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Abstract—Working under local differential privacy—a model
of privacy in which data remains private even from the
statistician or learner—we study the tradeoff between privacy
guarantees and the utility of the resulting statistical estimators.
We prove bounds on information-theoretic quantities, including
mutual information and Kullback-Leibler divergence, that
influence estimation rates as a function of the amount of
privacy preserved. When combined with minimax techniques
such as Le Cam’s and Fano’s methods, these inequalities allow
for a precise characterization of statistical rates under local
privacy constraints. In this paper, we provide a treatment of
two canonical problem families: mean estimation in location
family models and convex risk minimization. For these fam-
ilies, we provide lower and upper bounds for estimation of
population quantities that match up to constant factors, giving
privacy-preserving mechanisms and computationally efficient
estimators that achieve the bounds.
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I. INTRODUCTION

A major challenge in statistical inference is that of char-

acterizing and controlling the balance between statistical

efficiency and the privacy of individuals from whom data

is obtained [9, 11, 14]. Such a characterization requires

a formal definition of privacy. In recent years, the notion

of differential privacy has been put forth as one formal

definition of privacy (e.g., [11, 10, 12, 16, 18]). Early work

in the database and cryptography literatures from which

differential privacy arose focused on algorithmic tools; re-

searchers used differential privacy to evaluate mechanisms

for transporting, indexing, and querying data. More recent

work aims to link differential privacy to statistical objec-

tives [e.g. 10, 26, 15, 18, 22, 4]; researchers have developed

algorithms for private robust estimators, point and histogram

estimation, principal components analysis, and others.

In this paper, we take a more abstract approach to

studying the interplay between inference and privacy, one

in which differential privacy acts as a constraint on a data

analysis, but the analysis remains agnostic to the particular

privacy-enforcing mechanism. We do so by working within

a statistical decision-theoretic framework and studying the

minimax risks associated with various estimation problems

under abstract differential privacy constraints. This minimax

framework allows us to obtain fundamental bounds that

hold uniformly across inferential procedures regardless of

the mechanisms used to achieve differential privacy. Having

obtained lower bounds on risk that incorporate privacy, we

also provide matching upper bounds via specific algorithms.

Our goal is to bring differential privacy into close contact

with the foundational concepts of statistical decision theory

and to provide quantitative tradeoffs that can inform practice.

We study the strong setting of local privacy, where data

providers trust no one, not even the statistician collecting

the data. While local privacy is stringent, it is one of the

oldest forms of privacy, and its essential form dates back

to Warner [25], who proposed it as a remedy for what

he termed “evasive answer bias” in survey sampling. We

view understanding of minimax risk bounds in this classical

setting as a natural first step to deeper understanding of other

privacy-preserving approaches to data analysis.

More formally, let X1, . . . , Xn ∈ X be samples drawn ac-

cording to some (unknown) distribution P . We consider pro-

cedures for estimating a parameter θ := θ(P ) of the distribu-

tion that have access only to obscured views Z1, . . . , Zn ∈ Z
of the original data. The original {Xi}ni=1 and the privatized

{Zi}ni=1 random variables are linked via a family of condi-

tional distributions Q(Zi | Xi = x, Zj = zj , j 6= i).1 Since

it acts as a conduit from the original to the privatized data,

we refer to Q as a channel distribution.

Our work is based on the following general definition of

local differential privacy. For a privacy parameter α ≥ 0, we

say Zi is an α-differentially locally private view of Xi if

sup
Q(S | Xi = x, Zj = zj , j 6= i)

Q(S | Xi = x′, Zj = zj , j 6= i)
≤ exp(α), (1)

where the supremum is taken over S ∈ σ(Z), zj ∈ Z , and

x, x′ ∈ X ; and σ(Z) denotes an appropriate σ-field on Z .

Definition (1) does not constrain Zi to be a single release

of data based on Xi: the set S may consist of the results

of several queries about Xi, so long as the full collection

S is α-differentially private. The dependence of the channel

distribution on all the obscured data points highlights the

potential interactivity [11] of the privacy-providing mecha-

nism. We also consider a simplification [13], appropriate for

non-interactive protocols, where Zi is generated based only

1Formally, we define the full conditional distribution Q(Z1:n | X1:n),
where Zi is conditionally independent of Xj given Zj , j 6= i, and Xi.



on Xi: the bound (1) reduces to

sup
S∈σ(Z)

sup
x,x′∈X

Q(S | Xi = x)

Q(S | Xi = x′)
≤ exp(α). (2)

These definitions capture a type of plausible-deniability:

no matter what data Z is released, it is nearly equally as

likely to have come from any point x ∈ X as any other.

Guarantees that differential privacy provides against discov-

ery of presence or absence in a dataset [26], together with the

treatment of issues of side information, adversarial strength,

and composition that are problematic for other formalisms,

make strong arguments for differential privacy [13, 11, 2].

Although differential privacy provides an elegant formal-

ism for limiting disclosure and protecting against many

forms of privacy breach, it is a stringent measure of pri-

vacy, and it is conceivably overly stringent for statistical

practice. Indeed, Fienberg et al. [14] criticize the use of

differential privacy in releasing contingency tables, arguing

that known mechanisms for differentially private data release

can give unacceptably poor performance. As a consequence,

they advocate—in some cases—recourse to weaker privacy

guarantees to maintain the utility and usability of released

data. There are, however, results that are more favorable for

differential privacy; for example, Smith [22] shows that in

some parametric problems, the non-local form of differential

privacy [11] can be satisfied while yielding asymptotically

optimal parametric rates of convergence for different point

estimators. Dwork and Lei [10] also show that it is possible

to perform accurate private inference with robust estima-

tors (again, in the non-local form of differential privacy).

Resolving such differing perspectives requires investigation

into whether particular methods have optimality properties

that would allow a general criticism of the framework, and

characterizing the trade-offs between privacy and statistical

efficiency. Such are the goals of the current paper.

