Simulation-based Selective Opening CCA Security for PKE from
Key Encapsulation Mechanisms *

Shengli Liu' and Kenneth G. Paterson?

! Department of Computer Science and Engineering,
Shanghai Jiao Tong University, Shanghai 200240, China
2 Information Security Group, Royal Holloway, University of London
slliu@sjtu.edu.cn kenny.paterson@rhul.ac.uk

Abstract. We study simulation-based, selective opening security against chosen-ciphertext attacks
(SIM-SO-CCA security) for public key encryption (PKE). In a selective opening, chosen-ciphertext at-
tack (SO-CCA), an adversary has access to a decryption oracle, sees a vector of ciphertexts, adaptively
chooses to open some of them, and obtains the corresponding plaintexts and random coins used in the
creation of the ciphertexts. The SIM-SO-CCA notion captures the security of unopened ciphertexts
with respect to probabilistic polynomial-time (ppt) SO-CCA adversaries in a semantic way: what a ppt
SO-CCA adversary can compute can also be simulated by a ppt simulator with access only to the opened
messages. Building on techniques used to achieve weak deniable encryption and non-committing encryp-
tion, Fehr et al. (Eurocrypt 2010) presented an approach to constructing SIM-SO-CCA secure PKE from
extended hash proof systems (EHPSs), collision-resistant hash functions and an information-theoretic
primitive called Cross Authentication Codes (XACs). We generalize their approach by introducing a
special type of Key Encapsulation Mechanism (KEM) and using it to build SIM-SO-CCA secure PKE.
We investigate what properties are needed from the KEM to achieve SIM-SO-CCA security. We also
give three instantiations of our construction. The first uses hash proof systems, the second relies on
the n-Linear assumption, and the third uses indistinguishability obfuscation (¢Q) in combination with
extracting, puncturable Pseudo-Random Functions in a similar way to Sahai and Waters (STOC 2014).
Our results establish the existence of SIM-SO-CCA secure PKE assuming only the existence of one-way
functions and Q. This result further highlights the simplicity and power of i© in constructing different
cryptographic primitives.

1 Introduction

Selective Opening Attacks (SOAs) concern a multi-user scenario, where an adversary adaptively corrupts a
set of users to get their secret state information. In the case of public key encryption (PKE), we assume that
several senders send ciphertexts encrypting possibly correlated messages to a receiver. The SOA adversary
is able to (adaptively) corrupt some senders, exposing their messages and also the random coins used to
generate their ciphertexts. Security against selective opening attacks (SOA security) considers whether the
uncorrupted ciphertexts remain secure.

There are two ways of formalizing SOA security: indistinguishability-based (IND-SO) and simulation-
based (SIM-SO). According to whether the adversary is able to access to a decryption oracle during its
attack, SOA security is further classified into IND-SO-CPA, IND-SO-CCA, SIM-SO-CPA and SIM-SO-CCA.
In the formalization of SOAs, we allow a probabilistic polynomial-time (ppt) adversary to get the public
key, a vector of challenge ciphertexts, and to adaptively corrupt (open) some ciphertexts to obtain opened
plaintexts and random coins (and also access to a decryption oracle in the case of SO-CCA). The IND-SO
security notions require that the real messages (used to generate the challenge ciphertexts) and re-sampled
messages conditioned on the opened messages are computationally indistinguishable to an SOA adversary.
Here we have to assume that the joint message distributions are efficiently conditionally re-samplable after the
opened messages are exposed. On the other hand, the SIM-SO security notions have no such limitations. They
require that what a probabilistic polynomial-time (ppt) SOA adversary can compute from the information
it has learned can be simulated by a ppt simulator only knowing the opened plaintexts. SIM-SO security
seems to be stronger than IND-SO security and significantly harder to achieve. We note the existence of
a stronger IND-SO security notion, namely full IND-SO security, which imposes no limitation on the joint
message distributions. However, there is no PKE achieving full IND-SO-CPA security yet. The relations
among SIM-SO security, IND-SO security, and traditional IND-CPA/CCA security were explored in [5,17].

* An extended abstract of this paper will be published in the proceedings of the 18th International Conference on
Practice and Theory in Public-Key Cryptography (PKC 2015). This is the full version.

Lossy encryption [3] has shown itself to be a very useful tool in achieving IND-SO-CPA security. Different
approaches to achieving IND-SO-CCA security include the use of lossy trapdoor functions [22], All-But-
N [14], and All-But-Many lossy trapdoor functions [15]. The basic idea is to make sure that only challenge
ciphertexts are lossy encryptions, while ciphertexts queried by the adversary are normal encryptions. If there
exists an efficient opener which can open a lossy encryption to an encryption of an arbitrary message, then
an IND-SO-CCA secure PKE can also been shown to be SIM-SO-CCA secure. However, it seems that, to
date, only a single, DCR~based PKE scheme [15] is known to have this property.

In [12], Fehr et al. proposed a black-box PKE construction to achieve SIM-SO-CCA security based
on an Extended Hash Proof System (EHPS) associated with a subset membership problem, a collision-
resistant hash function and a new information-theoretic primitive called Cross-Authentication Code (XAC).
As pointed in [18,19], a stronger property of XACs is needed to make the security proof rigorous.

1.1 Owur Contributions

We generalize the black-box PKE construction of Fehr et al. [12] by using a special kind of key encapsulation
mechanism (KEM) in combination with a strengthened XAC. Essentially, the KEM replaces the EHPS
component in [12], opening up a new set of construction possibilities. In more detail:

— We characterise the properties needed of a KEM for our PKE construction to be SIM-SO-CCA secure. At
a high level, these properties are that the KEM should have efficiently samplable and explainable (ESE)
ciphertext and key spaces; tailored decapsulation; and tailored, constrained chosen-ciphertext (tCCCA)
security. Here tailored decapsulation roughly means that the valid ciphertexts output by the KEM are
sparse in the ciphertext space, while tCCCA security is an extension of the CCCA security notion of
[16]. If a KEM has all three properties, then we say that it is a tailored KEM.

— We show three constructions for tailored KEMs, including one based on hash proof systems (HPS) [8],
a specific KEM from the n-Linear assumption [16] (but different from the HPS-based one) and one
constructed from indistinguishability Obfuscation (¢@) in combination with an extracting puncturable
Pseudo-Random Function (PRF) [23]. Consequently, we obtain PKEs of three different types, all enjoying
SIM-SO-CCA security. Thus, by adopting the KEM viewpoint, we significantly enlarge the scope of Fehr
et al.’s construction.

— Since our PKE construction does not rely on collision-resistant hash functions, we immediately obtain
the following results:

e PKE with SIM-SO-CCA security from HPS and strengthened XACs (as compared to the PKE
construction of [12] using EPHS, a strong XAC, and a collision-resistant hash function).

e PKE with SIM-SO-CCA security from the n-Linear assumption in a way that differs from our HPS-
based construction.

e PKE with SIM-SO-CCA security assuming only the existence of O and one-way functions.

1.2 Ingredients of Our Main Construction

We follow the outline provided by the black-box PKE construction of Fehr et al. [12]. Observing that the
EHPS used in [12] can actually be viewed as a KEM, our construction can be considered as a generalization
of their result. We first outline the properties of KEMs and XACs needed for our result, before describing
the construction and its security analysis at a high level.

The KEM component in our construction needs to be “tailored” with the following properties:

(1) Efficiently samplable and explainable (ESE) domains. The key space K and ciphertext space C
of the KEM should both be ESE domains. (Meaning that, given a randomised sampling algorithm
SampleD for D, there exists an efficient algorithm, SampleD ™! (D, -), with the property that, given element
d from a domain D as input, SampIeD_l(D, -) outputs value R such that d can be “explained” as having
been sampled using R, i.e., d = SampleD(D; R).)

(2) Tailored decapsulation. The valid ciphertexts output by the encapsulation algorithm constitute only
a (small) subset of ciphertext space C. When the input is a ciphertext randomly chosen from C, the
decapsulation will either output L with overwhelming probability or output a key that is almost uniformly
distributed over .

(3) Tailored, constrained CCA (tCCCA) security. The output of the encapsulation algorithm is com-
putationally indistinguishable from (K%,), a pair of key and ciphertext randomly chosen from K x C,
for any ppt adversary, even if the adversary has access to a constrained decryption oracle. The adversary
is allowed to make queries of the form (i, P(-)) to the constrained decryption oracle, where v is an
element of C and P(-) is a ppt predicate, such that P(-) : K — {0, 1} evaluates to 1 only for a negligible
fraction of keys. The constrained decryption oracle will provide the decapsulated K to the adversary if
only if P(K) = 1.

We will also need a strengthened XAC definition. A strengthened ¢-XAC is a collection of algorithms
XAC = (XGen, XAuth, XVer) having the following properties:

Authentication and Verification. Algorithm XAuth computes a tag T <+ XAuth(K3,...,K;) from ¢
inputs (which will be random keys in our construction). Any K, used in generating the tag T almost
always satisfies XVer(K;,T) = 1.

Security against impersonation/substitution attacks. Security against impersonation attacks means
that, given a tag T, a randomly chosen key K will almost always fail verification with this specific
tag, i.e., XVer(K,T) = 0. A substitution attack considers an (all-powerful) adversary who obtains a tag
T = XAuth(K,...,K;) and tries to forge a tag T' # T such that XVer(K;,T’) = 1, where K; is one
of the keys used in computing 7. Security against substitution attacks requires that, if K; is randomly
chosen, then any adversary succeeds in outputting 7" with 7" # T and XVer(K;,T') = 1 with negligible
probability, even if it is given T and all keys except K; as input.

Strongness and semi-uniqueness. Strongness says that when K; is randomly chosen, then K;, given
(Kj)jeln,j#i and the tag T = XAuth(Kj,..., K;), is re-samplable with the correct probability dis-
tribution. That is to say, there exists a ppt algorithm ReSample((K);c[g,j-i» 1) such that ReSample
outputs a key K; that is statistically indistinguishable from K;, even given (Kj)jejq - and T =
XAuth(K7, ..., K¢). Semi-uniqueness says that it is possible to parse a key K as (K, Ky) € K, x K, for
some sets K, Ky, and for every K, € IC; and a tag T, there is at most one K, € K, such that (K, K,)
satisfies XVer((K,, K,),T) = 1.

