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Abstract

JPEG is one of the most extensively used image formats. Understanding the inherent characteristics

of JPEG may play a useful role in digital image forensics. In this paper, we introduce JPEG error

analysis to the study of image forensics. The main errors of JPEG include quantization, rounding and

truncation errors. Through theoretically analyzing the effects of these errors on single and double JPEG

compression, we have developed three novel schemes for image forensics including identifying whether a

bitmap image has previously been JPEG compressed, estimating the quantization steps of a JPEG image

and detecting the quantization table of a JPEG image. Extensive experimental results show that our new

methods significantly outperform existing techniques especially for the images of small sizes. We also

show that the new method can reliably detect JPEG image blocks which are as small as 8×8 pixels and

compressed with quality factors as high as 98. This performance is important for analyzing and locating

small tampered regions within a composite image.
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I. INTRODUCTION

With the rapid development of image processing technology, it is getting easier to tamper with digital

images without leaving any obvious visual trace. Nowadays, seeing is no longer believing [1]. Image

forgery, like any other illegal and pernicious activities, could cause serious harms to society. Therefore,

verifying the authenticity of digital images has become a very important issue.

Digital watermarks and signatures have been proposed as potential solutions to digital image authen-

tication [2], [3]. However, both of the methods need some proactive processing such as inserting an

imperceptible watermark or attaching a signature at the time of the data’s creation in order to facilitate

tampering detection at a later time. Thus they are regarded as active methods. Recently, a passive technique

has evolved quickly [4], [5]. The technique assumes that the original multimedia has some inherent

features introduced by the various imaging devices and/or processing. By analyzing how the multimedia

data is acquired and processed, we can answer some forensic questions, such as where is the data coming

from, whether it is an original one or not, and what tampering operations had been done previously.

Compared with prior active methods, the new method does not rely on any extra information such as a

watermark or a signature. Therefore, it is passive and completely blind.

It is well-known that JPEG is a commonly used compression standard and has been found in many

applications. For instance, most digital cameras on the market export this file format, and most image

editing software such as Adobe Photoshop, GIMP, support the operation of JPEG compression. Therefore,

analyzing this type of images may play a useful role in image forensics. However, JPEG images are

sometimes processed or stored as bitmaps. In that case, we will have no knowledge about whether

the bitmap comes from a JPEG image, a raw bitmap image or any other formats. Identifying whether a

bitmap has previously been JPEG compressed and if so what quantization table has been used is a crucial

first step for many image forensic algorithms. For instance, the algorithms for double JPEG compression

detection [6], [7], “shift-recompression” detection [8], tampered regions localization in composite images

[9], [10], steganalysis of YASS (Yet Another Steganographic Scheme) [11], [12] et al. usually have to first

determine whether a given image is a JPEG image or not before detection, and some of the algorithms

such as [8], [12] are dependent on the quantization steps/table used in the previous JPEG compression.

Moreover, since different cameras typically employ different quantization tables [13], so do different

image editing tools as well (e.g. the tables used in Photoshop are quite different from those used in

GIMP), quantization steps/table estimation can be also used for image’s source identification.

So far, just a few effective methods e.g. [14], [15], [16] have been proposed for the three forensic
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issues i.e. identifying JPEG images, estimating quantization steps and detecting quantization tables from a

Bitmap image. In [14], Fan et al. proposed a method to determine whether a bitmap image has been JPEG

compressed by detecting the blocking boundary strength in the spatial domain and further to extract the

quantization table using MLE (maximum likelihood estimation) method. In [15], Fridrich et al. presented

a method to extract the quantization steps from a bitmap image by measuring the compatibility of DCT

coefficients for all the candidate steps for quantization. In [16], Fu et al. applied Bendford’s law (first digit

law) on the DCT coefficients to estimate the JPEG quantization table and detect double JPEG compressed

images. However, most existing methods assume that the test images are large enough to gather sufficient

statistics. In many forensic scenarios, the tampered region within an image may just a small patch, such

as the face of a person, some important numbers/characters et al.. In such cases, the existing methods

would usually fail. Taking JPEG images identification for example, it is impossible to detect an 8 × 8

image block using all the previous methods. Moreover, some methods, such as Benford’s law based

works [16], are machine learning based, which means that they need to train a classifier under the well

designed situation prior to detection. Please note that there are many other literatures related to JPEG

image enhancement e.g. [17], [18], [19], [20], [21], [22], [23], [24], [25]. However, these methods usually

investigate the JPEG images coded at low bit-rates and aim to reduce the blocking artifacts between the

block boundaries and ringing effect around the content edges due to the lossy JPEG compression. Some

of them e.g. [17], [18], [19], [20], [21], [22] may be extended to identify JPEG images, however, the

performances are very poor based on our experiments as shown in Section III-A. We also note that

there are several reported methods e.g. [6], [7], [26], [27], [28], [29], [30], for other forensics/steganlysis

issues which tried to identify the double JPEG compressed images and/or further estimate the primary

quantization table. In such cases, the input images of these algorithms are JPEG images rather than

bitmap images, which means that we can obtain all the parameters of the last JPEG compression from

the file header, and therefore there methods will not be suitable for the proposed forensic situations.

In this paper, we first analyze the main sources of errors introduced by JPEG compression and their

relationships to JPEG recompression, and then propose three novel methods for the estimation of JPEG

history. The new methods are derived based on the following observations:

• The AC coefficients of an image will increase in the range of (−1,+1) while decrease significantly

in the union regions of (−2,−1] and [+1,+2) after JPEG compression with quantization steps that

are equal to or larger than 2. Based on this observation, a 1-D feature can be obtained to differentiate

between uncompressed and JPEG images.
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• Due to rounding error, the AC coefficients of a JPEG decompressed image for a given frequency

component will not present exactly at the multiples of the corresponding quantization step, but will

spread around them at an interval between (−1,+1) with a high probability. By removing such

rounding effect, an effective feature can be obtained for quantization step estimation.

