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Abstract—This paper studies signal concentration in the time
and frequency domains using the general constrained varia-
tional method of Franks. The minimum th
moment time-duration measure for band-limited signals is formu-
lated. A complete, orthonormal set of band-limited functions in

with the minimum fourth-moment time-duration
measure is obtained. Numerical investigations of our optimal 4th
moment functions show: 1) less energy concentration in the main
lobe than the prolate spheroidal wave functions (PSWF); 2) higher
energy concentration in the main lobe than Gabor’s function; and
3) a larger main lobe than both PSWF and Gabor. Applications for
our basis functions include: 1) radar systems and high resolution
communication systems, and 2) representation and approximation
to any band-limited signal in a given time interval.

Index Terms—Fraction out-of-band energy (FOBE), Gabor’s
function, orthonormal basis, prolate spheroidal wave function
(PSWF), time-frequency.

I. INTRODUCTION

I T is well known that a signal with shorter pulse duration has
better range resolution [1] and a signal with smaller band-

width better utilizes scarce channel frequency resources. But
according to the Fourier transform theory, a signal cannot be
both time-limited and band-limited simultaneously. However,
in tasks such as minimizing the error rate [2]–[4] or minimizing
bias for high-resolution spectral estimation [5], researchers seek
signal designs that have the greatest concentration simultane-
ously in both time and frequency domains [6].

Slepian and Pollak [3] developed a set of concentration results
which are particularly relevant to practical applications. For a
band-limited signal which is confined to the frequency range

, the fraction out-of-band energy (FOBE) measure was
proposed to determine a signal that has the greatest portion of
its energy in the time interval. These signals are the
prolate spheroidal wave functions (PSWF). There are similar
results when we exchange the roles of the time and frequency
domains.

Further interest in concentration for time-limited signals saw
the emergence of other results, such as minimum bandwidth
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of orthogonal signals [7] and minimum root-mean-square
(RMS) bandwidth of time-limited signals [8]. Similarly,
band-limited signals with minimum time-duration also have
wide applicability, such as hearing sensation [9], extrapolation
of band-limited signals [10], [11], optimal waveform signal de-
sign [12] and resolution enhancement to the near-field acoustic
holography [13].

Slepian [14] also extended his results to the discrete case.
The corresponding optimal functions are called the discrete
prolate spheroidal wave functions (DPSWF). Applications of
this result include digital filter design [15], optimal windows
design in electroencephalogram (EEG) [16], reduction of the
bias of multitaper spectrum estimation in geophysics [17],
and local basis expansions for linear inverse problems [18].
Recently, the DPSWF functions have also been applied in
constructing wavelets for multi-resolution analysis [19]–[22],
and shown potential in denoising for image processing.

However, no explicit analytical formula for prolate spheroidal
wave function (PSWF) has been developed. In addition, the cost
in calculating such a solution to a second-order differential oper-
ator which commutes with the PSWF integral convolution oper-
ator [3] is expensive [23]. At present, only the discrete version of
PSWF is available [3], [24]–[26]. The PSWF decays slowly like

for increasing time . In contrast, Gabor’s optimal band-lim-
ited function, i.e., the half sinusoid signal, which minimizes a
second-moment concentration measure, decays more quickly as

. In [27], an optimal time-limited function with the min-
imum fourth-moment bandwidth was determined. This function
has larger main lobe and decays as . However, a detailed
formulation and analysis for band-limited signals and their con-
centration properties with arbitrary moment weighting in the
time-domain is of interest here. Furthermore, we also investi-
gate whether alternative complete, orthonormal set of band-lim-
ited functions, besides PSWFs, exists which have better perfor-
mances than the PSWF in representing a band-limited function
and approximating a band-limited function.