1.3 Overview of Our Main Construction

Given a tailored KEM KEM and a strengthened (£ + s)-XAC XAC, our construction of a PKE scheme PKE
is as follows. (See Figure 4 for full details.)

— The public key of PKE is the public key pkiem of KEM, an injective function F with domain C* and
range (IC,)®, and a vector of values (K, ,...,K,,) € (K;)®. The secret key of PKE is skyenm, the secret
key of KEM.

— The encryption operates in a bitwise mode. Let the ¢-bit message be mq]|. .. ||my.

e When m; = 1, we set (K;, ;) + KEM.Encap(pkiem)-

e When m; = 0, we choose (K;,1;) randomly from K x C.

o After encrypting ¢ bits, we compute F(v¢n,...,1) to get (K,,,...,K,,), and construct s extra
keys Koy = (K, K,,) for j = 1,...,s. All £ + s keys are then used to compute a tag T' =
XAuth(K7, ..., Kpts).

e Finally, the PKE ciphertext is C' = (¢1,...,%,T).

— The decryption also operates in a bitwise fashion. Omitting some crucial details, we first recompute
(Ky,, ..., Ky,) using F and (¢1,...,%¢), reconstruct K,y; for j = 1,...,s, and then verify the cor-
rectness of T' using each Kyy; in turn. Assuming this step passes, for each i, we compute K; <+
KEM.Decap(skgem, i), and set the recovered message bit as the output of XVer(K;,T). (When K; = 1,
we set XVer(K;,T) =0).

Now, in the above decryption procedure, a KEM decapsulation error occurs whenever m; = 0. However,
1; is random in this case, and the tailored decapsulation makes sure that the output of KEM.Decap(skkem, ;)
is either L or a random key K in either case, XVer(K;, T) is 0 except with negligible probability because of
the security of XAC against impersonation attacks.

1.4 SIM-SO-CCA Security of Our Main Construction

We follow the techniques of non-committing and deniable encryption [7,6,10,20] and try to create equiv-
ocable ciphertexts that not only can be opened arbitrarily but that are also computationally indistin-
guishable from real ciphertexts. In our construction, the equivocable ciphertexts are in fact encryptions
of ones. Note that tCCCA security of KEM ensures that (K1) ~, (K%, %), where (K, 1) is the output
of KEM.Encap(pkgem) and (KT, 91) is randomly chosen from I x C. On the other hand, both K and C are
ESE. Therefore, (K,) encrypting 1 can always be explained as a random pair (K%, 1) encrypting 0 by
exposing the randomness output from SampleK ™ (X, K) and SampleC*(C,).

However, this is not sufficient in the SO-CCA setting since the adversary is able to query its decryption
oracle and perform corruptions, and it might then be easy for the adversary to distinguish an encryption
of ones and an encryption of a real message. For example, consider an adversary that is given a ciphertext
C = (Y1,%2,...,%¢T), where C is either an encryption of ones but opened as zeros with re-explained
randomness, or an encryption of zeros being opened honestly. In fact, opened randomness exposes all K;’s to
the adversary. Then the adversary can generate a different ciphertext C' = (¢, %9, ..., 1, T") as follows. A
new tag T" (T" # T') is computed as T" := XAuth(K}, Ko, ..., K1), where K/ is randomly chosen and all
other K;’s (2 < i < {+s5) are the same as in T. The decryption of C’ will be (0,1,...,1) if C is an encryption
of ones but (0,0,...,0) if C is an encryption of zeros! The problem is that the opened randomness discloses
K; and that gives too much information to the adversary, especially when (K, ;) encodes 0. To solve this
problem, we have to use a different method to open K; so that the adversary obtains no extra information
about K; when (Kj;,1;) encodes 0: first, we use algorithm ReSample of XAC to resample K; to obtain a
statistically indistinguishable K;; then we call SampIeK_l(K,Ki) and SampleC™'(C, ;) to open (Ki,t/)i) to
an encryption of 0. Now an encryption of ones, say C' = (11,%a,...,%,,T), is able to play the role of an
equivocable ciphertext, due to the tCCCA security of KEM and the security of XAC.

Consequently, we can build a simulator S with respect to an adversary A to prove SIM-SO-CCA security:
S simulates the real environment for A by generating public and private keys, and uses the private key to
answer A’s decryption queries; S creates n challenge ciphertexts all of which are encryptions of ones; when
A makes a corruption query concerning a challenge ciphertext C, S can open C bit-by-bit according to the
real message. If the bit m; is 1, it opens (K, ;) honestly, otherwise it opens (K, ;) to 0 by using ReSample,
SampleC™! and SampleK ™.

1.5 Related Work

The SOA security notion was first formally proposed by Dwork et al. [11]. SIM-SO-CPA and IND-SO-CPA
notions were given by Bellare et al. [3]. The relations among SOA security notions and traditional IND-CPA
security were investigated in [5,17]. Bellare et al. [4] proposed the first SIM-SO-CPA secure Identity-Based
Encryption (IBE), while also adopting the non-committing technique and weak deniable encryption. Lai et
al. [21] proposed the first construction for SIM-SO-CCA secure IBE from a so-called extractable IBE, a
collision-resistant hash function, and a strengthened XAC. Recently, Sahai and Waters [23] introduced the
puncturable programming technique and employed puncturable PRFs and Indistinguishability Obfuscation
(10) to obtain a variety of cryptographic primitives including deniable encryption with IND-CPA security,
PKE with IND-CPA and IND-CCA security, KEM with IND-CCA security, injective trapdoor functions,
etc. It should be noted that any IND-CPA secure deniable encryption with ESE ciphertext space implies
a PKE with SIM-SO-CPA security. Therefore, the deniable encryption scheme in [23] that is based on a
puncturable PRF and ¢O implicitly already gives us a SIM-SO-CPA secure PKE. Our result establishes that
SIM-SO-CCA security is achievable from puncturable PRFs and 1O as well, albeit via the combination of
an IND-CCA secure KEM and a strengthened XAC.

2 Preliminaries

We use s1,. .., s < S to denote picking elements sy, . . ., s; uniformly from set S. Let |:S| denote the size of set
S. Let [n] denote the set {1,...,n}. Let s1]|s2| ... denotes the concatenation of strings. For a probabilistic
polynomial-time (ppt) algorithm A, we denote y < A(x; R) the process of running A on input = with
randomness R, and assigning y as the result. Let R4 denote the randomness space of A, and y + A(z)
denote y + A(z; R) with R chosen from R 4 uniformly at random. Let U,, denote the uniform distribution
over {0,1}™. A function f(k) is negligible, denoted by neg(x), if for every ¢ > 0 there exists a k. such that

f(k) < 1/k¢ for all kK > k.. Let ~. (resp. =) denote computational (resp. statistical) indistinguishability
between two ensembles of random variables.

We use boldface letters for vectors. For a vector m of finite dimension, let |m| denote the length of the
vector. For a set I = {iy,i2,...,%7} C [[m]], we define m[I] := (mli;], m[iz], ..., m[i|z]).

2.1 Public Key Encryption
A public key encryption (PKE) scheme is made up of three ppt algorithms:

KeyGen(1%) takes as input the security parameter s, and outputs a public key and a secret key (pk, sk).

Enc(pk, M) takes as input the public key pk and a message M and outputs a ciphertext C.

Dec(sk, C) takes as input the secret key sk and a ciphertext C' and outputs either a message M or a failure
symbol 1.

The correctness of a PKE scheme is relaxed to allow a negligible decryption error e(x). That is, Dec(sk, Enc(pk, M)) =
M holds with probability at least 1 — e(k) for all (pk, sk) < KeyGen(1%), where the probability is taken over
the coins used in encryption.

Let m and r be two vectors of dimension n := n(x). Define Enc(pk, m;r) := (Enc(pk, m[1];r[1]), ...,
Enc(pk, m[n]; r[n])). Here r[i] is the fresh randomness used for the encryption of m[i] for i € [n].

2.2 Simulation-based, Selective Opening CCA Security of PKE

We review the simulation-based definition of security for PKE against selective opening, chosen-ciphertext
adversaries from [12].Let M denote an n-message sampler, which on input string a € {0,1}* outputs an
n-vector m = (m[1],..., m[n]) of messages. Let R be any ppt algorithm outputting a single bit.

Definition 1 (SIM-SO-CCA Security) A PKE scheme PKE=(KeyGen, Enc, Dec) is simulation-based,
selective opening, chosen-ciphertext secure (SIM-SO-CCA secure) if for every ppt n-message sampler M,
every ppt relation R, every restricted, stateful ppt adversary A = (A1, Az, As), there is a stateful ppt simulator
S = (81,82, 83) such that AdVpig s 5.0, r(K) is negligible, where

o-cca so-cca-real so-cca-ideal
AdVpKE A8 ,n. M, R(K) = ‘Pr [EXPPKE,A,n,M,R("D) = 1} — Pr [EXPPKE,S,n,M,R("f) = 1} ’

and experiments Expige 5 " r(k) and Exppeeide® (k) are defined in Figure 1. Here the restriction on

A is that Aa, A3 are not allowed to query the decryption oracle Dec(-) with any challenge ciphertext c[i] € c.

EXPEGET, (): EXPRKES, ot 7 (K):
(pk, sk) < KeyGen(1%)
(,00) ¢ AP ph) SRV

m +— M(a)

(I, 82) — 82(81, (1\m[i]\)i€[n])
outs Sz(s2, m[I])

return R(m, I, outs)

m M(a), r < coins

¢ < Enc(pk, m;r)

(I,a2) — A3%(ay,)

out 4+ A4 (ay, mlI], r[1])
return R(m, I, out4)

Fig. 1. Experiments used in the definition of SIM-SO-CCA security of PKE.

2.3 Key Encapsulation Mechanisms

A Key Encapsulation Mechanism (KEM) KEM consists of three ppt algorithms (KEM.Kg, KEM.Enc, KEM.Dec).
Let IC be the key space associated with KEM.