A. Our contributions

The main contribution of this work is to provide general

techniques for deriving minimax bounds under local privacy

constraints, and to illustrate the use of these techniques to

compute the minimax rates for two canonical problems: (a)

mean estimation in location families and (b) convex risk

minimization, focusing on linear functional optimization. We

now outline our main contributions, giving some pointers to

related work. Because a deeper comparison of the current

work with prior research requires formally defining our

minimax framework and presentation of our main results,

we defer extensive discussion of this related work to Sec-

tion VI. In brief, however, we remark that in accordance with

our connections to statistical decision theory our minimax

rates are for estimation of population quantities, while (to

our knowledge) most prior work—especially that providing

lower bounds—focuses on estimation of sample quantities.

Bounds on sample quantities versus those on population

quantities can be very different; such differences drive

much of the technical work in the literature on statistical

inference. For a selection of recent work on lower bounds for

estimation of sample quantities, see, for example, the papers

by Beimel et al. [3], Hardt and Talwar [17], and De [6];

Chaudhuri and Hsu [4] also provide a type of lower bound

for certain one-dimensional (population) statistics based on

two-point families of estimators.

Many standard methods for obtaining minimax bounds

involve information-theoretic quantities, including the mu-

tual information between certain random variables and the

Kullback-Leibler (KL) divergence between different distri-

butions that may have generated the data [e.g., 28, 27, 23];

accordingly, our two main theorems relate privacy to these

information-theoretic quantities. In particular, let P1 and P2

denote two possible distributions that might have generated

the data Xi, and for ν ∈ {1, 2}, define the marginal

distribution Mn
ν on Zn for A ∈ σ(Zn) by

Mn
ν (A) :=

∫
Qn(A | x1, . . . , xn)dPν(x1, . . . , xn). (3)

Here Qn(· | x1, . . . , xn) denotes the joint distribution on Zn

of the n samples Z1:n, conditioned on the initial data X1:n =
x1:n, based on the protocol for communication the inference

algorithm and data providers use. The mutual information of

samples drawn according to distributions of the form (3) and

KL divergences between such distributions are key objects

in statistical discriminability and minimax rates [28, 27, 23].

Keeping in mind the centrality of these quantities, our

main results can be summarized at a high-level as follows.

Theorem 1 provides a general result that bounds the KL

divergence between distributions Mn
1 and Mn

2 defined by

the marginal (3) by a quantity dependent on the differential

privacy parameter α and the variation distance between P1

and P2, the initial distributions of the Xi. The essence of

Theorem 1 is that

Dkl (M
n
1 ‖Mn

2 ) . α2n ‖P1 − P2‖2TV ,

where . denotes inequality up to constant factors. When

α2 < 1, which is the usual region of interest, this result

shows that for statistical procedures whose minimax rate

of convergence can be determined by classical information-

theoretic methods, the additional requirement of α-local

differential privacy causes the effective sample size of any

statistical procedure to be reduced from n to at most α2n.

Section III-A contains the formal statement of this theorem,

while Section III-B provides corollaries that show its use

in application to minimax risk bounds. We follow this in

Section III-C with applications of these results to estimation

in location family models, providing upper and lower bounds

on the minimax risk. In accord with our general analysis, we

see the reduction of effective sample size from n to α2n, but

we also exhibit some striking difficulties of private estima-

tion in non-compact spaces. Indeed, if we wish to estimate



the mean of a random variable X satisfying Var(X) ≤ 1,

the minimax rate of estimation of E[X] decreases from the

parametric 1/n rate to 1/
√
nα2, which is quite substantial.

Theorem 1 is appropriate for problems in which only

single-dimensional quantities are kept private but does not

address difficulties inherent in higher-dimensional problems.

With this motivation, our second main result (Theorem 2)

incorporates dimensionality in an essential way. At a high

level, it provides a general variational upper bound on

information-theoretic quantities necessary for proving lower

bounds, and we give a brief sketch of its applications here.

Given multiple distributions Mn
ν of the form (3), where ν

ranges over some large set V indexing a set of possible

distributions on the data X , we define the mean distribution

M
n

= 1
|V|

∑
ν∈V M

n
ν . Controlling the average deviation

Dkl(M
n
ν ‖M

n
) over ν is essential in information theoretic

techniques such as Fano’s method [28, 27] for proving

minimax lower bounds. Theorem 2 allows us to relate the

covariance structure of the elements ν ∈ V to this average

KL divergence. As a consequence, with appropriate choice

of the set V , we obtain that for some d-dimensional statistical

problems the effective sample size is reduced from n to

nα2/d, which is substantial. We provide the main statement

and consequences of Theorem 2 in Section IV, and in

Section V we present its application to private convex risk

minimization problems. We present proofs of all results in

the full version of this paper [8].

Notation: For distributions P and Q on a space X ,

absolutely continuous with respect to a distribution µ (with

corresponding densities p and q) the KL divergence between

P and Q is defined by

Dkl (P‖Q) :=

∫

X
dP log

dP

dQ
=

∫

X
p log

p

q
dµ.

The total variation distance between P and Q is

‖P −Q‖TV := sup
S∈σ(X )

|P (S)−Q(S)| = 1

2

∫

X
|p− q| dµ.

For random vectors X and Y , let Q(· | X) denote the

distribution of Y conditional on X and P and M denote

(respectively) the marginal distributions of X and Y . The

mutual information between X and Y is

I(X;Y ) :=

∫
Dkl (Q(· | X = x)‖M(·)) dP (x).

For real sequences {an} and {bn}, we use an . bn to mean

that there is a universal (numerical) constant C < ∞ such

that an ≤ Cbn for all n, and an ≍ bn to denote that an . bn
and bn . an. For a convex function f : Rd → R, we use

∂f(θ) to denote its sub-differential at θ.

II. BACKGROUND AND PROBLEM FORMULATION

We first establish the minimax framework we use through-

out this paper; see [27, 28, 23] for further background. Let

P denote a class of distributions on the sample space X , and

let θ(P ) ∈ Θ denote a function defined on P . The space Θ
in which the parameter θ(P ) takes values depends on the

underlying statistical model (e.g., for univariate mean esti-

mation, it is a subset of the real line). Let ρ denote a semi-

metric on the space Θ, which we use to measure the error

of an estimator for the parameter θ, and Φ : R+ → R+ be

a non-decreasing function with Φ(0) = 0 (e.g., Φ(t) = t2).

