal number of linear features for LDA

is 21. Figure 8 shows that although Kernelized SRC using PCA and LDA fea-

tures yields inferior performance to SVM3, when working jointly with CovSVDK,

3This is due to the fact that Kernelized SRC uses the simplest linear kernel while SVM employs
the more advanced RBF kernel.
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Figure 8: Recognition rate over the HAuslan database. (a) PCA feature (b) LDA feature (c) CovSVDK feature (proposed
method). All three feature extraction methods are fed to four classifiers, i.e., SVM, KNN, LS, the proposed Kernelized
SRC.

Methods Proposed PCA+SVM LDA+SVM LDA+KNN
Features 6 28 18 18
Accuracy 91.2% 83.4% 90.0% 90.4%

Table 6: Summary of recognition performance on the HAuslan database.

Database Proposed kL Exponential Poly. (d = 3) Gaussian
HAuslan 91.2% 76% 75.8% 78.9%

Table 7: Comparison among different kernel functions over the HAuslan database.

Kernelized SRC outperforms other combinations of features and classifiers. This

result confirms the effectiveness of the proposed framework. The highest recog-

nition rates and the corresponding dimensions of feature space for various meth-

ods are summarized in Table 6. As shown in Table 7, in classifying MTS data,

the proposed kernel function kL(·, ·) again significantly outperforms three other

widely used kernel functions, i.e., exponential, polynomial and Gaussian kernel

functions.

Finally, a comparison among state-of-the-art methods in the 25-label classifi-

cation problem is given in Table 8, which further validates the superiority of the

proposed method.
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Method Proposed Li [7] 2dSVD [28] SegSVD [29]
Accuracy 97.6% 89.0%∗ 95.0%∗ 93.9%∗

Table 8: Comparison of recognition rate among various methods over the HAuslan database. Recognition rates with ∗ are
cited from references.

4.4. Evaluating the Robustness

In this section, we evaluate the robustness of the proposed framework by em-

ploying the Sparsity Concentration Index (SCI) [2] to detect outliers. The SCI is

defined as [2]

SCI(α) =
k ·maxi ‖δi(α)‖1/‖α‖1 − 1

k − 1
, (17)

where α is the solution to Eq. (13) and δi(α) is the characteristic function defined

in Eq. (16). If a test sample can be entirely expressed by the training samples

from only a single class, then SCI(α) = 1; while, in the other extreme, if the

coefficients in α spread evenly over the classes, then SCI(α) = 0. The intuition

lies in the fact that, for a test sample belonging to a certain class in the training

set, the large sparse coefficients should be mostly concentrated on the same-class

training samples and therefore yield an SCI that approaches 1. On the other hand,

if the test sample is an irrelevant outlier, then its sparse coefficients should spread

almost evenly across the whole training set and yield an SCI close to 0. Thus,

the outlier detection criterion [2] is established, by setting a threshold τ ∈ (0, 1),

where a test sample is rejected as outlier if SCI(α) < τ .

We verify the robustness of the proposed method over the Georgia-Tech HG

and the HAuslan databases. As recommended in [2], we incorporate approxi-

mately half of all the classes into the training set but keep the test set containing

samples from all the classes. Thus almost half of the test set are considered as ir-

relevant outliers with respect to the dictionary. For the two databases, the number
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CovSVDK + Kernelized SRC AUC = 0.991.

CovSVDK + SRC AUC = 0.972.

LDA + SRC AUC = 0.821.

LDA + LS AUC = 0.624.
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Figure 9: ROC curves for outlier detection over the Georgia-Tech HG and the HAuslan databases. (a) the Georgia-Tech HG
database, (b) the HAuslan database. CovSVD means feature extraction following Definition. 1 and Definition. 2, before
applying the kernel trick.

of classes employed in the training set are 8 and 48 respectively. We test the per-

formance of the proposed algorithm (CovSVDK + Kernelized SRC) by ranging τ

from 0 to 1 with 0.01 step size. The resultingt Receiver Operator Characteristic

(ROC) curves, (Figure 9), indicate that: 1) the proposed CovSVDK outperforms

classical LDA in outlier detection; 2) Kernelized SRC demonstrates improved ro-

bustness compared to SRC; and 3) the Area Under Curve (AUC) of the proposed

framework exceeds the AUC of other listed approaches.