KEM.Kg(1%) takes as input a security parameter £ and outputs public/secret key pair (pk, sk).

KEM.Encap(pk) takes as input the public key pk and outputs a key K and a ciphertext (or encapsulation)
.

KEM.Decap(sk, 1) takes as input the secret key sk and a ciphertext v, and outputs either a key K or a
failure symbol L.

The correctness condition on a KEM KEM is that KEM.Decap(sk,) = K holds for all k € N, all (pk, sk)
+— KEM.Kg(1%), and all (K,v) < KEM.Encap(pk).

2.4 Efficiently Samplable and Explainable (ESE) Domain

A domain D is said to be efficiently samplable and explainable (ESE) [12] if associated with D are the
following two ppt algorithms:

Sample(D; R) : On input (a description of) domain D and random coins R <~ Rsample, this algorithm outputs
an element that is uniformly distributed over D.

Sample ™ (D, z) : On input (a description of) domain D and any x € D, this algorithm outputs R that is
uniformly distributed over the set {R € Rsample | Sample(D; R) = z }.

Clearly D = {0,1}* is ESE with R = Sample(D; R) = Sample™*(D, R). It was shown by Damgéard and
Nielsen in [10] that any dense subset of an efficiently samplable domain is ESE as long as the dense subset
admits an efficient membership test. Hence, for example, Z},. for a RSA modulus N is ESE.

2.5 Cross-Authentication Codes (XACs)

Cross-Authentication Codes (XACs) were first proposed by Fehr et al. in [12] and later adapted to strong
XACs in [19] and strengthened XACs in [21].

Definition 2 (L-Cross-Authentication Code [12].) For L € N, an L-cross-authentication code XAC
consists of three ppt algorithms (XGen, XAuth, XVer) and two associated spaces, the key space XK and the
tag space XT (whose sizes are related to the security parameter k). The key generation algorithm XGen(1*)
outputs a uniformly random key K € XK, the authentication algorithm XAuth(K,...,Kr) computes a tag
T € XT, and the verification algorithm XVer(K,T) outputs a decision bit.

Correctness. For alli € [L], the probability
failxac(k) := Pr[XVer(K;, XAuth(K,,...,Kr)) # 1],

is negligible, where the probability is taken over K1,..., Ky + XK.3

Security against impersonation and substitution attacks. Define:
Adv;'zzjc(n) = max Pr[XVer(K,T') = 1|K <+ XK]

where the max is over all T € XT, and

T, 7& A Kz — X’C,
AdVibe(r) := max Pr ! T = XAuth(Ky, ..., K1),
i, Kz, F XVer(K;, T') =1 ,
T' « F(T)

where the max is over all i € [L], all K4 = (Kj) e[r),ji € XKEY and all (possibly randomized) functions
F:XT — XT. Then AdVgb (k) and Adviac(r) are both negligible.

Definition 3 (Strong and semi-unique XACs.) An L-cross-authentication code XAC is strong and semi-
unique if it has the following two properties:

3 When XK = K, x Ky, the perfect correctness can be relaxed to allow a negligible failure probability failxac ()
when only the first components of (K;);c[z] are randomly chosen.

Strongness [19]: Suppose there exists a ppt algorithm ReSamp, which takes as input (Kj);-; and T,
with Kq,..., K5, + XGen(1*) and T < XAuth(Ki,...,K1), and which outputs K;. We write K; «
ReSamp(K;,T). Suppose the statistical distance between K; output by ReSamp and K;, conditioned on
(K4;,T), is bounded by §(k), i.e.,

%. S [Prif =k | (K 7))~ PrlE = k | (K, T)]| < 6(s).
keXK

Then the code XAC is said to be §(k)-strong; XAC is said to be strong if there exists ppt algorithm
ReSamp such that 6(k) is negligible in k.

Semi-Uniqueness [21]: The code XAC is said to be semi-unique if XKC can be written as KCp x ICyy and if,
gwen T € XT and K, € ICy, there exists at most one K, € IC,, such that XVer((K,, K,),T) = 1.

For completeness, we include below the construction of /-cross-authentication codes proposed by Fehr et
al. [12]. That it is also strong and semi-unique was shown in [21].

- XK =Ky x Ky =F2 and XT =F, U{L}.

— (a,b) < XGen, where (a,b) « F2.

— T + XAuth((ai,b1),...,(ae, be)). Let matrix A € ngz consists of rows (1,a;,a?,...,ai ') for i € [f).

Let B be a column vector consisting of by,...,b; € Ff;. If AT = B has no solution or more than one

solution, set T :=_1. Otherwise A is a Vandermonde matrix. Let tag T = (Tp,...,T¢—1) be the column

vector that is uniquely determined by solving the linear system AT = B.

Define T'(z) = Ty + Tyw + - + Tp_12°71 € Fyfz] with T = (Ty,...,Ty—1). XVer((a,b),T) outputs 1 if

and only if ' #.1 and T'(a) = b.

— (a,b) < ReSamp((a;,b;);+i e, T'). Choose a < F, such that a # a; (1 < j < £,j # i) and compute
b := T'(a). Conditioned on T" = XAuth((a1,b1),..., (as,be)) (T #L) and (a;,b;);;, both of (a,b) and
(a;, b;) are uniformly distributed over the same support.

— Any a € F, uniquely determines b := T'(a) = Ty + Tia + - - - + Ty_1a*~! such that XVer((a,b),T) = 1.

3 KEM Tailored for Construction of PKE with SIM-SO-CCA Security

We describe the properties that are required of a KEM to build SIM-SO-CCA secure PKE; the construction
itself is given in the next section.

3.1 Valid Ciphertext Indistinguishability (VCI) of KEMs

Suppose KEM = (KEM.Kg, KEM.Encap, KEM.Decap) is associated with an efficiently recognizable ciphertext
space C. For fixed k, let ¥ C C denote the set of possible key encapsulations output by KEM.Encap, so
¥ = {4 : b < KEM.Encap(pk;r), (pk, sk) < KEM.Kg(1%),r < Coins}. The set ¥ is called the valid ciphertext

set (for k).

Definition 4 (Valid Ciphertext Indistinguishability) Let KEM be a KEM with valid ciphertext set ¥
and ciphertezt space C. Define the advantage of an adversary A in the experiment depicted in Figure 2 to be

AdeEA&,A(H) =

Pr {Expxgl\lﬂ'&(/@) = 1} —Pr [Exp\,ég,\l,;bt(ﬁ) = 1} ‘ .

Then KEM is said to be Valid Ciphertext Indistinguishable (VCI) if for all ppt adversaries A, Advxg,\l,h (k)
is negligible.

3.2 Tailored KEMs

To be of service in our construction of SIM-SO-CCA secure PKE, we need a KEM that is tailored to have
the following three properties, as explained in the introduction: (1) the key space K and ciphertext space C
of the KEM should both be ESE domains; (2) the valid ciphertexts output by the encapsulation algorithm
constitute only a small subset of ciphertext space C, and the decryption of a random ciphertext results in
failure or a random key; (3) the KEM has tailored, constrained CCA security. We define the last of these
three properties next.

EXPXEI\}I_,IZA(“) : Decap_,;« (P,)

(pk, sk) + KEM.Kg(1"%) If ¢ = 9" return (L)
U « C, (K*,¥7) < KEM.Encap(pk) K « KEM.Decap(sk,)
b ADecapiw;()(pk o) If P(K) =0 return (L);

El t K
Return(b) se return (K)

Fig. 2. Experiment for defining Valid Ciphertext Indistinguishability of KEMs. Here 5;:1)#,* (P,1) denotes a con-
strained decryption oracle, taking as input predicate P(-) and encapsulation .

EXP?CECWJ?(“) : Decap_ - (P,v)
(pk, sk) + KEM.Kg(1%) If ¢ = 4" return (1)
Ky + K, 95+ C K + KEM.Decap(sk, 1)
([(f7 wff)f/— KEM.Encap(pk) If P(K) = 0 return (L);
b o ADecapiw*(j(pk’K;’w;) Else return (K)
Return(d’)

Fig. 3. Experiment for defining IND-tCCCA security of KEMs. Here Decap_,« (P, 1) denotes a constrained decryption
oracle, taking as input predicate P(-) and encapsulation 1. Predicate P(-) may vary in different queries.

Definition 5 (IND-tCCCA Security for KEMSs) Let KEM be a KEM with ciphertext space C and valid
ciphertext set W, let A be a ppt adversary, and consider the experiment Expt,fg,cv‘,ﬁb(ﬁ) defined in Figure 3.

Define the advantage Advigs; 4(k) of A by:

Adv’iggﬁ,’f,A(/@) =

Pr | Explegen (k) = 1] = Pr [Bepiégan ! (v) = 1] \ .

Then KEM is said to be secure against tailored, constrained chosen ciphertext attacks (IND-tCCCA secure)

if for all ppt adversaries A with negligible uncertainty uncerta(k) (in k), the advantage Advf(CE,(\‘,(,fA(/{) is
also negligible in k. Here, the uncertainty of A is defined as uncert4(k) := qid 1, Pr[P(K) = 1], which

measures the average fraction of keys for which the evaluation of predicate P;(-) is equal to 1 in the tCCCA
experiment, where P; denotes the predicate used in the i-th query by A, and qq the number of decapsulation
queries made by A.

Constrained CCA (CCCA) security for PKE was introduced in [16] as a strictly weaker notion than
IND-CCA security. The formal defintion of IND-CCA security is included in Appendix A. The main differ-
ence between IND-CCCA security and our newly defined IND-tCCCA security is that, in the IND-CCCA
definition, the adversary is given a pair (K} ,¢*) where ¢* is always a correct encapsulation of K7, while in
the IND-tCCCA definition, the adversary is given a pair (K, ;) where, when b = 0, ¢} is just a random
element of C and, when b = 1, v is a correct encapsulation of K;. However, IND-CCCA security and VCI
together imply IND-tCCCA security for KEMs:

Lemma 1. Suppose that KEM is a KEM having an efficiently recognizable ciphertext space C. If KEM is
both IND-CCCA secure and VCI then it is also IND-tCCCA secure.