In the classical setting, the statistician is given direct

access to i.i.d. samples Xi drawn according to some P ∈ P .

The local privacy setting involves an additional ingredient:

a conditional distribution Q that transforms the samples

Xi to the private samples Zi taking values in Z . Based

on the observations (Z1, . . . , Zn), our goal is to estimate

the unknown parameter θ(P ) ∈ Θ. An estimator θ̂ is

a measurable function θ̂ : Zn → Θ, and we assess

the quality of the estimate θ̂(Z1, . . . , Zn) in terms of the

quantity EP,Q[Φ(ρ(θ̂(Z1, . . . , Zn), θ(P )))]. For instance, for

a univariate mean problem with ρ(θ, θ′) = |θ − θ′| and

Φ(t) = t2, this error metric is the mean-squared error. For a

fixed conditional distribution Q, we define the minimax rate

Mn(θ(P),Φ ◦ ρ,Q) :=

inf
θ̂

sup
P∈P

EP,Q

[
Φ(ρ(θ̂(Z1, . . . , Zn), θ(P )))

]
,

(4)

where we take the supremum (worst-case) over all distribu-

tions P ∈ P , and the infimum is taken over all estimators θ̂.

For each α > 0, we can also define the set Qα to consist of

all conditional distributions guaranteeing α-local privacy (1).

By minimizing over all Q ∈ Qα, we obtain what we refer

to as the α-minimax rate for the family θ(P),

Mn(θ(P),Φ ◦ ρ, α) := inf
Q∈Qα

Mn(θ(P),Φ ◦ ρ,Q). (5)

This quantity is the central object of the study in this paper:

it characterizes the optimal rate of statistical estimation in

terms of the privacy parameter α, in a uniform sense over

the family θ(P), using the best possible estimator θ̂ and

α-locally private conditional distribution Q.

A. From estimation to testing

A standard first step in proving minimax bounds is to re-

duce an estimation problem to a testing problem [28, 27, 23].

More precisely, given an index set V of finite cardinality,

consider a family of distributions {Pν , ν ∈ V} contained

within P . This family induces a collection of parameters

{θ(Pν), ν ∈ V}, which is a 2δ-packing in the ρ-semimetric

if ρ(θ(Pν), θ(Pν′)) ≥ 2δ for all ν 6= ν′. We use this family

to define the canonical hypothesis testing problem: nature

chooses a random variable V ∈ V uniformly at random,

and conditioned on the choice V = ν, the data X1, . . . , Xn

is drawn from the n-fold product distribution Pnν . The

additional twist provided by a local privacy constraint is that,

for a given conditional distribution Q, we generate a new

random vector Z = (Z1, . . . , Zn) by sampling each Zi from



the distribution Q(· | X1, . . . , Xn) (in non-interactive cases

we sample Zi according to Q(· | Xi)). Conditioned on the

choice V = ν, the random vector Z is distributed according

to the marginal measure Mn
ν defined in equation (3).

Given the observed vector, the goal is to determine the

value of the underlying index ν. A testing function is a

measurable mapping ψ : Zn → V , and its error probability

is P(ψ(Z1, . . . , Zn) 6= V ), where P denotes the joint

distribution over the random index V and Z. The classical

reduction [27, 28, 23] from estimation to testing guarantees

that, for any non-decreasing function Φ : R+ → R+, the

minimax error previously defined (4) is lower bounded as

Mn(Θ,Φ ◦ ρ,Q) ≥ Φ(δ) inf
ψ

P(ψ(Z1:n) 6= V ), (6)

where the infimum ranges over all testing functions.

Following this reduction, the remaining challenge is to

lower bound the probability of error in the underlying multi-

way hypothesis testing problem. There are a variety of

techniques for this, and we focus on two powerful bounds

on the probability (6) of error. Le Cam’s inequality (e.g. [28,

Lemma 1] or [23, Theorem 2.2]) is applicable when there

are only two values ν, ν′ in V . In this case,

inf
ψ

P (ψ(Z1:n) 6= V ) ≥ 1

2
− 1

2
‖Mn

ν −Mn
ν′‖TV , (7)

where the marginal M is defined as in the expression (3).

More generally, Fano’s inequality gives bounds on multiple

hypothesis tests (e.g. [27, equation (1)]) and is

inf
ψ

P(ψ(Z1:n) 6= V ) ≥
[
1− I(Z1:n;V ) + log 2

log |V|

]
. (8)

As a consequence of the inequalities (7) and (8), our main

theoretical results focus on controlling the total variation dis-

tance ‖Mn
1 −Mn

2 ‖TV or the mutual information I(Z1:n;V ).
This control allows us to prove sharp lower bounds on the

minimax risk (5).

III. PAIRWISE UPPER BOUNDS UNDER LOCAL PRIVACY

We begin with an upper bound on the symmetrized

Kullback-Leibler divergence under a local privacy constraint.

We then develop some consequences of this result for Le

Cam’s method (and, in the full version [8], for Fano’s

method). Using these methods, we derive sharp minimax

rates under local privacy for estimating distribution means.

A. Pairwise upper bounds on Kullback-Leibler divergences

Many statistical problems depend on comparisons be-

tween a pair of distributions P1 and P2 defined on a

common space X . Any conditional distribution Q transforms

such a pair of distributions into a new pair (M1,M2) via

the marginalization (3). Our first main result bounds the

(symmetrized) KL divergence between these two induced

marginals as a function of the privacy parameter α > 0

associated with the conditional distribution Q and the total

variation distance between P1 and P2.

Theorem 1. Let Q be any conditional distribution that

provides x with α-differential privacy. Then for any two

distributions P1 and P2 on X , the induced marginals M1

and M2 satisfy

Dkl (M1‖M2)+Dkl (M2‖M1) ≤ 4(eα−1)2 ‖P1 − P2‖2TV .

The result of Theorem 1 is similar to a result due to

Dwork et al. [12, Lemma III.2], whose content is that

Dkl (Q(· | x)‖Q(· | x′)) ≤ α(eα − 1) for any x, x′ ∈ X .