• When a JPEG image is JPEG compressed again, most original pixels will be better preserved if the

recompression uses the same quantization table as that used for the original JPEG. This is true even

when the recompression quality factor is set to 100 (all quantization steps are equal to 1). Based

on this observation, we obtain a simple but very effective method to extract the quantization table

from a JPEG decompressed image.

We present theoretic analysis and experimental results which show that our techniques are very effective

and perform better than existing methods, especially for the images of small sizes.

The rest of the paper is organized as follows. Section II theoretically analyzes the errors introduced

by JPEG compression and recompression, and then presents three forensic analysis techniques. Section

III shows experimental results, and concluding remarks of this paper will be presented in Section IV.

II. ERROR ANALYSIS FOR JPEG COMPRESSION AND RECOMPRESSION

Lossy JPEG compression is a block-based compression scheme. Each non-overlapping 8 × 8 block

within an image is dealt with separately. In the following, we will consider the processes of JPEG

compression and recompression on an 8× 8 uncompressed block B.

As shown in Fig.1 (a), the image block B is first transformed from the spatial domain into the frequency

domain using discrete cosine transform (DCT) , and then the frequency coefficients d1 is quantized by a

quantization table Q1. The error introduced in this stage is called quantization error, the main cause of

information loss for the images having not been JPEG compressed before. The quantization coefficients

Qd1 is then further compressed by the lossless entropy encoding. Finally, the resulting bit stream is

combined with a header to form a JPEG file.

In JPEG decompression, the compressed file is first entropy decoded to recover the quantized coeffi-

cients Qd1 exactly, which are then multiplied by the table Q1 to obtain the de-quantized coefficients d′1.

And then the Inverse DCT (IDCT) is performed on d′1 to get the pixel values in real-valued representation.

Since gray-scale images are typically stored with 8 bits per pixel, which can represent 256 different

intensities, the resulting real values will be rounded and truncated to the nearest integers in the range of

[0, 255]. Two errors will be generated in this stage, namely rounding and truncation errors. Please note

that the rounding error usually occurs in every 8 × 8 block, while the truncation error does not. In the
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Fig. 1. Single and double JPEG compression & decompression

following, we test the truncation error on the following five uncompressed image datasets: Corel (1,096

images coming from the CorelDraw version 10.0 software CD #3), NJIT (3,685 images form New Jersey

Institute of Technology, USA), NRCS (1,543 images randomly downloaded from the NRCS photo gallery

[31]), SYSU (2,338 images taken by Panasonic DMC-FZ30 and Nikon D300 in TIFF format) and UCID

(1,338 images [32]), with a quality factor of 98, 95, 85, 75 and 50, respectively. In all, there are 10, 000

natural color images including (but not limited to) landscapes, people, plants, animals and buildings.

We first convert these color images into gray-scale images, and then simulate the JPEG compression

and decompression using the Matlab JPEG Toolbox [33] to obtain the de-quantized coefficients d′1 as

shown in Fig.1 (a), and then perform the IDCT operation on the de-quantized coefficients d′1 to get the

real-values representation of the JPEG image without rounding and truncation operations. Finally we

compute the percentage of the resulting pixel values that are larger than 255 or smaller than 0 and show

the experimental results in Table I.

From the Table I, it is observed that the truncation error are highly dependent on the quality factors

used in JPEG compression as well as the tested image datasets. Usually, the smaller the quality factor

(larger quantization steps) is, the higher the probability of the truncation error becomes. More importantly,

we can see that in natural JPEG images, such error just occurs with a very low probability (less than 1%

in most cases as shown in the table). In practice, we can easily eliminate the effect of truncation error

by just investigating the unsaturated blocks (those 8× 8 blocks without containing pixels with value 0 or
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TABLE I

THE AVERAGE PERCENTAGES (%) OF TRUNCATION ERROR IN NATURAL JPEG IMAGES FROM FIVE IMAGE DATASETS WITH

QUALITY FACTORS RANGING FROM 50 TO 98.

PPPPPPPPPQuality Factor

Dataset
Corel NJIT NRCS SYSU UCID Avg.

QF=98 0.01 0.33 0.08 0.26 0.33 0.20

QF=95 0.04 0.38 0.09 0.27 0.40 0.24

QF=85 0.14 0.48 0.11 0.28 0.50 0.30

QF=75 0.21 0.45 0.15 0.30 0.56 0.33

QF=50 0.30 1.45 0.42 0.95 1.42 0.91

255) within an image. Therefore, we focus on the quantization error and rounding error in the following

analysis and experiments.

Similarly, the processes of double JPEG compression and decompression are shown in Fig.1 (b).

A. Identifying JPEG Images

As shown in Fig.1, to discriminate the JPEG images (J1) from uncompressed ones (B), we investigate

the histograms of their DCT coefficients, namely, the distributions of d1 and d2 instead of the spatial

features in B and J1 directly as used in existing method [14]. Please note that the relationships between

d1 and d2 can be written in the following form.

d2 = DCT (J1)

= DCT ([IDCT (d′1)])

= DCT (IDCT (d′1) + <)

= DCT (IDCT (d′1)) + DCT (<)

= d′1 + ε

= [ d1
Q1

]×Q1 + ε

(1)

where [x] is the nearest integer function of a real number x. < denotes the rounding errors introduced by

previous JPEG decompression and ε = DCT (<). Both < and ε are 8×8 matrices. Here, we assume that

<(i, j) is an i.i.d. random variable with uniform distribution in the range of [−0.5,+0.5). According to

the Central Limit Theorem, we can conclude that ε(i, j) is an approximate Gaussian distribution with

mean 0 and variance 1
12 , for all 0 ≤ i, j ≤ 7.