Proof. Recall that the VCI and CCCA experiments are almost the same except for the construction of the
adversary’s challenge. Let (K (1)) be chosen from C x K uniformly at random. Let (K,) be the output
of KEM.Encap in the CCCA experiment. IND-CCCA security implies (K1) ~. (K). The VCI property
implies that 1 ~. ¥ hence (K) ~. (KU ¢(®)) when K" is chosen uniformly and independently
of everything else. Finally, (K, 1) ~. (K) follows from transitivity.]

Tailored Decapsulation. We also tailor the functionality of our KEMs’ decapsulation algorithms to suit
our PKE construction.

Definition 6 (Tailored Decapsulation) Suppose KEM = (KEM.Kg, KEM.Encap, KEM.Decap) is a KEM.
Then KEM is said to have tailored decapsulation if there exists a negligible function n(k) such that for all
(pk, sk) output by KEM.Kg(1*), one or the other of the following two cases pertains:

KeyGen(17) : Dec(sk,C) :

(pkkem, skkem) <+ KEM.Kg(17) Parse C as (¥1,...,%,T)
Koy, Koy, + Ky Fori=1to /¢
pk = (Pkrem, (sz)je[s]a F) m; 0
sk = (skkem, Dk). (Kyys--, Ky,) < F(¢1,...,¢0)
Return(pk, sk) Forj=1tos
KéJrj Al (KIJ"K?;J')
Enc(pk, ma||. . . [|me) : If AS_ XVer(Kj,;,T) =1
Parse pk as (pkkem, (Kz;)je(s), F) Fori=1to¢
Fori=1to ¢ K! « KEM.Decap(skiem, ¥:)

- '
(Ki, i) < KEM.Encap(pkem) If K; —/J_, then m; /<— 0
Else ¢; + C; K; + K Else mj < XVer(K;,T)
(Kyy, - Ky) < F(t1, .. 1) Return(m ||ma]| ..., mp)
For j=1tos
Koy + Koy, Ky,)
T + XAuth(K1,..., K¢ys)
Return (¢1,...,¢%e,T)

Fig. 4. Construction of PKE scheme PKE from tailored KEM and (¢ 4 s)-XAC.

— KEM.Decap rejects a random 1" € C, except with negligible probability, i.c.,
Pr[KEM.Decap(skyem, V') #L | ¢' + C] < n(k).

— KEM.Decap outputs n(k)-uniform keys on input a random element from C. That is, the statistical distance
between the output and a uniform distribution on K is bounded by n(k):

>3

kel

Pr [KEM.Decap(skiem, ') =k | ' «+ C] — % < (k).

Remark. The former case implies that valid ciphertexts are sparse in the whole ciphertext space, i.e., [V|/|C|
is negligible. In the latter case, VCI (when VCI holds for all (pk,sk) «+ KEM.Kg(1%)) alone might imply
IND-tCCCA security of KEM, since the decapsulated key is uniquely determined by the secret key and the
ciphertext (be it valid or invalid).

4 Construction of PKE with SIM-SO-CCA Security from Tailored KEMs

Let KEM = (KEM.Kg, KEM.Encap, KEM.Decap) be a KEM with valid ciphertext set &, efficiently recognizable
ciphertext space C, and key space K = K, x K. We further assume that:

(1) KEM.Decap has tailored functionality as per Definition 6 (this will be used for the correctness of our
PKE construction);

(2) KEM is IND-tCCCA secure (this will be used in the SIM-SO-CCA security proof of the PKE construc-
tion).

(3) Both the key space K and the ciphertext space C of KEM are efficiently samplable and explainable
domains, with algorithms (SampleK, SampleK™!) and (SampleC, SampleC™") (these algorithms are also
used in the security analysis).

We refer to a KEM possessing all three properties above as being a tailored KEM.

Let F:Cl — (Ky)® be an injective function (such functions are easily constructed using, for example,
encodings from C to bit-strings and from bit-strings to IC,, provided s is sufficiently large). Let XAC =
(XGen, XAuth, XVer) be a §(k)-strong and semi-unique (¢ + s)-XAC with tag space X7 and key space XK;
suppose also that YK = K = I, x K. Our main construction of PKE scheme PKE = (KeyGen, Enc, Dec)
with message space {0,1}* is shown in Figure 4.

Note that in the decryption, if XVer(K7, ;,T) =1 for all j € [s], then the recovered bit m; equals 0 if
and only if the decapsulated key K equals 1 or XVer(K/,T) = 0.

KeyGen'(17) : Dec'(sk, C) :

(pkkem, skkem) <+ KEM.Kg(17) C=n,...,0s,T)

K, + K4, H + HGen(1"). Fori=1tof m;<+ 0

pk = (pkrem, Ko, H) Ky H(1,. .. 1)

sk = (skkem, pk) Ky + (Ka, Ky)

Return(pk, sk) If XVer(K; 1, T) =1

Enc'(pk, m1||...||me) : Fori=1to /¢

Fori=1to/ K} + KEM.Decap(skkem, ;)
Ifm; =1 If K] =1, then m} + 0
(K, ;) <+ KEM.Encap(pkkem) Else mj < XVer(K;,T)}
Else ¢; + C; K; + K Return(m?||ma]|| ..., m;)

Ky %H(wh"wwé)
KZ+1 «— (KZ7K?/)
T:XAuth(Kl,...,Kg+1)
Return (¢1,...,¢%e,T)

Fig. 5. Construction of PKE scheme PKE' from tailored KEM, (¢ + 1)-XAC and CR hash function.

Correctness. Encryption and decryption are performed in bitwise fashion. Suppose m; = 1. Then (K, ;)
are the encapsulated key and corresponding valid encapsulation; by the correctness of KEM and XAC, the
decryption algorithm outputs m;, = 1, except with negligible probability failxac. Suppose m; = 0. Then K;
and 1; are chosen independently and uniformly at random from I and C, respectively. It follows that the
tag T is independent of v;. Now, during the decryption of the i-th bit, according to the tailored property of
KEM.Decap, K7 is either L (and thus m} = 0) with probability at least 1 —n(x), or K/ is n(x)-close to being
uniformly distributed on K. In the latter case, it holds that m] = 0 except with probability 7(x) 4+ Advy e (%)
due to the n(k)-uniformity of the key and the security of XAC against impersonation attack. Consequently,
decryption correctly undoes encryption except with probability at most £-max{failxac(x), Advy (k) +n(x)},
which is negligible.

Lemma 2. PKFE scheme PKE in Figure 4 has the property that, if two distinct ciphertexts C,C’ both pass
the verification step /\‘;:1 XVer(Ko1;,T) =1 during decryption, then they must have different tags T # T'.

Proof. The proof is by contradiction and relies on the injectivity of F. Let C = (¢1,...,%¢,T) and C =
(1, ..., 90, T) be two different ciphertexts. Let (Kys-o s Ky)) = F(41,...,%) and (Kyl, e Ky) =
F(i1,...,1;). Suppose Njo1 XVer((Ky,, Ky;), T) = Ny XVer((K,,,K,,),T) = 1. f T =T, then C # C
implies (¢1,...,%¢) # (1[11, .. .,1/}4), which further implies K, # K'yj for some j € [s], by the injectivity
of F. On the other hand, we know that XVer((Ky,,K,,),T) = 1 and XVer((K,,,K,,),T = T) = 1; the

semi-unique property of XAC now implies that K, = K, , a contradiction. a

The SIM-SO-CCA security of PKE will rely on Lemma 2, which in turn relies on the injectivity of F'.
The size of F’s domain is closely related to parameter s: generally the parameter s will be linear in ¢. Since
we need a (¢ + s)-XAC in the construction, the size of public key will be linear in ¢. The size of tag T in
the ciphertext will also grow linearly in s and therefore in £. To further decrease the size of public key and
tags in our PKE construction, we can employ a collision-resistant (CR) hash function H = (HGen, HEval)
mapping C* to K, instead of the injective function F' (see Appendix B for definitions). Then an (¢ + 1)-XAC
is sufficient for the construction, and this results in more compact public keys and tags, but requires an
additional cryptographic assumption. When F' is replaced by a CR hash function H, Lemma 2 still holds but
relies on the existence of collision-resistant (CR) hash function mapping C! to a smaller range. We omit the
obvious modifications to our PKE construction needed to accommodate the use of CR hash functions. The
construction using CR hash functions is given in Figure 5.

Theorem 1 Suppose KEM is a tailored KEM, and the (€ + s)-cross-authentication code XAC is §(k)-strong,
semi-unique, and secure against impersonation and substitution attacks. Then the PKE scheme PKE con-
structed in Figure 4 is SIM-SO-CCA secure. More precisely, for every ppt adversary A = (A1, As, A3)
against PKE in the SIM-SO-CCA real experiment that makes at most qq decryption queries, for every ppt
n-message sampler M, and every ppt relation R, we can construct a stateful ppt simulator S = (S1,S2,Ss3)

10

for the ideal experiment, and a ppt adversary B against the IND-tCCCA security of KEM, such that:

AAVEEN . () < 1l - AdVigiis () + ity - (AdVERE () + AR () + (k)) + e - 3(x).

First, we give a high level overview of the proof before presenting our formal proof. We construct a ppt
simulator S as follows. (See Figure 6.)

— & generates a public/private key pair and provides the public key to A.

— S answers A’s decryption queries using the private key.

— &S prepares for A a vector of n challenge ciphertexts, each ciphertext encrypting £ ones.

— When A decides to corrupt a subset of the challenge ciphertexts, S obtains the messages corresponding
to the corrupted ciphertexts and opens the corrupted ciphertexts bit-by-bit according to the messages.
If bit m; should be opened to 1, S reveals to A the original randomness used by KEM.Encap to generate
(K, ;). If bit m; should be opened to 0, S first explains t; with randomness output by SampleC™*(C, v;)
(as if ¢); were randomly chosen). Then S uses algorithm ReSample of XAC to resample K; to get K;, and
explains K; with randomness output by SampleC (K, KZ) (as if K; was randomly chosen).

— & finally outputs whatever A outputs.