By convexity, this implies that Dkl (M1‖M2) ≤ α(eα − 1),
which is weaker than Theorem 1 because of the lack of the

variation-norm term. It is this ‖P1 − P2‖2TV term, however,

that is essential to our minimax lower bounds on estimators

of population quantities: more than providing a bound on

KL divergence, Theorem 1 shows that differential privacy

acts as a contraction on the space of probability measures.

We now develop a corollary that has useful consequences

for minimax theory under local privacy constraints. Suppose

that conditionally on V = ν, we form a random vector X =
(X1, . . . , Xn) by drawing each Xi independently from a

distribution Pν,i. Given the α-locally private (1) conditional

distribution Q, form the random vector Z = (Z1, . . . , Zn)
by sampling Zi from Q(· | X1:n). Conditioned on V = ν,

the random vector Z is distributed according to the measure

Mn
ν defined earlier (3). Note that because we allow interac-

tive protocols, this is not necessarily a product distribution,

even though we enforce α-local privacy.

Corollary 1. For any conditional distribution Q that guar-

antees α-local differential privacy (1) and any pair of

distributions Pν and Pν′ , we have

Dkl (M
n
ν ‖Mn

ν′) ≤ 4(eα − 1)2
n∑

i=1

‖Pν,i − Pν′,i‖2TV . (9)

For V uniformly distributed over the index set V ,

I(Z1:n;V ) ≤ 4(eα − 1)2
n∑

i=1

1

|V|2
∑

ν,ν′∈V
‖Pν,i − Pν′,i‖2TV .

Remarks: Mutual information bounds under local pri-

vacy have appeared in the literature. McGregor et al. [20]

study relationships between communication complexity and

differential privacy and provide a result (their Proposition 7)

that roughly states that I(X1:n;Z1:n) ≤ 3αn, strengthening

the result to I(X1:n;Z1:n) ≤ (3/2)α2n when Xi are i.i.d.

uniform Bernoulli {0, 1} variables. Since total variation is

bounded by 1, our result (except for a constant factor) is

always stronger than this result, and again, the appearance

of the terms ‖Pν,i − Pν′,i‖TV are essential in our minimax

results. Corollary 1 also allows any interactive mechanism

for the Zi; indeed, each Zi may consist of the answers to

several queries of Xi depending on private answers of other

data providers.



B. Consequences for minimax theory under local privacy

We now turn to some consequences of Theorem 1 for

minimax theory, focusing for ease of presentation on an i.i.d.

sampling model, i.e., Pν,i ≡ Pν for i = 1, . . . , n. We show

that in Le Cam’s inequality, the price of α-local differential

privacy is a reduction in the effective sample size from n
to 4α2n. The classical (non-private) version of Le Cam’s

method applies to the usual minimax risk

Mn(θ(P),Φ ◦ ρ) := inf
θ̂

sup
P∈P

EP

[
Φ
(
ρ(θ̂(X1:n), θ(P ))

)]
,

for estimators that are functions of X1:n. One version of Le

Cam’s lemma (7) asserts that, for any pair of distributions

{P1, P2} such that ρ(θ(P1), θ(P2)) ≥ 2δ, we have

Mn(θ(P),Φ ◦ ρ) ≥ Φ(δ)

2
√
2

[√
2−

√
nDkl (P1‖P2)

]
. (10)

In the α-locally private setting, in which the estimator

θ̂ must depend only on the private variables (Z1, . . . , Zn),
and we measure the α-private minimax risk (5). By ap-

plying Le Cam’s method to the pair (M1,M2) along with

Corollary 1 in the form of inequality (9) (with Pinsker’s

inequality), we find for α ∈ [0, 2235 ] that

Mn(θ(P),Φ ◦ ρ, α) ≥ Φ(δ)

2
√
2

[√
2−

√
4nα2Dkl (P1‖P2)

]

By comparison with the original Le Cam bound (10), we see

that for α ∈ [0, 2235 ], the effect of α-local differential privacy

is to reduce the effective sample size from n to 4α2n.

C. Application: location family models

In this section, we illustrate the use of the α-private

versions of Le Cam’s inequality, studying the problem of

mean estimation in location families; in addition to demon-

strating how the minimax rate changes as a function of

α, we also reveal some interesting (and perhaps disturb-

ing) effects of enforcing α-local differential privacy. For

k > 1, consider the families Pk of distributions P such that

EP [|X|k] ≤ 1, and suppose we wish to estimate the mean

θ(P ) = EP [X] ∈ [−1, 1]. We characterize the α-private

minimax risk in squared Euclidean distance,

Mn(θ(Pk), (·)2, α) = inf
Q∈Qα,θ̂

sup
P∈Pk

E[(θ̂(Z1:n)− θ(P ))2].

Proposition 1. For all k > 1, the minimax error

Mn(θ(Pk), (·)2, α) is bounded as

min

{
1,
(
nα2

)− k−1

k

}
. Mn(θ(Pk), (·)2, α)

. min

{
1,max

{
1, (k − 1)−2

} (
nα2

)− k−1

k

}
.

We prove this result using the α-private strengthening (9)

of Le Cam’s inequality (10) for the lower bound and a

truncation argument, coupled with Laplace noise, for the

upper bound; see [8] for details.

To understand Proposition 1, it is worthwhile considering

some special cases, beginning with the usual setting of

random variables with finite variance (k = 2). In the non-

private setting (where the original samples (X1, . . . , Xn)
are directly observed), the sample mean θ̂ = 1

n

∑n
i=1Xi

has mean-squared error at most 1/n. However, when we

require α-local differential privacy, Proposition 1 shows that

the minimax rate slows to 1/
√
nα2. More generally, for any

k > 1, the minimax rate scales as (nα2)−
k−1

k . As k ↑ ∞,

the moment condition E[|X|k] ≤ 1 becomes equivalent to

the boundedness constraint |X| ≤ 1, and we obtain the more

standard parametric rate (nα2)−1 and reduction in effective

sample size from n to α2n.