In this paper, we apply the general constrained variational
method of Franks [28] to formulate concentration with a th
time moment weighting for a band-limited signal. The case

is taken as a central example. A complete, orthonormal set of
optimal band-limited functions in with the min-
imum fourth-moment time-duration measure is obtained. The
characteristics of the set of functions are discussed. Further, the
minimum fourth-moment time-duration measure and the time-
duration energy concentration measure are calculated. Further-
more, by comparing the PSWF and Gabor’s functions, our op-
timal functions can be a seen to be a good alternative in optimal
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waveform design for communication systems, and higher range
resolution radar systems. Finally, this set of optimal functions
can also be used for representation of any band-limited signal,
extrapolation a band-limited function known only in the interval

or approximation a band-limited function in the interval
.

The rest of the paper is organized as follows. We present
the problem in Section II. Section III presents the general con-
strained variational method of Franks [28]. In Section IV, the
minimum fourth-moment time-duration concentration measure
problem is formulated, and then a complete, orthonormal set of
optimal band-limited functions is obtained. Further, the proper-
ties of this set of functions are studied in Section V. Section VI
gives two practical applications for the set of functions. Finally,
we conclude the paper in Section VII.

II. PROBLEM FORMULATION

Let be the complex Hilbert space containing all square-
integrable functions defined on the real line with inner product
defined as

for . This inner product induces the norm such that
.

Find the optimal finite energy signal, , band-limited
to the frequency range which minimizes the moment
weighted energy . Here , is
the th weighting function in the time-domain. Note that odd
values of and are degenerate or trivial. For , this
problem has been solved by Gabor [9]. In this paper, we concen-
trate on the , fourth moment time-domain weighting as an
exemplar. For , the solution can be easily extended based
on our methods. It is possible to treat the case of time-limited
finite energy signals with frequency domain moment weighting

in an analogous way.

III. GENERAL CONSTRAINED VARIATIONAL METHOD

In this section, we first revisit the general constrained varia-
tional method of Franks [28, Ch. 6]. This method is applicable
for any properly formulated extremization problem in the time
and frequency domains, and is ideal for signal concentration
problems.

The general constrained variational problem is stated: For a
given signal with finite energy, extremize (maximize or mini-
mize) the arbitrary weighted energy either in the time-domain or
in the frequency domain, to obtain the optimal waveform signal.
Suppose is an arbitrary weighting function in the
time-domain, is an arbitrary weighting function in
the frequency domain. Following Franks [28], this general vari-
ational problem is equivalent to extremizing

(1)

where and are two Lagrange multipliers and and
are three quadratic functionals defined as

Here, represents a time weighted measure of energy in the
time domain, represents a frequency weighted measure of en-
ergy in the frequency domain, and represents the total energy
of a signal constrained to be unity (finite energy without loss of
generality). The frequency domain inner product is defined in
the obvious way.

By solving this optimization (1), the necessary conditions are
obtained both in time-domain and frequency domain [28]

(3)

where is the inverse Fourier transforms of and
is the Fourier transform of .

IV. FOURTH-MOMENT TIME-DURATION

CONCENTRATION MEASURE

In this section, using the Franks’ general constrained varia-
tional method, we formulate the fourth-moment time-duration
concentration measure to a band-limited signal with maximum
bandwidth . The optimal band-limited signals with the
minimum fourth-moment time-duration concentration measure
are obtained. These optimal functions consist of a complete,
orthonormal basis for which is the Hilbert space
of band-limited functions with maximum bandwidth (which
can be regarded as a subspace of ). The comparison between
these functions and Gabor’s band-limited functions which have
the second-moment weighting in the time-domain is made.
Some of these results have been presented in [29].

A. Optimization Formulation

Define frequency weighting, corresponding to band-limiting
to frequencies

(4)

and time weighting

corresponding to fourth moment time-domain weighting. Then
under the general constrained variational method of Franks, the
optimization problem is to extremize
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where

Now to obtain the optimal function that renders or
stationary, we only need to find the necessary condition in

the frequency domain.
Using the Fourier transform of

where , the necessary condition (3) in the frequency
domain is obtained

which further simplifies to the fourth-order linear differential
equation

(6)

where the notation represents the fourth derivative of
with respect to frequency . By defining

(real numbers), this equation can be written

(7)

where is the differential operator. Revealing this is an eigen-
function equation with the eigenvalue.