The essence of the SIM-SO-CCA security proof is then to show that encryptions of 1’s are computationally
indistinguishable from encryptions of real messages, even if the adversary can see the opened (real) messages
and the randomness of a corrupted subset of the challenge ciphertexts of his/her choice, and have access to
the decryption oracle. This is done with a hybrid argument running from Game 0 to Game nf. In Game k
the first &k bits of messages are 1’s and are opened as S does while the last nf — k bits come from the real
messages and are opened honestly. The proof shows that Games k and k — 1 are indistinguishable using the
tCCCA security of the tailored KEM and the security properties of the strengthened XAC.

If the k-th bit of the messages is 1, Games k and k — 1 are identical. Otherwise, a tailored KEM adversary
B can be constructed to simulate Game k or k + 1 for adversary A. B is provided with a public key pkiem,
a challenge (K*,1*) and a constrained decryption oracle, and is going to tell whether (K™, ") is an output
of KEM.Encap(pkgem) or a random pair. B can generate a public key for A. When preparing the vector of
challenge ciphertexts, B will encrypt the first k—1 bits from the real messages, use (K*,4¢™*) as the encryption
of the k-th bit, and encrypt nf —k ones for the remaining bits. If (K*,4*) is an output of KEM.Encap(pkgem),
the challenge vector of ciphertexts is just that in Game k, otherwise it is just that in Game k — 1. Finally,
to answer A’s decryption query C' = (¢1,...,%,T), B can query (¢;, XVer(-,T)) (note that XVer(-,T') is a
predicate) to his own constrained decryption oracle if ¥* # 1;; B then replies to A with decrypted bit 0 iff B
gets | from its own oracle. The decryption is correct because B’s oracle outputs L iff the decapsulated key
is K; = L or XVer(K;,T) = 0. If v* = 4;, B is not allowed to query his own oracle, but can instead respond
to A with the output of XVer(K*,T) as the decrypted bit. This decryption is also correct with overwhelming
probability for the following reasons: (1) If K* is the encapsulated key of ¢*, then XVer(K*,T) = 1 and
decryption is correct. (2) If (K*,4*) is a random pair, then all the information leaked about K* is just the
very tag T™* that is computed by K™ during the generation of some challenge ciphertext. The semi-uniqueness
of XAC guarantees that T' £ T*, and the adversary’s corruption only reveals information about a re-sampled
K*. The security of XAC against substitution attacks shows that even if A knows T and all keys other than
K* then A forges a different tag T" such that XVer(K*,T) = 1 with negligible probability. Therefore, B will
almost always respond to A with bit 0, which is the correct answer.

Proof. (Proof of Theorem 1.) For every ppt n-message sampler M, every ppt relation R, every stateful ppt
adversary A = (A, As, A3), we construct a stateful ppt simulator § = (S1, Sz, S3) as follows (see also Figure
6).

— & calls KeyGen to obtain (pk, sk). Then it calls .AlDec (pk) to obtain « and the state a;. Note that S;
possesses sk and is able to provide a decryption oracle to A;. The view of A; is exactly the same as that

in EXpRE 0 ().
— Without the knowledge of m = (m[1], ..., m[n]), which is the output of M(a), S, generates the challenge
ciphertext vector ¢ = (c[1],...,c[n]) w1th each c[i] being an encryption of ¢ ones, i.e.,

cli] = Enc(pk, 1% r[i]).

Then Ss calls A2De%°(')(a1, c) to get the corruption set I and state as. Recall that in ‘real’ experiment

Exppree® r(k), Az receives encryptions of real messages m.

11

S1(17): Sa(s1, (1™) Ss(s2, m[I]):

(pk, sk) < KeyGen(1%) pk = (pkkem, Kz, H) For i € I do ‘
(a,a1) « A (pk) sk = (skkem., pk) cli] = (7, ..., P, T™)
51« (pk, sk,a1) Fori=1ton r[i] = (ri1, a2y« -+, T40)
Return(a, s1) For j=1to ¢ K[i] = (KV,... Kéjrs)
(K“),T/)(Z) < KEM.Enc(pkrem;7ij) For j=1to ¢
(Ko K) PP, 0l0) If mi][j] = 1 5« ri;
For j=1tos , Else]
Klszj (sz’[(sz)) Te 4= SampleC™!(C, 1/15’))
T XAuth(Kf“, LKD) K« ReSamp(j, (K)o, TO)
cli] « (@, 9, T(l) 1, < SampleK ™" (K, R’;l))
rfi] « (7'117 T3y ey Tit) Tij — (TCA’ Tk)
Kl (K K" KV
< (c[1],c[2],...,c[n]) Pli] = (Pi1, Fiz, -, Pie)
 (e1],v[2], ..., v[n]) out 4 = A5"% (az, m[1], #{1))

< (k[1], k[Q] ,k[n]) Return(outA)
(1, as) AE“’%‘)(al, c)
S2 (az,c, r, k,sl)
Return(7, s2)

Fig. 6. Construction of simulator S for Expf,‘ﬁggfg"ii‘ﬂﬂ(m).

— &3 opens the challenge ciphertext vector (cli]);er, where c[i] = (wgi), e ,zpéi),T(i)) = Enc(pk, 1%;[i]),
according to the corrupted set of messages (m[i]);e;.
e If m[i][j] = 1, S3 opens with the original random coins;
o If m[i][j] = 0, S3 utilizes SampleC™! to recover a properly distributed randomness for ¢§Z), and
() 30 as to hide the real key KJ(), and then uses SampleK™* to recover a
properly distributed randomness for K](2)

ReSamp to re-sample K

Finally, S5 collects the newly opened randomness #[I] and calls AD cel)(ag, m(I],t[I]) to get the output
output 4 as its own output.

The differences between the real and ideal experiments lie in two points. The first is how the challenge
ciphertext vector is generated. We formalize it by an algorithm Generate-c; the second is how the corrupted
ciphertexts are opened, which is formalized by an algorithm Open-c. These algorithms are shown in Figure
7. In the proof, we focus on these two points, and proceed with a series of games starting with Game G_o
and ending with Game G,,¢, with adjacent games being proven to be computationally indistinguishable. The
full set of games are illustrated in Figures 7 and 9.

Game G_j: This is the original real experiment Expﬁ,ﬂ%ﬁi{fﬁﬂm r(r). Here we elaborate how the challenge
ciphertext vector ¢ is generated with algorithm Generate-c and how the randomness is opened with
algorithm Open-c. Let m < M («). In fact, c is the output of Enc(pk, m;r) and c[I] is opened with the
real randomness r[I] that was used to compute c[I]. So

Pr [Bxpice e (k) = 1] = PrGs = 1]. (1)

Game G_;: This game is the same as Game G_» except for the way c[I] is opened. If m[i][j] = O for
i € 1,j € [f], we use SampleC™! and SampleK™! to obtain the randomness in Open-c. Then the
original r;; used to encrypt mi][j] = 0 does not need to be kept any more and we can set r;; to be L

in Generate-c. This change makes no difference because both K and C are efficiently samplable and
explainable. Hence

Pr [G,l = 1] =Pr [G,Q = 1] . (2)

Game Gg: This game is the same as Game G_; except for the way c[I] is opened. In case of m[i][j] = 0 for

(@)

i € I,j € [¢], we do not use the original key K, which was used to create T® | as the input of SampleK ™.

Instead, we use the ReSamp algorithm to re-sample a key K(), ie, K(l) + ReSamp(j, (Kgi))v;,éj,T(i)).

12

Exppke A nm.r(F): all games Open-c(I,m, c, r, k) G_o
(pk, sk) < KeyGen(1%) Return(r[1])
(a,a1) + ATV (pk)
m « M(a) Open-c(j,m, c, r, k) G_1,
(c, r, k) + Generate-c(pk, m) For i € I do N
cfi] = (17,4, T)
Decgc(+) 1 s ¥ >
(I,a2) + A, (a1,¢c) r[i] = (ri1, iz, - - -, it
r[/] + Open-c(/,m, c, r, k ; i i
U]+ Open-ell,m, ¢, 7, k) Kli] (K, KD)
out g + A, 2" (a2, m[I],r[I]) For j=1to¢
return R(m I,outa) If mi][j] = 1 74 < 7453
Else
Genersecttm] B ee— T
pk = (pkkemv (KI])je[s]7 F) ‘/ — @
Fori=1ton ri; < SampleK™" (K, K;")
For j=1to t T 4 SampIeC_l(C,w](Z))
It m[z][]] = 1 Tij <— (T;j, T;;)
(K9, 9) + KEM.Enc(pkiem; 7i;) £fi] = (Pir, Pia, . .., Pir)
Else(_) Return(#[1])
K" < SampleK(/C; 7}
(Ji) mP (:J) Dec#‘:(Sk? (wlv---awlaT)) G72 ~ an
;" = SampleC(C;75); I (¢1,...,00,T) €c_ Return(L)
Ti; < (i, 75); sk = (skkem, pk)
(4) (4) 0] () Fori=1tol mj+<+ 0
(Kyyseo s Kyl) <= F(by7s oo 90,7) (K K.)« F(e)
Forj=1tos wa'--lvtys -, YPe
i or j=1tos
Klg-‘zj (sz ’ KZSJ)) .Z ’
T0 o xAuth(KD, .. K® Koy (Ko, Ky))
 XAuth(K,", .., KGL) If \S_, XVer(Kj,;,T) =1
C[]<—(¢§1):-~7¢51):T(1)) Forz':ltoé
rfi] < (ri1, ri2, ..., Tie) K! + KEM.Decap(skem, Vi)
k(7] <—(KY),...,K§QS) If K] =1, then m} < 0
< (c[l],¢[2],...,c[n]); r < (r[1],x[2],... r[n]) Else m; < XVer(K;, T}
« (k[1],k[2],...,k[n]) Return(m||ma]| ..., m}p)
Retu n(¢, r,)

Fig. 7. Games

The new key f(]m is statistically d(x)-close to the real key KJ@, due to the d(k)-strongness of XAC. A
union bound gives

|Pr(Go =1] —Pr|[G_1 =1]| < (nf)d(k). (3)

Game Gyj: Here k € {0,1,...,nl}. Let k = (u — 1)¢ + w with u € [n] and w € {0,1,...,¢ — 1}, then each
k determines a unique pair (u,w). The difference between G and Gy is how the challenge ciphertext

vector c is created in Generate-c. There are in total nf bits in m; denote them by by, ba, ..., b,¢. In this
game, ¢ can be thought of as an encryption of bit-sequence 1¥by 41, ..., bye. More precisely, as in Figure
9,

— (c[i])ic[u—1] are all encryptions of ones, i.e., c[i] = Enc(pk, 1%;r[i]) for i € [u — 1];

— For the u-th ciphertext ¢, = (%u), . ,1/1/‘),T »)), we have (Kj(.u),d);u)) + KEM.Enc(pkyem; 7;) for
j €{0,1,...,w}. The remaining (Kj(-u),@/éu)) for j e {fw+1,...,£ — 1} are generated according to
the value of m[u][j] as in Game Gy. Finally T is computed as T <« XAuth(Kl(u) Kéi)s)

— The remaining ciphertexts c[i] for ¢ € {u + 1,...,n} are generated according to the Value of m[i] as
in Game Gy.