IV. VARIATIONAL BOUNDS ON MUTUAL INFORMATION

UNDER LOCAL PRIVACY

In this section, we turn to a more general and powerful up-

per bound on the mutual information. As we have previously

noted, Theorem 1 and Corollary 1 provide only pairwise

upper bounds on the mutual information. Exploiting Fano’s

inequality in its full generality requires a more sophisticated

upper bound on the mutual information under local privacy,

which is the main topic of this section. In Section V to

follow, we show how this upper bound can be used to derive

sharp minimax rates for certain convex risk minimization

problems under local privacy.

We begin with definitions. Let V be a discrete random

variable uniformly distributed over some finite set V . For a

family of distributions {Pν , ν ∈ V}, we define the mixture

P :=
1

|V|
∑

ν∈V
Pν .

If V is sampled uniformly from V , and conditional on

V = ν the random variable X has distribution Pν (meaning

marginally X ∼ P ), by definition of mutual information

I(X;V ) =
1

|V|
∑

ν∈V
Dkl

(
Pν‖P

)
,

a representation that plays an important role in our theory.

As in the definition (3), any conditional distribution Q also

induces the marginal family {Mν , ν ∈ V}, as well as the

associated mixture distribution M := 1
|V|

∑
ν∈V Mν . Our

goal is to upper bound quantities related to the mutual

information I(Z1, . . . , Zn;V ), where the random variables

Zi are drawn according to MV .

Our upper bound is variational: it involves optimization

over the 1-ball of the bounded functions L∞(X ), where we

recall L∞(X ) :=
{
f : X → R | supx∈X |f(x)| <∞

}
, and

B1(X ) := {γ ∈ L∞(X ) : γ(x) ∈ [−1, 1] for all x ∈ X} .

Since the set X is generally clear from context, we typical

omit this dependence. Finally, for each ν ∈ V , we define the



linear functional ϕν : L∞(X ) → R by

ϕν(γ) =

∫

X
γ(x)(dPν(x)− dP (x)).

With these definitions, we have the following result:

Theorem 2. For a given α ∈
[
0, log( 12 + 1

2

√
3)
)
, let Q

be α-differentially private for samples X ∈ X . For any

collection {Pν , ν ∈ V} of probability measures on X ,

1

|V|
∑

ν∈V

[
Dkl

(
Mν‖M

)
+Dkl

(
M‖Mν

)]

≤ Cα
(eα − e−α)2

|V| sup
γ∈B1

∑

ν∈V
(ϕν(γ))

2
,

where Cα := (4 (e−α − 2(eα − 1)))
−1

.

We can also provide a result analogous to Corollary 1,

which allows us to apply the minimax lower bounds outlined

in Section II-A. For this corollary, we require the non-

interactive local privacy setting (2), where each private

variable Zi depends only on Xi. We conjecture that it

holds in the fully interactive setting, but given well-known

difficulties of characterizating multiple channel capacities [5,

Chapter 15], it may be challenging to show.

Corollary 2. Let V be distributed uniformly at random in V ,

and assume that given V = ν, the samples Xi are sampled

independently according to the distributions Pν,i for i =
1, . . . , n. Define P i =

1
|V|

∑
ν∈V Pν,i and the linear func-

tionals ϕν,i by ϕν,i(γ) :=
∫
X γ(x)

(
dPν,i(x)− dP i(x)

)
.

If for each i, Zi is α-differentially private for Xi in the

setting (2), then in the notation of Theorem 2,

I(Z1, . . . , Zn;V ) ≤ Cα

n∑

i=1

1

|V| sup
γ∈B1

∑

ν∈V
(ϕν,i(γ))

2
.

Up to constant factors, Theorem 2 is never weaker than

the results provided by Theorem 1, in particular, the bounds

on the mutual information from Corollary 1. Indeed, noting

that supγ∈B1
ϕν(γ) = 2

∥∥Pν − P
∥∥
TV

immediately yields

results analogous to Corollary 1. The strength of Theorem 2

arises from the fact that the variational parameter γ is chosen

outside the summation over V .

Theorem 2 and Corollary 2 relate the amount of mutual

information between the random perturbed views Z of the

data to variational properties of the underlying packing

V of the parameter space Θ. Corollary 2 shows that the

information available to any statistical procedure may be

controlled using the geometry of the packing set V . Thus

Theorem 2 and Corollary 2 show that if we can find a set

V that yields linear functionals ϕν whose sum has good

“spectral” properties—meaning a small operator norm when

taking suprema over L∞-type spaces—then we can provide

sharper results.

V. CONVEX RISK MINIMIZATION UNDER LOCAL PRIVACY

The notion of minimizing a risk functional lies at the heart

of decision-theoretic statistics, dating back to the seminal

work of Wald [24]. In practice, it is most attractive to min-

imize convex functions, and thus, convex risk minimization

provides a natural setting in which to illustrate the power

of Theorem 2. In earlier work we studied the problem of

privacy preservation under convex risk minimization via a

computation of saddle points of the mutual information [7].

This prior work was substantially different than that here.

In our earlier paper [7], data providers were required to be

“optimally private” (in a sense made formal in [7]) and could

communicate only via sending an obscured gradient of a loss

function. The results presented here are more general, and

the proofs are more direct, since Theorem 2 allows us to

circumvent the saddle point characterization that played a

central role in the earlier paper, and we make no restrictions

on the mechanism (i.e. channel distribution Q) other than

that it be α-locally differentially private (2).

In this section, we give sharp minimax convergence rates

for minimization of linear functionals, though our lower

bounds also apply to general convex risk minimization prob-

lems. In the more general (non-linear) case, we know how to

achieve the lower bounds using only an interactive stochastic

gradient method, so it may be interesting to understand the

connections between interactivity and minimaxity in higher-

dimensional settings.