B. Solutions

A general solution to the fourth-order linear differential equa-
tion (7) can be written as

where , and are arbitrary constants. Its first derivative
is

According to the characteristics of , specifically: the
boundary conditions and

, and the total energy of ,
there are three different solutions.

Case a): When is an even function, i.e., ,
then

(9)

where
and is a positive solution of the following even condition
equation:

(10)

Case b): When is an odd function, i.e., ,
then

(11)

where
and is a positive solution of the following odd condition equa-
tion:

(12)

Case c): When is neither an even nor an odd function,
it can be expressed as a linear combination of (9) and (11). Note
the values of in (9) and (11) are not the same.

C. Inverse Fourier Transform

Taking the inverse Fourier transform of , we find the
optimal signal waveform in the time-domain.

For , we have the following Fourier transform pairs:

and

where and is defined in (4).
Similarly, we have

and

Therefore, we get

(13)
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Similarly

(14)

So the inverse Fourier transform of leads to the fol-
lowing.

Case a): When is even, then

where and have the same definition as before, (9).
Substituting for (13), is given by

This shows that is a real signal in the time-domain.
Case b): When is odd, then

where and are the same as before, (11).
Substituting for (14), is given by

This shows that is a complex signal in the time-domain.

D. Properties of the Solution Functions

In this section, we study the properties of the solution func-
tions. The results are shown in the following theorems.

Theorem 1:
1) The sequence , for , consists of the

values which satisfy the even condition (10) and the even
solution (9), and the sequence , for ,
consists of the values which satisfy the odd condition (12)
and the odd solution (11). Both of these two sets of se-
quences are monotonically increasing and and are
interleaved with each other.

2) The union solution set
, which consists of the even

optimal functions (9) and the odd optimal functions (11),
can be ordered as

... (15)

Proof: See Appendix I.
Theorem 2: is a complete, orthonormal basis in

.
Proof: See Appendix II.

V. NUMERICAL STUDY

In this section, we make a numerical study to show the charac-
teristics of the optimal solution functions . Before that,
we first introduce the time-duration measure.

A. Time-Duration Measure

In this paper, we define two kinds of time-duration measures:
the minimum fourth-moment time-duration measure on the
whole real line, and the time-duration energy concentration
measure in the time interval .

The minimum fourth-moment time-duration measure is de-
fined as

(16)

where is the eigenvalue defined by the fourth-order differential
(7). The latter equality is obtained using the Parseval’s Theorem
as follows:

Here, we have used the (6) in the third equality.
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TABLE I
PARAMETERS FOR THE EVEN FUNCTIONS FOR

TABLE II
PARAMETERS FOR THE ODD FUNCTIONS FOR

Fig. 1. Trend of the even condition function, in (10), and odd condition
function, in (12), versus .

The time-duration energy concentration measure in the time
interval is defined as

(17)

B. Distribution of and

In Fig. 1, the axis denotes the values of and the
axis denotes the condition function. We take the axis as

. The label “even” means the even condition
function, in (10), and the label “odd” means the odd
condition function, in (12).

The downward peak points in the figure show the zero points
of the condition functions, respectively. This figure shows: 1)
the condition functions present the periodicity of and

; 2) the zero points and for the functions are
interleaved each other, asserted in Theorem 1; and 3) the trend
of the condition functions are increasing by the hyperbolic
functions and .

Table I and Table II list the first 8 values of and when
for the even and odd condition functions in (10) and

(12), respectively. These two Tables also include the value of
, eigenvalues and , time-duration measure
, (16), and time-duration energy concentration measure , (17),

corresponding to each and values. From these tables, we
can see that for fixed , the values of and decrease very
quickly with increasing and . For index

and

C. Characteristics of Basis Functions for Fixed

The characteristics of the basis functions with different values
of for the even function and for the odd function with
fixed bandwidth are shown in Figs. 2 and 3.