We consider the DCT coefficients for each frequency positions (i, j) independently, where 0 ≤ i, j ≤ 7

except the DC component (i, j) = (0, 0). Let the probability density function (PDF) of ε(i, j), d1(i, j),
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d′1(i, j) and d2(i, j) be pε(x), p1(x), p′1(x) and p2(x), respectively. And let q = Q1(i, j) be the

quantization step. Assume q ≥ 2, the most common settings used in JPEG compression.

It is well-known that the AC coefficients d1(i, j) in natural images follow an approximate Laplacian

distribution [34]. After quantization and de-quantization operations by a step q, however, most values in

the histogram of d1(i, j) will be quantized to the nearest integers kq, where k is an integer which is

determined by the image contents i.e. the quantized coefficients Qd1 at a given position (i, j). Therefore,

the PDF of the de-quantized coefficients d′1(i, j) can be formulated as follows.

p′1(x) =





kq+q/2∫
kq−q/2

p1(y) dy x = kq, k ∈ Z

0 otherwise

(2)

The Eq. (2) shows that p′1(x) is exactly a multiple of the quantization step q. Different from p′1, p2

is a noise contaminated version of p′1, it will spread around the multiple of q due to the rounding error

ε(i, j). This can be seen though the relationship between d′1 and d2 as shown in (1).

Note that E(ε(i, j)) = 0, σ2(ε(i, j)) = 1
12 , then we have
+1∫

−1

pε(y) dy ≥ 99.95% (3)

Combining Eq. (1)∼(3), we obtain the relationship between p′1 and p2 as follow.
kq+1∫

kq−1

p2(y) dy ≈ p′1(kq) k ∈ Z, q ≥ 2 (4)

Fig.2 illustrates the distributions of d1(1, 1), d′1(1, 1) and d2(1, 1) for the Lena image with a quality

factor 85. The quantization step q is equal to 4 in this case. Please note that the distributions for other

frequency components have similar results if the quantization step is equal to or larger than 2.

Therefore, the main idea of JPEG image identification is then converted to discriminate the patterns

between Fig.2 (b) and (d). To achieve the goal, we consider the percentage of the AC coefficients of a

given test image in the following two specific regions, that is,

R1 = (−1,+1) & R2 = (−2,−1] ∪ [+1,+2)

Based on the Eq. (4) and (2), we have

∫
R1

p2(y) dy =
+1∫
−1

p2(y) dy ≈ p′1(0) =
+ q

2∫
− q

2

p1(y) dy

≥
+1∫
−1

p1(y) dy =
∫
R1

p1(y) dy, q ≥ 2

(5)
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(a) JPEG Lena (QF = 85)
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(c) Distribution of d′1(1, 1)
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Fig. 2. The distributions of d1, d2 and d′1 for Lena image with a quality factor 85 at the position (1, 1).

and ∫
R2

p2(y) dy =
−1∫
−2

p2(y) dy +
+2∫
+1

p2(y) dy

≈ 0 + 0 ≤ ∫
R2

p1(y) dy, q ≥ 2
(6)

Therefore, a 1-D feature s can be obtained as

s =

∫
R2

pac(y) dy

∫
R1

pac(y) dy
,

∫

R1

pac(y) dy 6= 0 (7)

where pac denotes the PDF of all the AC coefficients of the test image.

Based on Eq. (5) and (6), it is expected that the value
∫
R1

pac(y) dy will increase, while the value
∫
R2

pac(y) dy will decrease after being quantized by those quantization steps that are equal to or larger

than 2, which means that the proposed feature s of a JPEG image will be close to zero and it would be

much smaller than that of the corresponding uncompressed one.
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B. Estimating Quantization Steps

If without the rounding errors <, we can recover the de-quantized coefficients d′1(i, j) from the JPEG

decompressed image J1 exactly based on Eq. (1).

d2 = DCT (J1) = DCT (IDCT (d′1) + 0) = d′1 (8)

The estimation of quantization steps becomes very easy in this case since the values d′1(i, j) will

just present at multiples of the corresponding quantization step q = Q1(i, j) as illustrated in Fig.2 (c).

Therefore, how to remove the effect of the rounding error < and recover the de-quantized coefficients

d′1 from the noise contaminated version d2 (Fig.2 (d)) is the key issue in our algorithm.

Based on Eq. (1), we have

d2 = d′1 + DCT (<) = d′1 + ε (9)

which shows that the rounding error < will lead to an approximate Gaussian noise ε with mean 0 and

variance 1
12 on each DCT frequency component of the bitmap image J1. As illustrated in Fig.2 (d), those

peaks in the distribution of d2(i, j) will spread around the multiples of the quantization step q at a limited

interval (−1,+1) according to Eq. (3), and most of them are separated if q ≥ 2.

When performing the rounding operation on the coefficients d2, most of the noise contaminated values

d2 will become the original ones (i.e. d′1) since

[d2(i, j)] = d′1(i, j) + [ε(i, j)] ≈ d′1(i, j) (10)

And the probability of the event [d2(i, j)] = d′1(i, j) can be calculated by

P ([d2(i, j)] = d′1(i, j)) = P ([ε(i, j)] = 0)

=
+0.5∫
−0.5

pε(y) dy ≥ 91.50%
(11)

Fig.3 (a) illustrates the denoised version of Fig.2 (d) after rounding operation. Please refer to Fig.3

(a) and Fig.2 (c), there are still around 8.5%(1 − 91.5%) of the coefficients d2 which will be rounded

to the neighborhoods of the multiples of the quantization step (see Eq. (11)). In order to remove such

effect of the “ghost” values in the distribution of [d2] and to extract the quantization step, we first obtain

the absolute values of [d2] and then calculate the histogram H of the resulting values |[d2]| for each

frequency component (i, j) independently, as shown in Fig.3 (b). Then the location of the histogram bin

containing the most non-zeros coefficients indicates the quantization step ˆqi,j .