5. Experiments on Classifying Real-World Univariate Time Series Data

In this section, we evaluate the proposed classifier Kernelized SRC with non-

linear kernel function k(·, ·) over 20 datasets (data1) from UCR Time-Series Repos-

itory [30]. Raw time series are directly treated as feature vectors φ(·) without us-

ing CovSVDK, which is effective only when n ≥ 24. The regularization param-

4To avoid the similarity values out of range, a normalizing φ(·) to unit `2-norm or dividing the
matrix entries by N is needed. We choose the former strategy in this work.
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Figure 10: Accuracy scatter plot between Kernelized SRC and 1NN-Best Warping Window DTW [30]. Each dot represents
a dataset. Dots above the diagonal mean that Kernelized SRC is better than 1NN-Best Warping Window DTW and vice
versa. The farther away a dot is from the diagonal, the greater the accuracy improvement achieved [13].

eter γ is set to 0.001. All columns in P(K + γI) are normalized to unit `2-norm

prior to sparse coding. The dictionary employed is the kernel matrix with com-

pression rates { d
N

= 0.10, 0.25, 0.50, none} induced by random projection, where

none means no dimensionality reduction. The best result from the four cases is

reported.

We compare Kernelized SRC with state-of-the-art time series classifiers, i.e.,

1NN-Best Warping Window DTW [12], Time Series based on a Bag-of-Features

representation (TSBF) [31], as well as 7 classic classifiers5. The error rates of

all methods are listed in Table 9, from which we can see that Kernelized SRC

leads other algorithms by yielding the lowest error rate in 7 out of the 20 datasets.

In particular, we visualize the accuracy scatter plot between Kernelized SRC and

1NN-Best Warping Window DTW [12], which is considered one of the best time

series classifiers. As shown in Figure 10, the proposed classifier slightly outper-

forms 1NN-Best Warping Window DTW in 11 out of 20 datasets.

5The information regarding classic machine learning algorithms is summarized in http://
www.cs.ucr.edu/˜eamonn/time_series_data/WekaOnTimeSeries.xls
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In addition, to fully justify the effectiveness of the proposed kernelization

strategy, we test SRC over the 20 datasets and compare it with Kernelized SRC

by visualizing the accuracy scatter plot. Figure 11(a) shows that using kernel

trick significantly improves the classification performance, as Kernelized SRC

outperforms SRC in 19 out of 20 datasets. Moreover, a classifier is useful only

if we can predict ahead of time on which datasets it will generate higher accu-

racy. We therefore perform further experiments to verify the reliability of Ker-

nelized SRC by evaluating the expected accuracy gain versus the actual accu-

racy gain [32]. To acquire the expected accuracy gain, we conduct leave-one-out

cross-validation within the training set for both algorithms. The gain is calculated

as [32] g = Accuracy Kernelized SRC
Accuracy SRC . As depicted in Figure 11(b), 19 out of the 20

dots are in region TP with the remaining 1 in region TN, which indicates that the

performance of Kernelized SRC is completely predictable over the 20 datasets.

From the same figure, we also observe that a remarkable 20% or even higher per-

formance increase compared to SRC is achieved via kernelization over a majority

of the datasets. The impressive results validate that the proposed Kernelized SRC

is very effective for time series classification.

6. Conclusion and Future Work

In this paper, we propose a novel sparse representation based framework for

classifying complicated human gestures captured as multi-variate time series (MTS).