Fig. 2 shows the even functions and their corre-
sponding inverse Fourier transform vary with different
value in the frequency domain. From Fig. 2(a), we know that
for the even function , except the end points, there is no
zero point when zero points when zero
points when , and 6 zero points when , etc. So
we can establish that there are zero points for the even
function when . The function in Fig. 2(b) shows
the waveform in the time-domain has sharper central portion,
less main lobe and decays slowly when decreases.
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Fig. 2. The even function and its inverse Fourier transform versus
variable with for fixed . (a) in the fre-
quency domain. (b) in the time-domain.

Fig. 3 depicts how the odd functions and their inverse
Fourier transforms vary with different value in the fre-
quency domain and in the time-domain. Fig. 3(a) indicates that
for the odd function , except the end points, there is 1
zero point when zero points when
zero points when and 7 zero points when .
It is concluded that there are for the odd functions with

. Fig. 3(b) and (c) depict the real part and the imagi-
nary part of the odd function versus the variable for
fixed in the time-domain. The magnitude of the real
part is much smaller compared to the magnitude of the imaginary
part. Therefore, as the value of increases, the odd signal ap-
proaches a pure complex signal as the real part approaches zero.

D. Minimum Fourth-Moment Time-Duration Measure and
Energy Concentration Measure

Based on the definitions of the minimum fourth-moment
time-duration measure (16) and the time-duration energy

Fig. 3. The odd function and its inverse Fourier transform versus
variable with for fixed . (a) in the
frequency domain. (b) The real part of in the time-domain, where the
amplitude of -axis is , the small panel is to show the real part of the
waveform of and whose amplitudes are only . (c)
The imaginary part of in the time-domain, where the amplitude of
axis is 0.1. Comparing to the real part in (b), the imaginary part in (c) dominates
the whole waveform.

concentration measure (17), we have calculated these values
and included them in the Tables I and II (for ).
Two cases for the time-duration energy concentration measure
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when and are considered. The tables indicate
that: 1) the minimum fourth-moment time-duration measure
increases quickly; 2) the time-duration energy concentration
measure decreases roughly as increases; 3) increases
as the measure interval increases; and 4) , the even
function, has higher energy concentration measure than the
other functions.

E. Comparison Between PSWF, Gabor and Our Basis
Functions

Slepian’s prolate spheroidal wave function (PSWF) is an op-
timal band-limited function bandwidth which achieves the
maximal energy in the time interval [3]. PSWF satis-
fies the following eigenvalue equation

It is well known that no explicitly analytical formula for the
PSWF exists. And only the discrete approximation of the PSWF
by numerical computation is available [3], [23], [25].

Gabor’s function is defined by [9]

where . The corresponding inverse Fourier transform
is

Take , we have

and the corresponding inverse Fourier transform is

Take the first basis functions of PSWF, Gabor and our basis
functions as an example. Let the bandwidth and the
interested time-duration for comparison. Then the time-
bandwidth product for PSWF is .
Fig. 4 shows the first basis functions of Slepian PSWF, Gabor
and our basis functions both in the frequency domain and in the
time-domain. The energy for these three functions in
is 0.9999, 0.2806, and 0.3495 for PSWF, Gabor and our basis
function. From this figure, we can see that: 1) Slepian’s PSWF
absolutely holds the best performance both in the time-domain
due to its maximum energy concentration in the center; 2) our
basis functions are a bit better than Gabor’s function; and 3) our
basis functions have larger main lobes.

Fig. 4. Comparison of the first basis functions among the Slepian PSWF, Gabor
and our basis functions when and . (a) Comparison in the
frequency domain. (b) Comparison in the time-domain.