We know that most DCT coefficients of natural images will be quantized to 0 after JPEG compression.

However, around 8.5% of those coefficients will be rounded to its neighborhoods i.e. ±1 according to Eq.
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Fig. 3. The distributions of [d2] and |[d2]| for Lena image with a quality factor 85 at the position (1, 1).

(11), which means that the largest bin of |[d2]| may present at 1 even though the quantization step does

not equal to 1, then wrong estimation occurs in such case. Therefore, we have to first apply an empirical

measure to determine whether the quantization step is 1 or larger than 1. Based on our experiments, if

H(1)
H(0)

> t & H(1) > Hmax (12)

then the estimated quantization step q̂i,j = 1, where H(k) is the number of values in |[d2(i, j)]| that

having level k, and Hmax denotes the maximum value in the set of {H(2),H(3), . . .}. Please note that

the threshold t should be larger than 8.5%/91.5% ≈ 9.3% according to Eq. (11). We have experimented

with different t values ranging from 0.10 to 0.35 and found that the results are better when t = 0.3.

Therefore, for all the experimental results presented in this paper, we set t = 0.3.

Otherwise, the quantization step can be obtained by

q̂i,j = arg min
k

( k | H(k) = Hmax, k ≥ 2) (13)

C. Detecting Quantization Table

In this subsection, we will investigate the differences between the single JPEG image and its re-

compressed versions using different quantization tables. And then propose an effective method for the

detection of the quantization table.

As shown in Fig.1 and Eq. (9), the relationship between the de-quantized coefficients d′1 (single JPEG)

and d′2 (double JPEG) can be written as follows.

d′2 = [
d2

Q2
]×Q2 = [

d′1 + ε

Q2
]×Q2 (14)
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where ε is an approximate Gaussian distribution just as shown in Eq. (1), Q2 is the quantization table

used in the JPEG recompression. Please note that d′1 ∈ Z is a multiple of the previous quantization table

Q1. In the following, we will analyze each frequency component before and after JPEG recompression,

namely d′1(i, j) and d′2(i, j), where 0 ≤ i, j ≤ 7, separately.

We let Y ′ = d′1(i, j) = k1q1, where q1 = Q1(i, j) is the quantization step used in the first compression,

k1 ∈ Z is an integer. Y ′′ = d′2(i, j) and q2 = Q2(i, j) is the quantization step in JPEG recompression.

Then Eq. (14) can be rewritten as follows.

Y ′′ = [
Y ′ + ε

q2
]× q2 = [

k1 × q1 + ε

q2
]× q2 (15)

According to the relationships between the quantization steps q1 and q2, we will investigate Eq. (15)

in the following three cases:

• case #1: q2 = q1. (e.g. Q1 = Q2)

Y ′′ = [k1×q2+ε
q2

]× q2 = [k1 + ε
q2

]× q2

= k1 × q1 + [ ε
q2

]× q2 = Y ′ + [ ε
q2

]× q2

Thus we have

P (Y ′′ = Y ′|q2 = q1) = P ([
ε

q2
] = 0) (16)

Please note that events [ ε
q2

] = 0 and q2 = q1 are independent.

• case #2: q2 6= q1, q2 = 1. (e.g. QF2 = 100)

Y ′′ = [
k1 × q1 + ε

1
]× 1 = Y ′ + [ε]

Thus we have

P (Y ′′ = Y ′|q2 6= q1, q2 = 1) = P ([ε] = 0) (17)

Please note that events [ε] = 0 and q2 6= q1, q2 = 1 are independent.

• case #3: q2 6= q1, q2 > 1. (others)

– subcase #3.1: q2 | k1q1

We let Y ′ = k1q1 = k2q2, where k2 is an integer

Y ′′ = [k1×q1+ε
q2

]× q2 = [k2×q2+ε
q2

]× q2

= k2q2 + [ ε
q2

]× q2 = Y ′ + [ ε
q2

]× q2

Thus we have

P (Y ′′ = Y ′|q2 6= q1, q2 > 1, q2 | k1q1) = P ([
ε

q2
] = 0) (18)
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Fig. 4. The percentages of the equal de-quantized coefficients (a) and pixel values (b) as functions of the quality factors.

Please note that events [ ε
q2

] = 0 and q2 6= q1, q2 > 1, q2 | k1q1 are independent.

– subcase #3.2: q2 - k1q1

Assuming Y ′′ = Y ′, we have [k1q1+ε
q2

] × q2 = k1q1, thus k1q1

q2
= [k1q1+ε

q2
] ∈ Z, then we get

q2|k1q1 contradiction. Thus we have

P (Y ′′ = Y ′|q2 6= q1, q2 > 1, q2 - k1q1) = 0 (19)

From the Eq. (18),(19) and the law of total probability, we have that

P (Y ′′ = Y ′|q2 6= q1, q2 > 1)

= P ([ ε
q2

] = 0)× P (q2|k1q1) + 0× P (q2 - k1q1)

= P ([ ε
q2

] = 0)× P (q2|k1q1)

(20)

Based on Eq. (16), (17) and (20), we have that

P (Y ′′ = Y ′|q2 6= q1, q2 = 1) ≤ P (Y ′′ = Y ′|q2 = q1) (21)

P (Y ′′ = Y ′|q2 6= q1, q2 > 1) ≤ P (Y ′′ = Y ′|q2 = q1) (22)

The Eq. (21) and (22) indicate the de-quantized coefficients will be well preserved with the highest

probability after JPEG recompression using the same quantization table (Q2 = Q1) compared with any

others including the quantization table of ones (QF2 = 100).