When k = nf, the game is exactly the environment provided by our S (as described above) in the ideal
experiment. All we have to prove is that Game Gy and G,y are computationally indistinguishable. Further
we have:

Pr[Gne=1] - Pr[Go=1] = ZPer_O Pr(Gr_1 =1]. (4)

13

BDecap,LR(pkkem):

u <+ [n]; w <+ {0,1,..
E—(u—1l+w
Koy Koy Ky
pk = (pkkem’ (sz)jG[S]vF)
K"+ 1;¢" +1
(a, a1) 4 ATP<O (pk)
m — M(a)
(¢, ry k) « Gi.Generate-c(pk, m)
Ifmulw] =0 (K*,¢*) + LR(pkkem,b*)
KO K5 i g
(K?S’;L)7"'7K1<J’f:>) <_F‘(/l/}gu)7"'7 éu))
For j=1tos Kéi)j — (Kz_j,Kaxt))

T « XAuth(K(", ... K"))

clu] < (", ..., T®)
B. .
Dec¢c()(a17 C)

(Iaa2) — AQ

r[I] + G;.Open-c(I,m, c, r, k)
out g +— AE'DE%C(')(G% m[I],r[I])

return R(m, I, out 4)

O 1)

B.Dec(¢r, . .., P, T): ’B.Dec¢c(1/;1,...,z/zg,T) ;\
’If (Y1,...,%e,T) €c Return(J_)‘
Fori=1tof m;<+0
(K;U'"szl/s)HF(wla-”ﬂ/}Z)

For j=1tos

KL, o (Kny, K3)
I NS, XVer(Kj,;,T) = 1
Fori=1+to¥
If ¥; = ¥* then mj < XVer(K*,T)
Else
K < Decap(XVer(-,T), ;)
if K; =1, then m), < 0
mj < XVer(K;,T)
Return(m?||ma]|| ..., m;)

Decap(XVer(-,T),)
K <+ KEM.Decap(sk, 1)
If K =1 or XVer(K,T) =0 return (L);
Otherwise return (K)

Fig. 8. Algorithm B, where G;.Generate-c(pk, m) (resp.
G.Open-c) is algorithm Generate-c (resp. Open-c) in
game GYy,.

Generate-c(pk, m) Gr = Gu,w), k € [nf]

pk = (Pkkem, (Kz;)jels)s F)
Fori=1tou—1
For j=1to /4
(K7, 4{7) + KEM.Enc(pkem; 7i;);

(K, KDY « F .)
For j=1tos ,
K e (Kap KY)

T XAuth(K?, ... KD,
ofi] « (", ", V) | |
I‘[’L] — (Til, T2y ... ,ﬁe); k['L] <~ (KY): T Klﬁ)s)
For i = u do
For j=1tow
(K, 98+ KEM.Enc(pkiem; 7);
Forj=w+1to/
If mlu][j] =1
(KS 9 KEM.Enc(pkem; rus)
Else K;") < SampleK(K;77,;);
w](.“) < SampleC(C; ;)5 Tuy L
(K, KDY = F o)
For j=1tos
K e (Ka, KyY)
T XAuth(K(™, ..., K"))
C['LL] — (wgu)a sty wEU)?T(u))
ru] < (Tu1, Tu2, - - -5 Tue)
Ku] + (K™, K"
Fori=u+1ton
Forj=1to !
If mfi][j] =1
(K9, 9\7) « KEM.Enc(pkiem; i)
0) .
Else .Kj < SampleK(K; ;)
w;.’) + SampleC(C;ri}); rij +L

(K, KDY — P, i)
Forj=1tos
KL, o (., KL)
T® + XAuth(K{”, ..., K{),)
cli] + (T/Jgi), e ,;/;E,i)’ Q)
r[i] < (ri1, i, ..., 7ie); K[i] (K@, B "thi)s)

c+ (c[1],¢c[2],...,c[n]); r « (r[1],r[2],...,r[n])
k < (k[1],k[2],.. ., k[n])
Return(c, r ,k)

Fig. 9. Generation of challenge ciphertext vector in G.

Let E](k) be the event that m{u]{w] = 0 with k = (v —1)¢+w in Game G;. Since Ej(k) is independent of j,
we have Pr [Eék)} =Pr [Eik)} =-.-Pr [Egz)] Therefore, we use E®) to denote the event that m[u][w] = 1

for any game. If E*) does not happen, i.e., m[u][w] = 1 where k = (u — 1)¢ 4 w, then the two adjacent

Games GG, and Gj_1 are identical. Now:

Pr[Gy =1] - Pr[Gp_q = 1] = (Pr [Gk =1 E(k)} Pr [EW} +Pr [Gk =1 ﬂE(k)} Pr [ﬁE(k)})

—(Pr {G,H —1| Eﬂ Pr [E”f)} 4 Pr [Gk,l =1 ﬁE(k)} Pr [ﬁEW])

— (Pr [Gk =1 E(’“)] —Pr [G,H —1] EW]) Pr {E“ﬂ :

14

Then we have
nt

Pr(Gne=1]—Pr[Go=1] =Y Pr[Gy =0] - Pr[Gy_ =1]

k=1

(Pr [Gk —1| Eﬂ —Pr [Gk_l —1] E(’“)D Pr [E“ﬂ

I
bl

2 1Mz
[

= — (k)| _ _ (k)
kl(Pr[Gk 1, E } Pr[Gk_l 1, E D (5)

The computational indistinguishability of Gy and G,,; will be proved based on the IND-tCCCA security
ofKEM, and the security of XAC. Let B be an adversary in the IND-tCCCA experiment Expf&cﬁfgb(ﬁ).
1EQ\W/B is provided with a KEM public key pkiem, and has access to a constrained decapsulation oracle
Decap_.,«(-) and (effectively) a one-time encapsulation oracle LR(pkgem,b). If b = 1, LR(pkkem, b) will call
KEM.Encap(pkkem) to output (K*,v*), a key and a valid ciphertext encapsulating the key. If b = 0, it
chooses (K*,9*) from K x C uniformly at random. B is aiming to tell whether b = 0 or b = 1 after obtaining

(K*,¢*) from LR(pkgem,b), while having access to a constrained decapsulation oracle 5«;35)#* (*). Now B
can be constructed as follow (see also Figure 8).

— B randomly chooses u + [n] and w <+ {0,1,...,¢ — 1}. Setting k¥ = (v — 1)¢ + w, we have that k is
uniformly distributed in [n].

— Bchooses Ky, , ..., K, + K, an injective function F : C¢ — (KC,)?, and sets pk = (pkyem, (Kz;)jers), F)-

— B provides A; with a decryption oracle, denoted by B.Dec(+), with the help of its own constrained decapsu-
lation oracle Decap(-). Given a query C' = (¢1, ...y, T), algorithm B.Dec verifies /\j=1 XVer((K,,, KZ’}J), T) =
1, where (K;l, cee K?’JS) = F(¢1,...,1¢p). If the verification fails, B returns ¢ zeros. Otherwise, the de-

cryption goes bitwise as follows. B queries its oracle IS;Ea/p with (P,;), where the predicate P defined

as
1 if XVer(K,T) =1
P(K) := {O if XVer(K,T)=0or K =1

If the output of Decap(-) is L, B sets m, = 0, otherwise B sets m, = 1. Finally B returns (mf,...,m}).
Note that B.Dec(-) functions exactly the same as the decryption oracle Dec(:).
B runs AlB'DeC(')(pk) to get (a,a1) and uses « to sample a message vector m. There are in total n¢ bits
in m, denoted by, ba,...,b,e. Then B computes c as follows.

e if m[u][w] = 1, B will encrypt the n messages consisting of bit sequence 1¥by 11, ..., b, to get c. In

this case, c is exactly the output of algorithm Generate-c in Game Gy.
e if m[u][w] = 0, B will obtain c by encrypting n messages which constitute bit sequence 1¥=1bby 1 1, ..., bue

(notice the presence of B’s challenge bit b here). To do this, B queries LR(pkgem, b) to get (K*,¢*)
and sets Kl(uu) = K* and w,(uu) := 9* during the generation of c[u]. In this way, B embeds his own
challenge in the creation of c. If (K*,¢*) is the output of LR(pkkem, 1), then B implicitly sets
by = b = 1. Otherwise b = b = 0. Consequently, the challenge ciphertext vector c is just the output
of algorithm Generate-c in Game G_; or Gy, depending on b =0 or b= 1.
B uses B.Decgc(-) to answer decryption queries from Ajs. Algorithm B.Decgc(-) is almost the same as
B.Dec(+) (see Figure 8) but with the restriction that the queried ciphertext C' = (¢1,..., 1, T) does not

appear in c. Recall that B has its own constrained decryption oracle Decapg,(Skkem,). This enables B
to simulate the decryption oracle for Ay so long as ¢* ¢ {1,...,9e}. However, if ¢* € {¢1,..., ¢},
say 1; = 9%, then B computes m/ = XVer(K*,T) instead. Next it runs Ag'Dec‘ZC(')(al,c) to obtain the
corruption set I and state as.

