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ABSTRACT

Summary: Current data formats for the representation of depth of

coverage data (DOC), a central resource for interpreting, filtering or

detecting novel features in high-throughput sequencing datasets,

were primarily designed for visualization purposes. This limits their

applicability in stand-alone analyses of these data, mainly owing to

inaccurate representation or mediocre data compression. CODOC is a

novel data format and comprehensive application programming inter-

face for efficient representation, access and analysis of DOC data.

CODOC compresses these data �4–32� better than the best current

comparable method by exploiting specific data characteristics while at

the same time enabling more-exact signal recovery for lossy compres-

sion and very fast query answering times.

Availability and implementation: Java source code and binaries are

freely available for non-commercial use at http://purl.org/bgraph/codoc.

Contact: niko.popitsch@univie.ac.at

Supplementary information: Supplementary data and usage exam-

ples are available at Bioinformatics online.
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1 INTRODUCTION

Depth of coverage (DOC) data are one-dimensional discrete ge-

nomic signals describing the number of reads from a high-

throughput sequencing (HTS) experiment covering each position

in a reference genome. DOC is determined by traversing short-

read alignments column-wise and counting the number of

mapped reads overlapping with each individual position (i.e. its

coverage). DOC is a primary source of information for the de-

tection of structural variants where it is assumed that a gain/loss

of genetic material results in increased/decreased coverage. The

same fundamental assumption is exploited in RNA sequencing

where estimated expression rates are calculated from normalized

coverage signals. DOC also plays a central role in, e.g. identify-

ing novel transcripts, characterizing the alternative splicing land-

scape of a sample or comparing multiple SNP-calling datasets

where it is required to determine what genomic regions are suf-

ficiently covered in all considered datasets to be comparable

among each other (Ameur et al., 2011; Duan et al., 2013;

Meynert et al., 2013; Teo et al., 2012).
Current data formats—Broad’s tiled data file format, TDF,

and UCSC’s BigWig format (Kent et al., 2010; Thorvaldsd�ottir

et al., 2013)—were optimized for efficient display of DOC in gen-

omic browsers but not for their stand-alone analysis.

Consequently, they are not optimized for strong data compression

or result in very lossy signal reconstruction, which makes them
unfavorable for storing, processing and sharing large amounts of

such data. Therefore, we developed CODOC, a novel data format
and application programming interface (API) especially focusing

on good data compression and exact signal reconstruction.

2 COMPRESSION ALGORITHM

CODOC supports lossy and lossless data compression.
Generally, DOC data are compressed by run-length encoding

(RLE), exploiting several HTS data characteristics to get longer
and thus overall fewer run-lengths, which finally requires less

storage space. This is achieved by using quantization intervals
(‘corridors’) that define an upper and a lower bound for coverage

values. A corridor interval is calculated from an initial coverage
value covi at a genomic position posi=ðchri; offiÞ, consisting of a

chromosomal identifier and an offset value, and possibly add-
itional parameters. Starting from posi, CODOC iterates over sub-

sequent positions posi+1; posi+2; ::: until it finds a value cove at
position pose that lies outside of the corridor. Next, a new code-

word consisting of this chromosomal position, the coverage right
before the corridor was left (cove�1) and the current coverage cove
is created. This latter value then acts as the initial coverage of the
next corridor. By this, CODOC creates codewords only at pos-

itions showing a substantial signal change and stores exact cover-
age values and signal slopes at such ‘key positions’.
Quantization corridors. CODOC supports several different and

even user-defined quantization corridor schemas, including uni-
form and non-uniform alternatives (Supplementary Material).

An example for the latter is our proposed default corridor
schema (Fig. 1).

Cdefðp; coviÞ= ½Roundðcovi � ð1� pÞÞ; Roundðcovi � ð1+pÞÞ�
with p 2 ½0; 1� being a parameter to control compression

‘lossyness’. In this schema, the corridor height shrinks with low
and grows with high initial coverage values. Consequently, the

signal in low-coverage regions can be reconstructed more accur-
ately, as already small changes will make it leave the (narrower)

corridors, which results in more fine-grained sampling in
such areas. Note that p=0 actually results in lossless data com-

pression, while larger values for p compress the data in an in-
creasingly lossy manner.
External information. Users may pass lists of genetic variants

(e.g. VCF files) to our compressor, which considers these variant
positions as ‘key positions’ without storing corresponding code-

words, as the respective information (including variant

2676 � The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com

 by guest on A
pril 26, 2015

http://bioinform
atics.oxfordjournals.org/

D
ow

nloaded from
 

http://purl.org/bgraph/codoc
mailto:niko.popitsch@univie.ac.at
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btu362/-/DC1
data 
is 
a 
-
It 
,
,
 in 
[
)
 Teo etal. (2012)
;
)
)
)]
 -- 
[
)
)
]
 -- 
u
is 
less 
''
''
``
''
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btu362/-/DC1
``
''
since 
,
``
''
http://bioinformatics.oxfordjournals.org/


coverages) can be read from these external lists at decompression

time (Fig. 1). This further reduces the number of required code-

words while at the same time preserving (near-) exact DOC

values at/close to variant positions.