Here we give an example. Lena image with the size of 512× 512 is JPEG compressed with a quality

factor 85, followed by recompression with quality factors ranging from 1 to 100, respectively. Fig.4

(a) shows the percentages of the equal de-quantized coefficients before and after recompression (i.e.,

P (d′1 = d′2)) with increasing the quality factors.
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It is observed that the maximum value appears at the position 85, which is exactly the quality factor

used in previous compression. Please note that for those quality factors less than 82, the quantization

steps are not equal to the corresponding ones in the quantization table with QF = 85 and they are all

larger than 1, thus case #3 is considered. It is easy to check that P (d′1(i, j) = k1q1 = 0) = 76.54% for the

Lena image after single JPEG compressed with QF = 85, meaning that P (k1 = 0) = 76.54%. For those

frequency components whose k1 = 0, subcase #3.1 is considered since q2 | k1q1 = 0. In this subcase, most

frequency coefficients will be preserved after recompression based on the Eq. (18), and that is the same

probability as shown in case #1 (see Eq. (16) and (18)). While for those frequency components whose

k1 6= 0 (around 24%), P (q2|k1q1) is mostly equal to 0 especially when q2 is large and gcd(q1, q2) = 1,

where the function gcd(a, b) denotes the greatest common divisor of a and b. Thus subcase #3.2 is

considered in these cases, and all the frequency coefficients will change after recompression based on the

Eq. (19). Therefore the percentages for the QF less than 82 showing in Fig.4 (a) will fluctuate between

76% and 80%. Please note that some local maximum values occur around QF = 70 since that many

quantization steps in QF = 70 are as twice as those for QF = 85, namely, q2 = 2q1. When k1 is an even

number, then we have q2 | k1q1, which means that case #3.1 is considered in such cases and thus more

de-quantized coefficients will be preserved based on the Eq. (18). According to the relationship between

Q1 and Q2 and the Eq. (16) ∼ (22), similar analysis can be obtained to explain the percentages with

QFs 82 ∼ 100 shown in Fig.4 (a). These are exactly the results predicted by our theoretical analysis.

In practice, we can not obtain the de-quantized coefficients d′1 from a JPEG decompressed image J1

because of the existence of the rounding errors <. Thus we investigate the difference between J1 and J2

instead of d′1 and d′2. Please note that

J1 = [IDCT (d′1)], J2 = [IDCT (d′2)] (23)

If all the frequency coefficients d′1 and d′2 within an 8× 8 block are exactly the same, then the pixel

values J1 and J2 in the spatial domain will be also preserved. Thus we define the similarity measure

between two images J1 and J2 with size of M ×N as follows.

R(J1, J2) =
|E|
MN

(24)

where E = {(x, y)|J1(x, y) = J2(x, y), 1 ≤ x ≤ M, 1 ≤ y ≤ N}

Fig.4 (b) shows the feature R as a function of the quality factors. It’s observed that the maximum value

will also appear at the same position 85 as shown in Fig.4 (a). Based on this observation, we propose the

following algorithm for detecting the quantization table. Let the JPEG decompressed image be J1 and Q1
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Fig. 5. The histograms of the features s for original uncompressed images and their different JPEG compressed versions. The

size of the test images used here is 32× 32.

be the quantization table to be detected. We assume that the range of the quantization tables is known to

us, e.g. the standard JPEG tables with quality factors ranging 1 to 100. We first recompress the image J1

with all the possible quantization tables and obtain its decompressed versions J2(i), i ∈ {1, 2, . . . 100}.

Then the detected quality factor Q̂F of J1 can be obtained by

Q̂F = arg max
i

(R(J1, J2(i)), i = 1, 2, . . . 100) (25)

III. EXPERIMENTAL RESULTS

In our experiments, we employ the Matlab JPEG Toolbox [33] for JPEG compression. We randomly

select 1,000 images from each image dataset as used in Table I, namely Corel, NJIT, NRCS, SYSU and

UCID, respectively. In all, there are 5,000 uncompressed color images. Those images are first converted

into gray-scale images, which are then center-cropped into small blocks with sizes ranging from 256×256

to 8×8. The experimental results for JPEG history estimation, namely identifying JPEG images, estimating

quantization steps and detecting quantization table are shown as follows.

A. Identifying JPEG Images

According to Eq. (7), we calculate the features s for the original uncompressed images and their

different JPEG compressed versions and show the corresponding histograms in Fig.5. It can be observed

from Fig.5 (a) that even with a slight compression, e.g. using the quality factors as high as 98, the features

between uncompressed images and JPEG images are mostly separated. Usually, when the quality factors

May 21, 2010 DRAFT



15

TABLE II

AVERAGE ACCURACY (%) FOR JPEG IMAGE IDENTIFICATION. THE QUALITY FACTORS USED IN THE EXPERIMENTS ARE 98,

95, 85, 75 AND 50 SEPARATELY. THE THRESHOLDS ARE 0.2932, 0.3071, 0.3284, 0.3655, 0.3934, AND 0.3762 FOR THE

SIX IMAGE SIZES. AND THE FPR (%) WE OBTAINED ARE 14.10, 11.58, 11.10, 12.52, 14.36 AND 21.06.