VI. APPLICATIONS

A. Optimal Waveforms for Communication Systems

The following study shows that the set of our optimal func-
tions can be a better choice of waveform for some systems,
such as radar system with higher range resolution require-
ment and data transmission with higher information rate, due
to its fast decaying rate which is faster than that
of Slepian’s PSWF and Gabor’s functions
and higher energy concentration in the main lobe. Therefore,
our optimal functions are more powerful to counteract the
intersymbol interference (ISI) and more robust for the signal
detection.

We now compare our optimal functions with Gabor’s func-
tion [9] which is optimal with respect to the minimum
second-moment time-duration measure. Set . Our
first even function with is compared
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Fig. 5. Comparison of our optimal function with Gabor’s function
with . (a) Our optimal function and Gabor’s function
in the frequency domain. (b) Our optimal function and Gabor’s

function in the time-domain. The small panel in (c) shows the main lobes
of both functions, where the red (our optimal function) is a bit larger than the
green one (Gabor’s function).

with Gabor’s function. Fig. 5 shows these functions both in
the frequency domain and in the time domain. Obviously,
comparing with Gabor’s function, Fig. 5(b) indicates that our
basis function: 1) has larger energy concentration in the center
lobe; 2) higher peak value, comparing the 0.25 with 0.22;
3) and has quicker decaying rate. As Franks [28] showed that
PSWF decays1 like which is slower than Gabor’s function
acting like , our optimal function holds the steepest de-
caying rate, a bit like [27]. The embedded small figure
denotes that our function has a bit larger main lobe than that
of Gabor.

Finally, we compare the time-duration concentration measure
of our function with that of Gabor’s function. The main lobe of

1We noted that although PSWFs decays like , they are also uniformly
small outside the interval of concentration and as a result the decay rate
is irrelevant. The results obtained from the example in Fig. 4 confirms this
observation.

the and are and . By
(17), the main lobe energy concentration is

It shows our function has much higher main lobe energy concen-
tration than Gabor’s function’s, though it has only a bit larger
main lobe, which is a good alternative for radar system with
higher resolution requirement.

B. Representation and Finite Dimensional Approximations

The eigenfunctions form a complete, orthonormal
basis in , so we can use them to represent any
band-limited function with maximal bandwidth , extrapolate
a band-limited function known only on the interval
and make an approximation in an interval to a band-limited
function [3].

Suppose is a band-limited signal.
Since is an orthonormal basis in , then
we can represent

(18)

where

Based on the above Theorem 2 and the orthonormality of the
basis functions, we can make a further detailed representation

(19)

with

and

Now we consider the dimensionality of the generic expansion
(18) or (19) by a finite number of terms [30], [31]

with squared error

Here, we take the square norm in . It is well
known that the dimensionality mainly depends on the basis
functions , the explicit function and the truncated
error . As is the optimum basis, it will achieve the
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best performance comparing with other basis functions. As our
basis functions are complete, according to Fourier transform,
we can also represent a signal in the time-domain

Take the rectangle function (also called box function) as an
example,

Since is an even function in the frequency interval
, according to the representation (19), we get

The last equality is obtained by substituting
. We also have for

all . Therefore

and the truncated squared error is

Since and as , we get

and

therefore, the truncated squared error is

As we have shown in the above Theorem 2 and Subsection IV.D
that the values of as . So can be made

Fig. 6. Representation of a rectangle function with our optimal basis functions.
is the number of basis functions used, here . (a) Approximated

function in the frequency domain. (b) Approximated function in
the time-domain, the small panel in (b) is to show the difference around the peak
value. When is approaching the original function.

as small as desired by making sufficiently large. Similarly,
we have

Set . We depict the function and when
in Fig. 6. Obviously, when the number of items

increases, the approximation is better.

VII. CONCLUSION

This paper uses the general constrained variational method
of Franks to formulate the fourth-moment time-duration mea-
sure and determines a complete, orthonormal set of optimal
band-limited functions. Comparing our optimal function with
Gabor’s function, the functions with higher moment weighting
have better performances in the energy concentration in the
main lobe and faster decaying side-lobes. This set of optimal
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functions can be applied in communication and radar systems;
and it can also be used to represent any band-limited signal with
maximal bandwidth and approximate a band-limited signal.