Blocked encoding and compression.Codewords are converted to

byte representations using different encoders: chromosome iden-

tifiers are stored by standard RLE, position offsets by differential

Golomb/Rice encoding (Golomb, 1966), and coverage values are

stored unencoded. Eventually, all encoded bytes are additionally

compressed by a general-purpose compression algorithm (gzip or

bzip2). The data are then split into blocks (BITs) that contain a

configurable maximum of codewords (100000 by default), which

enables efficient random access at decompression time.
Decompression. Signal reconstruction is done by linear inter-

polation at neighboring key positions. Decompression starts by

constructing an in-memory interval tree (Cormen et al., 2001) of

BITs and their byte offsets. When a particular genomic position

is queried, CODOC consults this index and loads the BIT con-

taining the queried position from disk, finds the key positions

and their coverage values by binary search and reports the inter-

polated result. CODOC caches accessed BITs using a least-

recently used strategy to exploit spatial locality of queries to

close genomic positions.

3 RESULTS AND DISCUSSION

In our evaluation, CODOC outperforms BigWig (�50–70�),

lossless TDF (�4–32�) and lossy TDF (�6–14�) considerably

with respect to compression ratios (Supplementary Material). In

lossy mode, our method provides better signal reconstruction in

low-coverage regions at the cost of less accuracy for higher cover-

age values when compared with lossy TDF. This is by design, as

we consider exact reconstruction of low-coverage (especially un-

covered) regions as more important because most thresholds (e.g.

for SNP filtering) are also established in this range. CODOC also

extracts/compresses data considerably faster (2–5� for lossless

modes) than TDF, being slower only for some lossy configur-

ations. Our API answered random-access queries to uncached

regions in �0.1–0.4 s and queries to cached BITs in the sub-milli-

second range.

API functions. In addition to good data compression, our Java

API supports efficient random and sequential access to com-

pressed DOC data and provides several useful access methods

that distinguish it from other toolsets, thereby facilitating the

development of novel data analysis tools. Notable functions in-

clude strand-specific DOC extraction, querying of regions above/

below given coverage thresholds, calculation of minimum/aver-

age coverage per region of interest, signal rescaling (normaliza-

tion) or pairwise combination of multiple DOC signals (e.g. for

calculating average, difference or minimum signals). CODOC

also enables users to choose from various quantization strategies

(which allows balancing of signal reconstruction accuracy and

required storage space) or to implement own corridor functions.

One special API feature is that it reports strict upper and lower

error bounds for returned interpolated values based on the

quantization corridor at this position. This enables applications

to estimate potential errors and react respectively.

Conclusions. DOC helps to answer central questions of many

HTS data analyses: How abundant is a certain transcript in my

data? What genomic regions are sufficiently covered/accessible

for certain analyses? What sequenced genomic regions in my

data are amplified/deleted? CODOC helps researchers to

answer these questions in a fast and accurate way. It is, to the

best of our knowledge, the first open data format and API that

was specially designed for the computational analysis of such

data; by this it complements current formats developed with

highly specific application scenarios (e.g. display in a genomic

browser) in mind. Besides its comprehensive API functionalities,

it is particularly the efficient compression of CODOC that proves

beneficial when dealing with the enormous amounts of data pro-

duced by current HTS technologies.
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Fig. 1. Proposed non-uniform quantization schema. Original and recon-

structed DOC signals are shown as bold blue and dashed black lines,

respectively. Horizontal and vertical arrows denote key positions and

their coverage values that initiate new quantization corridors (depicted

as dashed, gray boxes) and codewords. In this schema, the height of a

corridor is a percentage of its initial coverage value. The red X marks a

SNP that was read together with its DOC value from a VCF file. This

external information results in a new quantization corridor but no new

codeword. Pseudocode describing the compression algorithm can be

found in the Supplementary Material
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