A. Problem formulation

Given a compact convex set Θ ⊂ R
d, our goal is to find a

parameter value θ ∈ Θ achieving good average performance

under a loss function ℓ : X × R
d → R+. Here the value

ℓ(x, θ) measures the performance of the parameter vector

θ ∈ Θ on the sample x ∈ X , and ℓ(x, ·) : Rd → R+ is

convex for x ∈ X . We measure the expected performance

of θ ∈ Θ via the risk function

θ 7→ R(θ) := EP [ℓ(X, θ)], (11)

where the expectation is taken over some unknown distri-

bution P over the space X . With θ̂n denoting an estimator

based on the perturbed samples Zi, we explicitly quantify

the rate of convergence of R(θ̂n) to infθ∈ΘR(θ) as a

function of the number of samples n and the amount of

privacy preserved by releasing the privatized data {Zi}ni=1

as opposed to the initial samples {Xi}ni=1.

To state our results, we require some definitions related

to function classes and risks.

Definition 1 ((Uniform) Lipschitz continuity). For a given

x ∈ X , the function θ 7→ ℓ(x, θ) is L-Lipschitz continuous

with respect to the ℓp-norm if

|ℓ(x, θ)− ℓ(x, θ′)| ≤ L ‖θ − θ′‖p for θ, θ′ ∈ Θ. (12)



The loss function ℓ is X -uniformly (L, p)-Lipschitz contin-

uous if inequality (12) holds for all x ∈ X .

The Lipschitz condition (12) is equivalent to a boundedness

condition on the subdifferential in ℓq-norm, where 1/p +
1/q = 1: for any vector g ∈ ∂θℓ(x, θ), we have ‖g‖q ≤ L.

We use ‖∂θℓ(x, θ)‖q ≤ L as shorthand for this.

We now turn to the minimax error that we study in

the context of convex risk minimization. As usual, θ̂n will

denote the estimated minimizer for R after receiving the n
private samples Z1, . . . , Zn. The excess risk is

ǫn(θ̂n, ℓ,Θ, P ) := R(θ̂n)− inf
θ∈Θ

R(θ) (13)

(this is the analogue of our loss and semimetric Φ ◦ ρ in

this setting). We let L denote a collection of loss functions,

where for a distribution P on X , the set L(P ) denotes the

losses ℓ : suppP ×Θ → R+ belonging to L. The minimax

error is then given by the expected excess risk,

ǫ∗n(L,Θ, α) := inf
θ̂n,Q

sup
P,ℓ∈L(P )

EP,Q[ǫn(θ̂n, ℓ,Θ, P )], (14)

where the expectation is taken over the random samples

X ∼ P and Z ∼ Q(· | X) and the infimum is taken

over all inference methods and non-interactive α-locally

differentially private (2) distributions Q.

B. Minimax lower bounds for private convex optimization

We now characterize the minimax rates for convex risk

minimization problems under α-local privacy. Each of our

propositions considers minimization of convex, Lipschitz-

continuous loss functions over a domain Θ ⊂ R
d.

Our first lower bound applies to a class of functions Lip-

schitz with respect to the ℓ1-norm, where the optimization

takes place over the ball B1(r) := {θ ∈ R
d | ‖θ‖1 ≤ r}.

In stating our minimax bounds, we use the collection of

linear losses: we define Llin(B1(r);L) to be the losses

ℓ : X ×B1(r) → R for which there exists φ : X → R
d such

that ℓ(x, θ) = 〈φ(x), θ〉 and supx ‖φ(x)‖∞ ≤ L. This class

is included in the collection of uniformly (L, 1)-continuous

convex functions, so lower bounds for it imply more general

bounds. We have the following minimax rate:

Proposition 2. For the loss class L = Llin(B1(r);L) and

privacy parameter α ∈ [0, 14 ],

min

{√
d

α

rL
√

log(2d)√
n

, rL

}
. ǫ∗n(L,B1(r), α) (15)

. min

{√
d

α

rL
√
log(2d)√
n

, rL

}
.

Proposition 2 provides a sharp characterization of the

minimax rate up to numerical constants. The non-private

minimax rate for the class Llin(B1(r);L) is

rL
√

log(2d)√
n

(see Duchi et al. [7, Theorem 1]). By comparison to the

inequalities (15), we see that α-local differential privacy

has a dimension-dependent effect on the minimax rate: the

effective sample size is reduced not simply from n to α2n,

as in Section III, but rather from n to α2n/d. In effect,

requiring α-differential privacy is a stringent constraint in

high dimensions: since all dimensions must be uniformly

protected, the convergence rate suffers a significant penalty.

We can also give a result for a larger class of domains

and related optimization functions. Indeed, consider the

collection of loss classes L(Θ;L, p, r), defined as convex ℓ :
X ×Θ → R for which ℓ is X -uniformly (L, p)-continuous,

for p ∈ [2,∞]. We define Llin(Θ;L, p) ⊂ L(Θ;L, p, r) as

the linear functionals within L(Θ;L, p, r). We then have the

following result, which captures rates of convergence for

optimization of linear functionals over ℓq-norm balls

Bq(rq) := {θ ∈ R
d : ‖θ‖q ≤ rq}, where q ∈ [2,∞].

Proposition 3. For the loss class L = Llin(Bq(rq);L, p)
with q ∈ [2,∞] and privacy parameter α ∈ [0, 14 ],
√
d

α

rqLd
1

2
− 1

q

√
n

. ǫ∗n(L,Bq(rq), α) .

√
d

α

rqLd
1

2
− 1

q

√
n

. (16)

For the loss class L(Θ;L, p, r), if Θ ⊃ B∞(r),

min

{√
d

α

rL
√
d√
n
, rL

}
. ǫ∗n(L,Θ, α). (17)

As with Proposition 2, the inequalities (16) provide a

characterization of the α-private minimax rate that is tight

up to constant factors. Again, it is instructive to relate this

minimax rate to the non-private setting: from Theorem 1 and

Eq. (11) of Agarwal et al. [1], the non-private minimax rate

for the function class Llin(Θ;L, p) is rLd
1

2
−

1

q√
n

. The price for

α-local privacy is again a reduction in effective sample size

by the dimension-dependent factor α2/d.