First, we propose a feature extraction strategy, called CovSVDK, which is invari-

ant to inconsistent lengths and temporal disorder across MTS data, robust to vari-

ability within human gestures, and efficient to compute. In addition, we propose

a new approach to kernelize sparse representation by introducing a relaxation to
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Figure 11: Comparison between Kernelized SRC and SRC. (a) accuracy scatter plot; (b) expected accuracy gain versus
actual accuracy gain. Note that regions marked as TP/TN represent we correctly predict Kernelized SRC is better/worse
than SRC; region FN means that we predict Kernelized SRC is worse than SRC but the fact is the opposite; region FP
means that we predict Kernelized SRC is better than SRC but the fact is the opposite. Practically, only FP is the truly bad
case [32].

the fitness constraint. This technique is generic and can be applied to kernelizing

other sparse coding algorithms. Using this technique, we derive a classifier called

Kernelized SRC, which is very effective in classifying MTS data and univariate

time series as shown in the experiments.

In our future work, the proposed approach will be combined with a multi-

layer structure that can model complicated temporal variations to further improve

Knn NB C45 MLP RandForest LMT SVM DTW? [12] TSBF∗ [31] Kernelized SRC

50words 35.60% 43.74% 58.24% 33.63% 44.84% 43.08% 35.38% 24.20% 19.10% 32.16%
Adiac 40.66% 43.22% 46.80% 25.06% 42.20% 27.88% 56.01% 39.10% 28.60% 37.34%

Beef 40.00% 50.00% 43.33% 26.67% 50.00% 20.00% 33.33% 46.70% 35.00% 14.44%
CBF 15.00% 10.33% 32.67% 14.67% 16.44% 23.00% 12.33% 0.40% 0.50% 12.89%

Coffee 25.00% 32.14% 42.86% 3.57% 25.00% 0.00% 3.57% 17.90% 0.40% 0.00%
ECG200 11.00% 23.00% 28.00% 16.00% 19.00% 18.00% 19.00% 12.00% 13.80% 9.00%
FaceAll 31.36% 30.83% 44.97% 17.57% 39.05% 24.26% 28.17% 19.20% 21.70% 11.08%

FaceFour 12.50% 15.91% 28.41% 12.50% 21.59% 22.73% 11.36% 11.40% 3.80% 18.18%
Fish 21.71% 33.14% 40.00% 16.00% 20.57% 18.29% 14.86% 16.00% 7.10% 12.57%

Gun Point 8.00% 21.33% 22.67% 6.67% 10.67% 20.67% 20.00% 8.70% 1.10% 4.00%
Lighting2 19.67% 32.79% 37.70% 26.23% 21.31% 36.07% 27.87% 13.10% 24.90% 22.95%
Lighting7 36.99% 35.62% 45.21% 35.62% 43.84% 35.62% 28.77% 28.80% 30.70% 37.54%
OliveOil 23.33% 23.33% 26.67% 13.33% 13.33% 16.67% 13.33% 16.70% 11.30% 3.33%

OSULeaf 45.45% 62.81% 63.22% 55.37% 58.26% 50.83% 56.20% 38.40% 23.30% 42.56%
SwedishLeaf 20.32% 14.56% 34.40% 13.44% 22.24% 17.44% 15.84% 15.70% 8.90% 11.52%

Synthetic Control 12.00% 4.00% 19.00% 8.67% 14.00% 8.00% 7.67% 1.70% 1.90% 2.67%
Trace 18.00% 20.00% 26.00% 23.00% 19.00% 24.00% 27.00% 1.00% 2.00% 13.00%

Two Patterns 9.40% 54.33% 34.88% 10.35% 27.50% 16.78% 17.80% 0.15% 0.10% 12.92%
Wafer 0.60% 29.17% 1.80% 3.72% 0.68% 1.91% 4.04% 0.50% 0.40% 0.38%
Yoga 16.70% 45.77% 30.10% 25.50% 22.13% 28.13% 36.93% 15.50% 16.00% 14.81%

Table 9: Classification results on UCR Time-Series Repository. Note that DTW? [12] means 1NN-Best Warping Window
DTW and TSBF∗ [31] represents Time Series based on a Bag-of-Features representation with the optimal parameter setting
z = 0.25. Results for compared methods are cited from references.