For higher-order moment time-domain weighting, with
, analogous results can be obtained based on our methods.

It is also possible to treat the case of time-limited finite energy
signals with frequency domain moment weighting, , in an
analogous way.

APPENDIX I
DISTRIBUTION OF AND (THEOREM 1)

Proof: Let us consider the following three functions, first

and

As , for all , so
the function is a strictly monotonically increasing func-
tion with ; and is a strictly monotonically
decreasing function with .

It is well known that: is a periodical function with the
period , for any

and .
In a period, take as

an example, monotonically increases from to
as increases from to . So there must be a
single crossing point with in the lower half of the
plane. And it also has a unique crossing point with
in the upper half of the plane. And the values of .

Now it is necessary to show that there has no crossing point
for and in the interval . Take another
function , for

. Let take the first derivative

As for any , and
when , we can infer

So is a strictly monotonically increasing function. And
, so in the interval ,

i.e., , which means there is no crossing point
between them.

It has been shown above that in
and and there is no crossing point

for the functions and . So the first crossing
point is the crossing point of and ; the
second crossing point is the crossing point of
and ; the third crossing point is the crossing point

of and ; the fourth crossing point is
the crossing point of and ; and so on.

Now relating to our proof of the theorem, let us check the
condition functions. For fixed , the even condition function is

and the odd condition function is

So if , i.e., , the even
condition is changed into

and the odd condition is changed into

From the above, the points satisfying the even condi-
tion equation and the points satisfying the odd condi-
tion equation are interleaved, i.e., , etc., and
the values are monotonically increasing.

So the even solution functions and the odd solution
functions can be ordered by the values of the value
and , i.e., as shown in (15).

APPENDIX II
PROOF OF THEOREM 2

Proof: From Section IV-B, we have an infinite set
of complete optimal band-limited functions

in the frequency
interval which consists of the even solution (9) and
the odd solution (11). The completeness is from the fact that
based on the boundary conditions and the initial conditions, we
have got all possible functions satisfying the fourth-order (6)
by the general solution (8). Now we want to show that this set
is orthonormal. The orthonormality in the frequency interval

can be obtained from two methods: 1) by direct
calculation of the orthonormality between any two functions; 2)
by functional analysis with spectrum theorem for the compact
self-adjoint operator: the corresponding eigenfunctions for
distinct eigenvalues are orthogonal.

For the eigenvalue (7), is a differential operator which is
unbounded and its inverse operator does not exist. Therefore,
we define another operator

where is the identity operator. So the eigenvalue equation is
changed into

Now we will show that the new operator is self-adjoint and
its inverse operator exists.

As we have discussed before that eigenvalue equation (7) has
a real solution if and only if . And when , the
solution is the zero function. Similarly, for the new eigenvalue
(20), if and only if . So according to Theorem
4.5.2 in [32]: An operator is invertible if and only if
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implies . So is invertible. Then its inverse operator
exists.

Suppose , then

So is a self-adjoint operator.
Therefore, according to inverse differential operator The-

orem 5.10.2 [32], is a self-adjoint compact operator from
. According to the Spectral theorem of self-adjoint

compact operator, has a complete set of orthonormal
eigenfunctions and its eigenvalues are real. Based on the The-
orem 5.10.5 [32], and have the same eigenfunctions and
have the reciprocal eigenvalues. So has an complete set of
orthonormal eigenfunctions. As we also know that for distinct
eigenvalues, their corresponding eigenfunctions are orthogonal.

From the Theorem 1, we have known that the values of
and are different. So the eigenvalues of equaling to
are different, too. Therefore, the eigenfunctions are orthogonal.
As and are band-limited, unit energy signals, i.e.,
they are orthonormal.
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