Quality 256×256 128×128 64× 64 32× 32 16× 16 8× 8

Factor Block Block Block Block Block Block

QF=98 92.36 93.65 93.94 92.91 90.32 81.95

QF=95 92.95 94.21 94.45 93.74 92.79 89.32

QF=85 92.95 94.21 94.44 93.71 92.73 89.06

QF=75 92.95 94.21 94.42 93.69 92.68 88.75

QF=50 92.88 94.15 94.35 93.62 92.52 88.36

decrease (larger quantization steps are employed), the value of
∫
R1

pac(y) dy in Eq. (7) will increase since

more DCT coefficients would be quantized into zeros, which means that the lower the quality factors

are, the smaller the features of the compressed images will be. Please compare the histograms of the

features s for JPEG images with quality factors of 98 and 95 in Fig.5 (a). Therefore, thresholding the

feature s can identify whether a bitmap image comes from a JPEG image or a uncompressed one.

To properly test the proposed feature s, we first use a minimum risk classification rule [35] to find

a threshold t. For a given image size in the training stage, half of the uncompressed images and the

corresponding JPEG compressed images with QF=98, the highest quality factor the proposed feature

can detect reliably, are employed to obtain a proper threshold. These thresholds value are then used to

identify the rest of JPEG images with QF=98, and all the other JPEG images with QF=95, 85, 75 and

50, respectively. The experimental results are shown in Table II. Here, we define the False Positive Rate

(FPR) as the probability of the uncompressed images being wrongly determined as JPEG images, and

thus it is fixed once the threshold is given for the same uncompressed image dataset. From Table II,

we can observe that our method can achieve satisfactory accuracy of around 90% even the image size

decreases to 8× 8 and the quality factor is as high as 95, which shows that the proposed feature is very

robust to the quality factors used previously as well as the image sizes.

To further show the effectiveness of the proposed feature, we compare our method with Fan’s approach

[14] and some typical blind measures for blocking artifacts of JPEG images used in [17], [18], [19], [20],

[21], [22]. In this experiment, the quality factors are randomly selected in the range of 50 ∼ 98, the
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TABLE III

AVERAGE ACCURACY (%) / FALSE POSITIVE RATE (%) FOR JPEG IMAGE IDENTIFICATION. THE VALUES WITH A ASTERISK

(*) DENOTE THE BEST ACCURACY AND FPR AMONG THE SIX DETECTION METHODS. THE QUALITY FACTORS USED IN THE

EXPERIMENTS ARE RANDOMLY SELECTED IN THE RANGE OF [50, 98]. IN THESE CASES, OUR BEST THRESHOLDS ARE

0.1112, 0.1138, 0.1468, 0.1416, 0.1232 AND 0.1222 FOR THE SIX DIFFERENT IMAGE SIZES, RESPECTIVELY.

Detection 256× 256 128× 128 64× 64 32× 32 16× 16 8× 8

Method Block Block Block Block Block Block

MSDSt [17] 53.44 / 35.68 54.00 / 51.80 53.32 / 54.60 53.56 / 49.48 - -

Wang’s [18] 77.48 / 15.76 73.22 / 19.68 69.58 / 28.92 64.48 / 45.88 62.62 / 48.80 -

Wang’s [19] 73.94 / 25.48 57.40 / 39.40 53.42 / 43.96 51.10 / 61.64 - -

Liu’s [20] 76.50 / 3.44 66.20 / 16.12 62.50 / 14.36 59.50 / 28.80 56.94 / 44.00 -

Fan’s [14] 94.50 / 3.24 86.38 / 12.44 74.14 / 28.04 61.28 / 49.48 50.58 / 88.28 -

Proposed 98.64 / 1.00 * 98.52 / 1.08 * 97.96 / 2.72 * 97.62 / 2.84 * 96.24 / 3.24 * 95.08 / 5.80 *

commonly used range for lossy JPEG compression. The histograms of our features are illustrated in

Fig.5 (b), it is also expected that the proposed method can obtain good results since most features of the

uncompressed and JPEG compressed images are clearly separated with a proper threshold.

Table III shows the average accuracies and false positive rates for the six detection methods. It is

observed that the proposed method outperforms the existing methods significantly. Even the image size

is as small as 8×8, our method can still obtain the average accuracy of 95.08% and FPR of 5.8%. While

the performance of existing methods is very sensitive to image sizes, it usually drops significantly and

even becomes random guessing with decreasing the image size, e.g. less than 32 × 32, and all of them

will fail to detect image blocks whose sizes are less then 9× 9. One of the reasons is that these methods

tried to measure the artificial discontinuities/stpes between the neighboring 8 × 8 blocks introduced by

the lossy JPEG compression. In such cases, the image content edges may be located at the boundaries

between the blocks and thus confuse the strength of the blocking artifacts. Therefore, the existing methods

usually need sufficient statistics (e.g. larger than 256 × 256) to eliminate the effects of content edges,

especially for those JPEG images with slight compression, e.g QF > 90. Quite different from the existing

methods, our method aims to detect the quantization artifacts within every single 8× 8 block rather than

the discontinuities between the blocks. And therefore the proposed feature can eliminate the effect of the

content edges very effectively.

May 21, 2010 DRAFT



17

B. Estimating Quantization Steps

If a bitmap image is identified as JPEG decompressed image, we can further estimate the quantization

steps for each frequency component (63 AC components in all) according to the Eqs. (12) and (13).

The experimental results evaluated on 5,000 images of 256× 256 are shown below. The corresponding

quantization steps for the 63 AC components can be obtained according to Eq. (26) in the Appendix.