32



the recognition performance. The performance of incorporating nonlinear ker-

nel function into Kernelized SRC for classifying gesture MTS data will also be

extensively investigated.
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Figure A.12: Discriminative properties of SVD for MTS data from the HAuslan Database. (a) Pairwise comparison
of singular values between two MTS data, both representing sign “Alive”; (b) Pairwise comparison of singular values
between two MTS data, respectively representing the signs “Alive” and “All”; (c) Comparison of the directions of the
singular vector pairs. Group 1 is the comparison between two MTS data from the same class “Alive” and group 2 is the
comparison between two MTS data from classes “Alive” and “All” respectively.

Appendix A. SVD Properties of MTS Data

As shown in Fig. 12(a), the singular values between two same-class MTS data,

both standing for the sign “Alive” from HAuslan database, resemble to each other

correspondingly and shrink to zero quickly as the index growing. For the two

MTS data pertinent to different classes (sign “Alive” and sign “All” from HAuslan

database), the singular values differ significantly from each other, as shown in

Fig. 12(b). To measure the resemblance in direction between two singular vectors,

we can simply compute the cosine value of the acute angle between them defined
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as

cos θ = | < ui, vi > |, (A.1)

where θ ∈ [0, π/2] and<,> is the inner product operator. As illustrated Fig. 12(c),

similarity value between singular vectors (principle component) of two same-class

MTS data is close to 1, meaning that their directions are similar. On the other

hand, if the two MTS data are associated to different classes, the similarity value

between singular vectors is significantly smaller than 1. Therefore, the singular

values and singular vectors obtained via SVD provide discriminative information

for classifying MTS data.

Appendix B. Effectiveness of CovSVDK Features
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Figure B.13: (a) and (b) are 100 2D training sub-features (Eq.(3)) obtained from Australian Sign Language (Auslan)
database by performing SVD over each training MTS regarding only the x,y attributes; (c)-(f) are region zoom-in of test
point 1 (test 1) and test point 2 (test 2) in the 1st and 2nd 2D sub-feature space.
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The robustness of the proposed CovSVDK feature extraction is illustrated in

Fig. B.13 and Fig. B.14. Here Australian Sign Language (Auslan) database is

employed by only keeping x,y information, such that each MTS contains two at-

tributes, i.e., n = 2. Applying SVD to each MTS yields two singular vectors,

each with dimension 2. Fig. 13(a) and Fig. 13(b) are 2D sub-features (i.e., λ1
‖ρ‖2 uT1

and λ2
‖ρ‖2 uT2 ) extracted from 100 training MTS data corresponding to the 1st and

the 2nd singular vector respectively. Two test samples (Test 1 and Test 2), all

associated to class 1, are selected. For Test 1, the same-class neighbor is consis-

tently near it in both sub-feature spaces (Fig. 13(c) and Fig. 13(e)). For Test 2,

three same-class neighbors are consistently close to it in both sub-feature spaces

(Fig. 13(d) and Fig. 13(f)), while the similarities between Test 2 and samples

from other classes vary significantly throughout the two sub-feature spaces. Using

CovSVDK features, SRC can leverage the consistent closeness between the test

sample and its same-class neighbors across different sub-feature spaces by com-

puting a universal sparse code. Thus, Test 1 and Test 2 are correctly classified into

class 1, as shown in Fig. 14(e) and Fig. 14(f). On the other hand, the classification

scheme using one single singular vector, i.e., Eq. (2), causes misclassification, as

shown in Fig. 14(a)- 14(d).
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Figure B.14: Sparse codes computed based on different strategies. (a)-(d) are sparse codes solved based on Eq.(2) for each
test point over the corresponding dictionary in each 2D feature space. (e) and (f) are sparse codes solved based on Eq.(10).
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