— B calls the Open-c algorithm in Game G}, (which is the same algorithm in all games Gy — G,,¢) to obtain
the randomness r[f].

— B runs A?'DecéC(')(az,m[I], r[I]) to get the output out 4.

— B returns R(m, I, out 4).

Let By denote algorithm B running in Game Gy, for a fixed k. (Recall that k = (u — 1)¢ + w was chosen
from [nf] uniformly at random by B at the start of its simulation.) We will show that By, almost perfectly

15

simulates Game Gy or Gj_1 for A depending on the value of mfu]{w] and B’s own challenge (K*,*).
Observe that B.Dec(-) functions exactly the same as Dec(-). If m[u][w] = 1, By, is exactly the same as Gj.
If mfu][w] = 0, B), will be the same as G, when b = 1 and Gy_; when b = 0, as long as B.Decg.(-) can
perfectly simulate the decryption oracle Decg. (). However, there is a difference between B.Decgc(-) and
Decgc(-). Below we show that this difference has negligible influence due to the security properties of XAC.

Claim 1 Suppose that m[u][w] = 0 in By, where k = (u — 1)n + w. If b = 1, then the output of algorithm
B.Decg.(-) is evactly the same as that of decryption algorithm Decg.(-). If b = 0, algorithm B.Decg.(-)
functions identically to decryption algorithm Decg.(-) except with probability at most

(ga) (n(x) + AdVER(R) + Advithe(r))
Proof. Let C = ..., T) denote a decryption query from A. Clearly C' ¢ c. Let (K! ,....K!) =
F(wlf, ey) IE /(\1/51_1 XVez/;E(Klj Ky,),T) = O,ygoth a?goriz,hms Decg.(*) angB.D§c¢c(-) Wif] olljlltput (mZ,> S, my)
(0,...,0). From now on, we assume that \’_, XVer((K,,, K,),T) = 1. Then it follows that 7" # T for all
i € [n] by Lemma 2.
Next both algorithms Decgc(-) and B.Decgc(-) will decrypt C' = (31, ...,%¢, T) bitwise to recover the

message (mf,...,my). Recall that Decgc(-) sets m; = 0 iff the decapsulated key KEM.Decap(z;) =L or
XVer(KEM.Decap(v;),T) = 0. As for how B.Decg.(-) determines mj, we consider two cases.

— Case ¢* # 1);: B.Decgc(-) will query the constrained decapsulation oracle IS;Ea/pgc(') with (P(:) =

XVer(:, T), ;). B.Decg. outputs the bit m; = 0iff Decapg, returns L, and this happens when KEM.Decap(+;)
outputs L or XVer(KEM.Decap(%;),T') = 0. Hence, in this case, B.Decg.(-) functions exactly as Decgc(-)
does.

— Case 9* = 1, B.Decgc(-) simply computes m; := XVer(K*,T'). We further consider two sub-cases.

e Case b = 1: Then (K*,¢*) is the output of B’s encryption oracle LR(pkgem, 1), thus K* is the
encapsulated key of ¢*, i.e. K* = KEM.Decap(skgem, ™). Consequently, the decrypted bit m) :=
XVer(K*,T) is exactly the same as the bit mj] output by Decgc(-).

e Case b = 0: Then (K*,4*) is the output of B’s encryption oracle LR(pkxem, 0). Hence both K* and ¢*
are uniformly chosen. In this case, Decgc(-) outputs m; = 0 except with probability (k) +Adv;2";’c(/<a),
according to the decryption correctness of PKE.

On the other hand, B.Decg.(-) outputs m/ := XVer(K*,T). Recall that T # T, so XVer(K*,T) =
0 except with probability Adviie-(x), due to the security of XAC against substitution attacks.
More precisely, K* is uniformly chosen from X, and all information leaked about K* is given
by T = XAuth(Klu),...,K,(Uu) = K*,...,K}“)) in the challenge ciphertext cf[u] and KW =
ReSamp(w, (Kq(;u))ve[g+s]7v¢w,T(“)) by the Open-c algorithm. However, algorithm Open-c did not
expose the real key Kq(l,u) = K™ and what it revealed is a fake key IA(I(Uu) The fake key is the output
of ReSamp on input (Kq(,u))wgw and T, hence is redundant and does not leak more information
beyond (Kz(,u))v#w and T(". Consequently, the security of XAC against substitution attacks shows
that XVer(K*,T) = 0 except with probability AdviSc (), even conditioned on the knowledge of T'(*)
and (Ki(zu))wéw'

Hence B.Decg.(-) outputs an m; different from that output by B.Decg.(-) with probability at most
n(k) + Advi;(n e (k) + Adv¢ie (k). The lemma follows by applying the union bound, since the plaintext
has ¢ bits and there are g4 decryption queries. (End of proof of Claim 1.)

Let Errj, denote the event that there exists a decryption query C' to which B.Decgc(-) replies differently
from Decgc(-) in By. According to the proof of Claim 1, we know that Erry occurs only when b = 0 and
m/u]{w] = 0; moreover

Pr[Erry, | mu][w] = 0,6 = 0] < (ga) (77(#;) + AdVITE () + Advygc(n)) . (6)

16

Let B = ' (respectively B = b') denote that algorithm B (respectively By) returns bit . Let E®*)
denote the event that m[u|[w] = 0 with k = (u — 1)¢ + w in B. The advantage of B is given by

Advign (k) =Pr[B=1|b=1-Pr[B=1]|b=0]
nt

_ T;;(Pr [Be=1,E® [b=1] ~Pr[B = 1,B® | b =0]) (7)
ne
L T
:ii Pr[Gy =1 E®] —Pr[B, = 1,Erm | B®, =0
P | (9)
S NICEN

—é Pr [E(k)] Iipr {Bk —1|Errp, EW, b= o} - Pr [ﬁrk | E®) p = 0}

—i Pr [E(k)] Iipr {Bk — 1| Erry, E® b= o} - Pr [Errk | E®) b= 0}

— ”lﬁki_i (Pr [Gk = 1,E(k)} —Pr {Gk_l = 1,E("?>} . Pr {?rk | B0 p— OD

,é nZZPr [E(’“)} -Pr [Bk =1 Err, E® b= o} -Pr [Errk | E® b= 0} (10)
k=1
> % i (Pr [Gk - 1,E(’f>] —Pr {G,H = 1,E(’“)D — max Pr {Errk | E® b= 0} (11)
k=1

Eqn. (7) follows from the fact that the output of By is independent of b if E®*) does not occur. Eqn. (8)
follows from that F(®) and b are independent of each other. Eqn. (9) follows from the fact that By perfectly
simulates Gy, if b = 1 and E®*) occurs. Eqn. (10) is due to the fact that By perfectly simulates Gi—; when
b =0 and Err;, does not occur. According to (5), (6) and (11), we have

nt

Pr(Gue =1 - Pr(Go=1=3 (Pr [Gk - 1,E<’“>] —Pr [G,H - 1,E(k)D
k=1
<nl- Adv?é,‘f,,‘flg(ﬁ) +nl2qq - n(K) + nl’qq - Adv;nApC(/-c) + nl?qq - AdvEe (k) (12)

Combining (1), (2), (3) and (12), we have

AdV}SDO};EE.‘A,S,n,M,R(H) = |P1“ [Gnﬁ = 1] —Pr [G72 = 1] |
< |Pr(Gue = 1] = Pr[Go = 1] | + | Pr[Go = 1] = Pr[Gy = 1]

< nl - AdviER (%) + nl?qq - Adviiee (k) + nl?qq - Advigee (k) + nl2qq - (k) + nl - 5(k) (13)
from which the theorem follows. a

The security of our modified construction using CR hash functions (see Figure 5) is stated in the following
theorem, whose proof is similar to that of Theorem 1.

Theorem 2 Suppose KEM is a tailored KEM, the (£+1)-cross-authentication code XAC is §(k)-strong, semi-
unique, and Ssecure against impersonation and substitution attacks, and H s collision-resistant. Then the
PKE scheme PKE' constructed in Figure 5 is SIM-SO-CCA secure. More precisely, for every ppt adversary
A = (A1, Az, As) against PKE' in the SIM-SO-CCA real experiment that makes at most qq decryption

17

queries, for every ppt n-message sampler M, and every ppt relation R, we can construct a stateful ppt
simulator S = (81, Ss, S3) for the ideal experiment, a ppt adversary B against the IND-tCCCA security of
KEM, and a ppt algorithm F against the collision-resistance of H such that:

AQVERE 5 a2 () < 0 - AV () + nl2qa - (AdVIRC(R) + AdVEE(k) + ()
+nl-6(k) + Advyr £ (k).

5 Instantiations

In this section, we explore three different constructions of tailored KEMs, each suitable for the application
of Theorems 1 and 2. The first is based on any Strongly Universaly hash proof system, the second is a direct
construction relying on the n-Linear Assumption and a target collision-resistant hash function (see Appendix
B for definitions), while the third uses indistinguishability obfuscation.

5.1 Strongly Universal, Hash Proof Systems

We use hash proof systems [8] to build tailored KEMs suitable for application in our main theorem.

Let ¥ C C be a language. The hardness of the subset membership problem for ¥ with respect to C
requires that a random element from ¥ is indistinguishable from a random element from C. Let K be a set
and Ag : C — K be a hash function indexed with sk € SK. Then Ay is said to be projective if there exists
amap p: SK — PK such that u(sk) € PK defines the action of Az on the subset ¥; u is then said to be a
projection on subset ¥.

A hash proof system (HPS) HPS consists of three algorithms (HPS.param, HPS.pub, HPS.priv). The
randomized algorithm HPS.param(1%) outputs params = (G,C, ¥, PK,SK, A, u), where G is a group. The
secret key sk is randomly chosen from SK, and the public key is computed as pk = p(sk) where p is
a projection on W. Algorithm HPS.Pub(pk,t,w) is given the public key pk, an element ¢ € ¥ and its
witness w, and outputs an encapsulated key K = HPS.Pub(pk,,w) such that K = Az (¢). Algorithm
HPS.Priv(sk, 1) recovers K = Ay (v)) using sk.