− 46.40 68.42 89.82 92.74 98.90 99.62 99.62

31.70 65.98 75.68 91.92 97.14 99.54 99.66 99.54

64.98 73.36 90.72 93.28 98.50 99.62 99.56 99.56

73.86 91.04 93.08 97.56 99.46 99.54 99.36 99.38

91.54 93.54 98.58 99.68 99.62 98.84 98.50 98.52

94.36 98.88 99.86 99.78 99.64 98.48 96.92 97.02

99.74 99.90 99.68 99.34 98.48 96.58 94.52 94.94

99.76 99.24 98.74 98.34 96.84 96.44 95.54 93.30




(a). Average accuracy (%) for QF = 95



− 95.48 98.64 99.02 98.58 81.98 89.86 71.92

96.84 99.06 99.80 99.80 98.98 88.62 77.52 66.00

99.22 99.52 99.80 99.42 96.32 82.64 59.20 54.94

96.48 99.78 99.58 98.36 88.54 46.38 34.80 37.70

99.62 99.44 96.70 86.38 66.78 13.54 8.24 13.00

87.84 96.86 86.28 70.86 37.94 7.30 2.68 3.86

92.12 76.70 52.82 28.24 8.20 1.30 0.72 0.94

56.48 29.14 15.88 8.38 2.06 2.16 0.88 0.76




(b). Average accuracy (%) for QF = 50

We underlined the detection accuracies that are less than 50%. It is observed that for the higher quality

factors, e.g. QF = 95, the proposed method performs better on estimating the quantization steps for the

median and high frequency components than those for the low ones. The reason is that most quantization

steps for the low frequency components are close to 0, namely, 1 or 2. Since the DCT coefficients d2

with values 0 or 1 (1 or 2) will interact due to the error ε (please refer to Eqs. (9) ∼ (11)), which makes

that the location of the largest histogram bin may not located at the quantization step but its neighbors.

In such cases, our method would fail. For the lower quality factors, e.g. QF = 50, most higher frequency

coefficients of natural images will be quantized to zeros due to the large quantization steps (e.g. for those

quantization steps larger than 70), and thus the detection accuracy would inevitably decrease significantly

due to insufficient number of effective data samples for the estimation.

To show the effectiveness of the proposed method, we compare it with the Fridrich’s method [15].

Firstly, we evaluate the performances on a set of particular quantization steps in the four AC components

AC(1,1), AC(2,2), AC(3,3) and AC(4,0). In the experiments, we select the proper quality factors whose
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Fig. 6. The detection accuracy as a function of the quantization steps ranging from 1 to 15. Four AC components AC(1, 1),

AC(2, 2), AC(3, 3) and AC(4, 0) are investigated with some proper quality factors.

corresponding quantization steps are from 1 to 15. Taking AC(1,1) for example, the selected quality

factors are 95, 90, 86, 82, 78, 73, 69, 65, 61, 57, 53, 49, 45, 42 and 39. Fig. 6 shows the average

accuracy as a function of the quantization steps. It is observed that our accuracy usually increases with

increasing the quantization step, and outperforms that of method [15] in most situations.

Secondly, we evaluate the overall performances of the two methods on the whole quantization table.

Five quantization tables with quality factors 95, 90, 85, 75 and 50 are investigated in the experiments.

Table IV shows the average accuracies for the test images with different sizes and quality factors. It is

also observed that our method outperforms the method [15] in most cases, especially for those images

with smaller sizes. For instance, our average accuracy is 81.97% for the images with size of 128× 128

and with the quality factor 85, that is around 16% improvement over the method [15].
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TABLE IV

AVERAGE ACCURACY FOR QUANTIZATION STEPS ESTIMATION. THE VALUE WITH A ASTERISK (*) DENOTES THE BETTER

ACCURACY BETWEEN THE TWO DETECTION METHODS.

Quality Detection 256×256 128×128 64× 64

Factor Method Block Block Block

Proposed 92.93 85.22 * 70.21 *

QF=95 Method [15] 93.42 * 75.31 49.07

Proposed 93.70 * 85.45 * 68.30 *

QF=90 Method [15] 89.48 71.04 49.27

Proposed 91.44 * 81.97 * 63.56 *

QF=85 Method [15] 82.75 66.42 46.77

Proposed 82.35 * 72.47 * 54.49 *

QF=75 Method [15] 72.45 58.49 40.55

Proposed 62.05 * 54.71 * 41.15 *

QF=50 Method [15] 57.55 45.15 31.25

C. Detecting Quantization Table

As shown in the previous subsection III-B, it is difficult to estimate those larger quantization steps for

the high frequency components of natural images when the quality factor is low (e.g. QF=50) and the

size of image is small (e.g. 128 × 128). In such cases, we require some prior knowledge to determine

those uncertain quantization steps. We assume that we can obtain the range of the quantization tables

in advance. And this is a reasonable assumption in some forensics applications. For instance, we wish

to determine whether or not a given bitmap image is coming from some questionable digital cameras

or has been JPEG compressed with some photo-editing software packages. In this subsection, we will

present some experimental evidences to show that the detection will become more reliable in such cases.

The algorithm is that for a given JPEG decompressed image J1, we recompress it with all the candidate

tables and obtain the corresponding recompressed versions in the spatial domain, and then find the closest

one to the image J1, say J2, according to the Eq. (24). Finally, the quantization table used in J2 is the

detected table for the questionable image J1. The validity of the detection algorithm was proved by the

Eq. (21) and (22).

In this paper, we assume the candidate quantization tables are the standard JPEG tables with quality

factors ranging from 1 to 100. Thus the Eq. (25) is employed for the quality factor estimation. Please

note that our method is also effective for the images with non-standard tables such as the quantization
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Fig. 7. Detection accuracy as a function of the quality factors.

TABLE V

THE AVERAGE ACCURACIES FOR DIFFERENT QUALITY FACTORS USING THE TWO METHODS.