C. Matching upper bounds by stochastic gradient methods

In this section, we sketch how the matching upper bounds

for Proposition 3 can be achieved using simple and prac-

tical algorithms—namely, stochastic gradient descent (see

the long version [8] for non-Euclidean generalizations)—

along with the “right” type of stochastic perturbation to

guarantee α-local differential privacy. In the linear case,

these algorithms are not interactive, requiring perturbation

of samples locally; in the more general convex case, these

algorithms require interactive privacy mechanisms, as they

iteratively process the data. We do, however, obtain matching

upper bounds for the general convex case (the linear case is,

in some sense, the hardest [21, 1]), leading to the intriguing

open question of interactivity’s role in non-linear settings.

Given an initialization θ0 ∈ Θ, stochastic gradient algo-

rithms generate a sequence of random iterates {θt}∞t=1 as

follows. At iteration t, the algorithm maintains estimate θt



and receives a stochastic subgradient gt with E[gt | θt] ∈
∂R(θt). Using these quantities, it performs the update

θt+1 = argmin
θ∈Θ

{
η 〈gt, θ〉+

1

2

∥∥θ − θt
∥∥2
2

}
(18)

where η is a stepsize that parameterizes the algorithm.

The second ingredient of an implementable scheme is a

conditional distribution Q that satisfies α-local differential

privacy. We construct Z by perturbing the random vector g
to construct an appropriate random vector Z ∈ R

d satisfying

E[Z | g] = g. We use a specific sampling strategy involving

a scalar bound B ∈ R+ that we specify later. In addition,

we define the bias probability πα := eα/(eα +1) and let T
be a Bernoulli(πα)-random variable.

Method for private sampling Given a vector g with

‖g‖2 ≤ L, set g̃ = Lg/ ‖g‖2 with probability 1
2 + ‖g‖2 /2L

and g̃ = −Lg/ ‖g‖2 with probability 1
2 − ‖g‖2 /2L. Then

sample T and set

Z ∼
{
Uniform(z ∈ R

d : 〈z, g̃〉 > 0, ‖z‖2 = B) if T = 1

Uniform(z ∈ R
d : 〈z, g̃〉 ≤ 0, ‖z‖2 = B) if T = 0.

(19)

The sampling strategy (19) is α-differentially private for

any vector satisfying ‖g‖2 ≤ L. It can be implemented

efficiently by normalizing a random N(0, Id×d) sample.

Our approach is to apply the sampling strategy (19)

coupled with the stochastic gradient descent method (18),

to develop α-locally differentially private algorithms for

convex risk minimization. In each case, our algorithm is as

follows. At iteration t of the algorithm, a stochastic gradient,

gt ∈ ∂θℓ(Xt, θ
t), of the tth datum is computed, after which

a vector Zt is sampled according to the distribution (19)

with the property that E[Zt | gt] = gt. We then apply

gradient descent with these α-differentially private stochastic

gradient estimates Zt. Note that in the linear case, i.e.

ℓ(x, θ) = 〈φ(x), θ〉, then ∂θℓ(x, θ) = {φ(x)} is independent

of θ so that the sampling for Zt is non-interactive.

We now state a detailed convergence result that achieves

the bound stated in Proposition 3:

Lemma 1. Assume that Θ ⊂ {θ ∈ R
d : ‖θ‖2 ≤ r2}, that ℓ is

L-Lipschitz with respect to the ℓp-norm for some p ∈ [2,∞],
and α ≤ 1. Let Zt be generated according to the sampling

scheme (19) starting from the stochastic gradient vector gt
with

B = L
eα + 1

eα − 1

√
πdΓ(d−1

2 + 1)

Γ(d2 + 1)
.

Stochastic gradient descent (18) achieves convergence rate

E[R(θ̂n)]−R(θ∗) .

√
d

α

r2L√
n
.

To obtain a sharp upper bound to match Proposition 3,

we note that if the loss ℓ is X -uniformly (L, p)-Lipschitz

for p ∈ [2,∞], then for g ∈ ∂θℓ(x, θ) and q conjugate to

p, i.e., 1/p + 1/q = 1, we have ‖g‖2 ≤ ‖g‖q ≤ L. As a

consequence, the sampling strategy (19) applies naturally.

Continuing, we note that if Θ ⊂ Bq(Crq) for an absolute

constant C, then Θ ⊂ {θ : ‖θ‖2 ≤ Cd
1

2
− 1

q rq}. Conse-

quently, Lemma 1 implies

E[R(θ̂n)]−R(θ∗) .

√
d

α

rLd
1

2
− 1

q

√
n

,

which is the bound in Proposition 3. We also note in

passing that adding Laplace noise of appropriate magnitude

to the gradient vectors gt gives a differentially private

algorithm, but it yields worse dimension dependence than

that demanded by Proposition 3.

VI. DISCUSSION OF RELATED WORK

There has been a substantial amount of work in devel-

oping differentially private mechanisms, both in local and

non-local settings. We first recall the standard definition of

differential privacy [11] that a mechanism Q with output

space Z is α-differentially private if

sup

{
Q(S | x1:n)
Q(S | x′1:n)

| S ∈ σ(Z), dham(x1:n, x
′
1:n) ≤ 1

}

≤ exp(α), (20)

where dham denotes the Hamming distance between sets.

Local privacy (1) is stronger than differential privacy.

In the body of work on privacy-preserving data analysis,

authors have attempted to characterize what is estimable and

what optimal mechanisms for estimation are. Of relevance to

our work is that of Kasiviswanathan et al. [18], who focus on

Probably-Approximately-Correct (PAC) learning problems

and show that Kearns’s statistical query model [19] and

local learning are equivalent up to polynomial changes in

the sample size. In our work, we are concerned with finer

measures—the true rate of convergence—of the performance

of inferential procedures.

In a different vein of work, several researchers have

considered quantities similar to our minimax criteria, but

they focus on optimal estimation of sample quantities. That

is, denoting by θ(x1:n) the estimated sample quantity—such

as the sample mean θ(x1:n) = (1/n)
∑n

i=1 xi—they focus

on measuring risks of the form

M
samp

n (θ(X ),Φ ◦ ρ, α) (21)

:= inf
Q

sup
x1:n∈Xn

EQ

[
Φ
(
ρ
(
θ(x1:n), θ̂

))
| X1:n = x1:n

]
,

where θ̂ is drawn according to Q(· | x1:n) and the infimum

is taken over differentially private channels Q. To the best of

our understanding, most of the previous literature on lower

bounds under privacy focuses on bounding worst-case error

from the sample estimator as opposed to the population

quantity. See, for example, the papers of Beimel et al. [3,

Section 2.4], Hardt and Talwar [17, Definition 2.4 in the full

paper], Hall et al. [15, Section 3], and De [6].