Image Size Detection Method QF=10 QF=20 QF=30 QF=40 QF=50 QF=60 QF=70 QF=80 QF=90

Method [16] 4.82 17.52 10.90 17.54 0 29.20 32.58 69.80 69.66

64× 64 Proposed 99.60 * 99.70 * 99.66 * 98.10 * 94.52 * 98.92 * 99.42 * 99.88 * 99.68 *

Method [16] 13.08 42.74 34.38 35.18 0 55.00 43.96 89.64 84.24

128× 128 Proposed 99.96 * 99.96 * 99.94 * 99.64 * 98.52 * 99.86 * 99.96 * 99.98 * 99.92 *

tables used in Photoshop, GIMP and various digital cameras [13], as long as the range of the tables is

known. In the experiments, the original uncompressed images with sizes from 8×8 to 128×128 are first

JPEG compressed using quality factors ranging from 5 to 95 with a step size of 5 to obtain the test JPEG

images. Fig.7 shows the average accuracy evaluated on the test images in different cases. Please note that

the accuracy is relatively lower for detecting the JPEG images with QF = 50. The reason is that the first

19 quantization steps (along the zigzag scanning order) in the quantization tables with quality factors

49, 50 and 51 are exactly the same. It is well known that most energy in natural images is concentrated

on DC and low-frequency components, while most higher frequency components would be quantized to

zeros after severe JPEG compression, e.g. the QF is around 50. Therefore more effective data samples

(larger image sizes) are needed to distinguish them. It is observed that the detection accuracy would
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increase with increasing image sizes. When the image size becomes larger than 64 × 64, the average

accuracy can achieve over 94.52% for all the cases.

To further show the effectiveness of the proposed method, we compare our method with the Benford’s

law (first digit law) based method [16] and show the experimental results in Table V. Obviously, the

proposed method outperforms the existing method [16] significantly.

IV. CONCLUDING REMARKS

This paper introduces JPEG error analysis to the study of image forensics. Through analyzing the

various errors of JPEG image compression and their relationships in double JPEG compression, we have

developed three image forensic analysis schemes. A simple and very effective 1-D feature has been

successfully introduced to identify if a given bitmap image has previously been JPEG compressed. Once

a bitmap is identified as JPEG image, we have developed techniques to further estimate the quantization

steps and detect quantization table used for the JPEG image. We have shown that the new methods

worked effectively and significantly outperformed existing techniques in the literature. Please note that

we just present theoretical analysis and experimental results for gray-scale images in this paper, while

the proposed methods can be extended to detect color images in a similar way.

APPENDIX

In the appendix, we will present the relationship between the quality factors and the quantization tables

used in the paper. It’s well known that quality factor is the scaling factor for a default table, and it is

widely used in most JPEG compression schemes. Usually, the default quantization table t is defined as:

t =




16 11 10 16 24 40 51 61

12 12 14 19 26 58 60 55

14 13 16 24 40 57 69 56

14 17 22 29 51 87 80 62

18 22 37 56 68 109 103 77

24 35 55 64 81 104 113 92

49 64 78 87 103 121 120 101

72 92 95 98 112 100 103 99




Then the quantization tables with a quality factor can be obtain by

Table(QF ) =





bt× 50
QF

+
1
2
c 1 ≤ QF < 50

bt× (2− QF

50
) +

1
2
c 50 ≤ QF ≤ 100

(26)

where QF ∈ {1, 2, . . . 100} denotes the quality factors, y = bxc denotes the floor function which maps

a real number x to the next smallest integer y, and if y is less than 1, let y = 1.
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Therefore, the readers can obtain the corresponding quantization tables for a given quality factor QF .

For instance, the quantization table with QF=50 is the default table t as shown above, and the tables with

QF=98, 95 and 90 are as follows:




1 1 1 1 1 2 2 2

1 1 1 1 1 2 2 2

1 1 1 1 2 2 3 2

1 1 1 1 2 3 3 2

1 1 1 2 3 4 4 3

1 1 2 3 3 4 5 4

2 3 3 3 4 5 5 4

3 4 4 4 4 4 4 4




Quantization Table with QF=98




2 1 1 2 2 4 5 6

1 1 1 2 3 6 6 6

1 1 2 2 4 6 7 6

1 2 2 3 5 9 8 6

2 2 4 6 7 11 10 8

2 4 6 6 8 10 11 9

5 6 8 9 10 12 12 10

7 9 10 10 11 10 10 10




Quantization Table with QF=95




3 2 2 3 5 8 10 12

2 2 3 4 5 12 12 11

3 3 3 5 8 11 14 11

3 3 4 6 10 17 16 12

4 4 7 11 14 22 21 15

5 7 11 13 16 21 23 18

10 13 16 17 21 24 24 20

14 18 19 20 22 20 21 20




Quantization Table with QF=90

ACKNOWLEDGMENT

The authors would like to thank Dr. Dongdong Fu at New Jersey Institute of Technology, New Jersey,

USA, and YuanGen Wang at Sun Yat-Sen Univ. Guangzhou, China, for their helpful discussions and

thank the anonymous reviewers for their valuable comments.

May 21, 2010 DRAFT



23

REFERENCES

[1] B. Zhu, M.D. Swanson, and A.H. Tewfik, “When seeing isn’t believing [multimedia authentication technologies],” IEEE

Signal Processing Magazine, vol. 21, no. 2, pp. 40–49, Mar. 2004.

[2] F. Hartung and M. Kutter, “Multimedia watermarking techniques,” Proceedings of the IEEE, vol. 87, no. 7, pp. 1079–1107,

Jul. 1999.

[3] A. Swaminathan, Y. Mao, and M. Wu, “Robust and secure image hashing,” IEEE Transactions on Information Forensics

and Security, vol. 1, no. 2, pp. 215–230, Jun. 2006.

[4] H. Farid, “A survey of image forgery detection,” IEEE Signal Processing Magazine, vol. 2, no. 26, pp. 16–25, Mar. 2009.

[5] W. Luo, Z. Qu, F. Pan, and J. Huang, “A survey of passive technology for digital image forensics,” Frontiers of Computer

Science in China, vol. 1, no. 2, pp. 1673–7350, May 2007.
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