The relationship between these quantities is precisely

that addressed by the theory of statistical inference. The

sample risk (21) is substantially different from the minimax

risks (4–5); it is estimation of the population quantity θ(P )
that is the goal of the inferential task. Additionally, lower

bounds on the sample risk (21) do not imply bounds on the

rate of estimation for θ(P ): the sample risk (21) requires

a (somewhat brittle) supremum over x ∈ X . In some

situations, we may say more. For concreteness, assume ρ
satisfies the triangle inequality. Then for any estimator θ̃,

EQ,P [ρ(θ(P ), θ̂)] ≤ EQ,P [ρ(θ(P ), θ̃)] + EQ,P [ρ(θ̃, θ̂)] (22)

≤ EP [ρ(θ(P ), θ̃)] + sup
x1:n∈Xn

EQ,P [ρ(θ̃(x1:n), θ̂) | x1:n].

Thus for any estimator θ̃, a lower bound on the mini-

max risk (5) provides the lower bound Mn(θ(P), ρ, α) −
EP [ρ(θ(P ), θ̃)] on the sample minimax risk (21) of θ̃. In

particular, if there exists an estimator with faster rate than

the bounds on the minimax risk we prove in Sections III–

V, then then the α-private minimax risk (5) recovers lower

bounds on the sample risk (21).

We consider two examples, focusing on mean estima-

tion in the local privacy model. For the first, we assume

x ∈ {0, 1}. This problem has been considered before; as one

example, Beimel et al. [3] study distributed computational

protocols for estimating the mean of such a sample under

α-local privacy. They show [3, Theorem 2] that if a proto-

col has C rounds of communication, the squared error in

estimating (1/n)
∑n

i=1 xi is Ω(1/(nα2C2)). The standard

mean estimator θ̃(x1:n) = (1/n)
∑n

i=1 xi has error

Eθ[|θ̃(x1:n)− θ|] ≤ Eθ[(θ̃(x1:n)− θ)2]
1

2 ≤ 1√
n
.

Applying the bound (22) and (a minor modification of)

Proposition 1, we have for a universal constant c > 0 that

c
1√
nα2

− 1√
n
≤ Mn(θ(P), | · |, α)− sup

|θ|≤1

E[|θ̃(x1:n)− θ|]

≤ M
samp(θ({−1, 1}), | · |, α).

Thus, even with interactivity (or different communica-

tion protocols) we immediately provide a lower bound of

Ω(1/(nα2)) on sample minimax rates for mean estimation.

As a second motivating example to illustrate the substan-

tial differences between sample and population estimation,

we consider estimation of the mean of a normal distribution

with known standard deviation σ2. Let us assume the mean

θ = E[X] ∈ [−1, 1]. We make the following observation:

Observation. Let θ be the mean statistic. For the nor-

mal location family {N(θ, σ2) : θ ∈ [−1, 1]}, the

sample minimax risk under α-differential privacy (20) is

M
samp

n (θ(R), (·)2, α) = ∞.

Proof: Assume there exists δ > 0 such that

Q(|θ̂ − θ(x1:n)| > δ | X1:n = x1:n) ≤
1

2

for all samples x1:n. Fix N(δ) ∈ N and choose points θν ,

ν ∈ [N(δ)], such that all are at least 2δ-separated. Then the

sets {θ ∈ R | |θ − θν | ≤ δ} are all disjoint, and for any

samples x1:n and xν1:n with dham(x1:n, x
ν
1:n) ≤ 1,

Q(∃ν ∈ [N(δ)] s.t. |θ̂ − θν | ≤ δ | X1:n = x1:n)

=

N(δ)∑

ν=1

Q(|θ̂ − θν | ≤ δ | X1:n = x1:n)

≥ e−α
N(δ)∑

ν=1

Q(|θ̂ − θν | ≤ δ | X1:n = xν1:n).

Choose each sample xν1:n so that θ(xν1:n) = 1
n

∑n
i=1 x

ν
i =

θν , and by assumption we have

1 ≥ Q(∃ν ∈ V s.t. |θ̂ − θν | ≤ δ | x1:n) ≥ e−αN(δ)
1

2
.

Taking N(δ) > 2eα yields a contradiction. Since δ was

arbitrary, this yields the observation.

It is straightforward to prove analogues of this result;

for example, if the mean estimator is restricted to [−1, 1]
the the sample minimax risk is constant. An identical

technique applies to weakenings of differential privacy (e.g.

δ-approximate α-differential privacy). The observation thus

makes clear that measuring sample-based risk and the true

(population-based) risk are vastly different. As Proposition 1

shows, estimating the mean of a normally distributed random

variable under α-local differential privacy (1) is possible,

while the sample minimax risk is bounded away from 0.

VII. CONCLUSIONS

We have developed two inequalities, Theorems 1 and 2

that allow us to give sharp minimax rates for estimation of

population quantities in locally private settings. We believe

that our results provide insight into the costs of attaining

privacy. In particular, the results here show the price that

must be paid—in the form of increased sample complexity—

when providers of the data wish to guarantee their own

privacy before any data release. This type of guarantee, while

certainly desirable, may be untenable for problems in which

samples are expensive to obtain, sample sizes n are small,

or for very high dimensional problems. In quantifying these

tradeoffs, we hope our minimax bounds lead to actionable

procedures and inform the discussion of disclosure risk.

A natural next question is the extent to which we can

adapt these results to (non-local) differentially private sce-

narios (20). Examining results of Smith [22], Hardt and

Talwar [17], and Dwork and Lei [10], it appears that private

estimators have effective sample sizes of min{n, n2α2/d2},

while lower bounds on sample estimation [17] have similar

scaling. Whether similar information theoretic guarantees



to those we have presented, and what lower bounds on

population estimation exist, remain open questions.
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