The Strongly Universaly (SUs) property of an HPS characterizes the unpredictability of Agx (1)) for
PpeC\W.

Definition 7 Let HPS = (HPS.param, HPS.pub, HPS.priv) be a hash proof system. Then HPS is said to be
SU, if

Pr{Aa(v) = K | pk = p(sk),¢', K" = Ag.(¢)] = 1/|K],
for all pk € PK, all ,¢" € C\ ¥ with ' # ¥ and all K, K' € K, where the probability is taken over
sk < SK.

Given that HPS is an SUy HPS, a KEM KEM can be constructed as shown in Figure 10. The output
params of HPS.param is used as a set of public parameters implicitly used as input in the algorithms of KEM.
Notice that the valid ciphertext set for KEM is .

KEM.Kg(1"%): KEM.Encap(pk): KEM.Decap(sk, 1):
sk +— SK 1 < ¥ with witness w .
pk = u(sk). K < HPS.Pub(pk, ¢, w) K+ HPS.Priv(sk, ¢)
Return (pk, sk) Return(K, 1) Return(K)

Fig. 10. Construction of a KEM from an SUs hash proof system.

Theorem 3 Let HPS be an SUs; HPS with params = (G,C, ¥, PKC,SK, A, u). Suppose the subset membership
problem is hard for ¥ with respect to C. Then the KEM KEM constructed from HPS as shown in Figure
10 is IND-tCCCA secure. Furthermore, if W is sparse in C, and both C and K are efficiently samplable and
explainable, then KEM is a tailored KEM.

18

Proof. Tt was already proved in [16] that the SUy property and the hardness of the subset membership
problem for ¥ with respect to C implies the IND-CCCA security of KEM. On the other hand, public and
secret key pairs can be generated independently from C and ¥ and the subset membership problem holds
even if the secret key is known to the adversary. More precisely, when an adversary B is given ¢ and tries
to distinguish whether v is randomly chosen from ¥ or C, it can establish a VCI experiment for a VCI
adversary A as follows: first call (pk, sk) <~KEM.Kg(1*) and use sk to answer decryption queries. B gives
pk to A and gives ¢ as the challenge ciphertext. Finally B outputs whatever A returns. It is clear that B
has the same advantage as A. This implies that the VCI property holds for KEM under the hardness of the
subset membership problem. Then IND-tCCCA security follows from Lemma 1.
The SUs property of HPS implies that

1

K|
for all invalid ciphertexts ¥ € C\ ¥, all K € K, and all pk = u(sk), where the probability is taken over
sk <~ SK. Then

Pr [KEM.Decap(sk, 1)) = K] = Pr [HPS.Priv(sk, 1)) = K] =

Pr [KEM.Decap(sk,) = K | ¢ < C] = Pr[KEM.Decap(sk,) = K | ¢ € ¥] - |£||
+ Pr[KEM.Decap(sk,) = K | ¢ € C\ ¥] - < - ||i/|>

- _ L R Y O A R L U

= Pr [KEM.Decap(sk,) = K | ¢ € ¥] C] + K] <1 |C|) <] + 7ok

Noting that Pr[KEM.Decap(sk,) = K | ¢ € ¥] lies between 0 and 1, it follows that the statistical dis-
tance between KEM.Decap(sk, 1) (when ¢ is uniformly selected from C) and the uniform distribution is at
most |¥]/|C|, which is negligible due to the sparseness of ¥. This establishes that KEM.Decap has tailored
functionality.

Finally, KEM is a tailored KEM because it has samplable and explainable domains C and K, it has IND-
tCCCA security, and KEM.Decap has tailored functionality. a

Remark 1. . As pointed out in [12], both DDH-based and DCR-based HPS could have samplable and ex-
plainable platform groups. For example, we can choose the subgroup of order ¢ in Z; (with p = 2¢+ 1) as
the DDH group, and choose Z%;, as the DCR group.

5.2 Tailored KEM Based on n-Linear Assumption

Let G(17) be a group generator, that is, a ppt algorithm which outputs (G, g, p) where G is a group of prime
order p (having x bits) and g a generator of G.

Definition 8 The n-Linear Assumption for G(1%) states that for all ppt adversaries B, the advantage of B
defined below is negligible.

Adv%'”"(/-i) = ‘ Pr [B(gl, O L L h2-i=1 T = 1}

_PT[B(gla-'wg’rugIla-'-7g:7,n7h7hz) = 1] ‘7

where (Gag7p) A g(lﬁ); (gz)ze[n]ah < G and (Ti)ie[n]yz — Zp-

In [16], Hofheiz and Kiltz presented a KEM based on the n-Linear Assumption for a group generator
G(1") and a target collision-resistant hash function, and proved its IND-CCCA security. We replicate the
algorithms of this KEM in Figure 11. Note that this construction does not fall into the category of HPS-based
KEMs.

Lemma 3. If the n-Linear Assumption holds for G(1%), and TCR is target collision-resistant, then the
Hofheinz-Kiltz KEM in Fig. 11 is IND-tCCCA secure.

Proof. In view of the results of [16] and Lemma 1, we need only prove that the KEM in Figure 11 has the
VCI property.
Given an adversary A winning the VCI experiment with non-negligible probability, we can construct a ppt
algorithm B solving the n-Linear problem with help of .A with non-negligible probability. Let (g1, ..., gn, 91",
.., gim by K*) be a challenge instance from the n-Linear problem, where K* = h2=i=17i or K* is a random
element from G. Here, B simulates the VCI experiment for A using its input (¢7*,. .., g™, h, K*).

19

KEM.Kg(1%): KEM.Encap(pk): KEM.Decap(sk, 1):
b(—Zp;h<—gb Fori=1ton Fori=1ton
Fori=1ton Ti < Lp; Ci <+ g Check if ¢; € G

ai, i, Bi — Zp t =TCR(c1,...,¢n) t=TCR(c1,...,Cm)
gi 9% wi=a; 'b ™[I (ufvi)™ I, P
wi — g v — gl K « pritotrn Return (L)
pk = (R, (gi, Ui, Vi)icin)) Y (c1,...,¢n,m) K+l ¢
sk« ((a, Bi, wi)ien), Pk) Return(K, 1) Return(K)
Return (pk, sk)

Fig.11. KEM from n-Linear Assumption [16].

5, and computes u; = g;*h* and v; = gfihzl for i € [n]. B sets pk =

((gu s, vi)ie[n],h). All the elements in pk is randomly distributed, as in the real VCI experiment. Here
B implicitly sets sk = ((ai, Bi, wi)i€[n],pk) with a; = x; + w;z, B; = y; +w;2’ and w; = log,, h.
— B computes the challenge ciphertext ¢* = (cf,...,ch, %) for A, where ¢ := g;* for ¢ € [n], t* =
TCR(cf, ... ch) and m* = (K*)20+2 T (cr)=t +vi,
o If K* = h2i=1"i we have 7* = T, (u‘;vl)r Hence ¥* is just a valid ciphertext output by the
KEM’s encapsulation algorithm with randomness (7;);cn-
e If K* is random, then 7* is also random, so that ¥* is uniformly distributed in C = G".
— B uses ((xl, Yi)icin]» % z’) to answer A’s constrained decryption queries (P,). Let ¢ = (c1,...,¢p, 7).
We have that ¢ = TCR(cy,...,c,) # t* due to the target-collision resistance of TCR. B computes

— B chooses (zi,Yi)icin), 2,2 Z

1/(zt+2")
K= (%) .If P(K) =1 then B returns K; otherwise B returns L.

=1 "1
e If ¢ is consistent, i.e., ¢ satisfies [}, c?it+ﬁi = 7, then 7 = RGN ELm T, €55 where
t = TCR(c1, ..., ¢y) and 7} = log,, ¢;. Then K = R s exactly the encapsulated key. Thus the
correct K is returned to A when P(K) = 1.
e If ¢ is NOT consistent, then = # [[;_, cf””ﬂi. Let 8 = log,m, w = log,h, a; = log,g;, and
i =log,, c;. Then v := =" a;rj(a;it+ B;) # 0. Consequently, log, K =~/(zt+2') +w Y 7", r}.
The following 2n + 2 equations in 2n 4 2 unknowns ((z;,¥i)ic[n], 2, 2') are linearly independent, as

long as t # t*, which is guaranteed by the target-collision resistance of TCR:

loggu; = a;x; +wz i =1,2,....n

log, vi = aiy; + w2’ i=1,2,...,n

log, m* = Zairi(t*xi + i) + (log, K*) - (t*z + 2')
i=1

-1
n
'y(loggK—wZﬂ) =zt + 2.
i1

This establishes that zt + 2’ is uniformly distributed over Z,. Therefore, log, K is uniformly dis-

tributed over Z, and the predicate P satisfies P(K) = 0 except with negligible probability. As a

result, ¢ will be correctly rejected (due to the failed predicate) except with negligible probability.
Hence, B provides an almost perfect decryption oracle to A as long as t # t*, for all queried encapsulations
Y F YT

— Eventually, B returns what 4 returns.

Finally, A’s non-negligible advantage in the VCI game is converted into B’s non-negligible advantage in
breaking the n-Linear Assumption. a

Theorem 4. Suppose that the n-Linear Assumption holds for G(1%), and TCR is target collision-resistant.
If groups G output by G(1%) are samplable and explainable, then the KEM in Figure 11 is a tailored KEM.

Proof. We note that the ciphertext space C equals G" ! and the encapsulated key space K equals G. If group
G is samplable and explainable, so are C and K.

Next, we have |C| = p"T1. For a valid ciphertext ¢ = (c1,. .., ¢,, T), we note that 7 is uniquely determined
by c1,...,¢, and pk. Therefore, the valid ciphertext set [?| has size p™. Consequently, a random ciphertext

20

KEM.Kg(1"%): KEM.Encap(pk): KEM.Decap(sk,¥): Encap(k,r):
k < PGen(1"%) r <+ {0,1}" k + sk 1 < PRG(r)
pk < iO(Encap(k, -)) (K,¢) « iO(Encap(k,r)) K < PEval(k,) K < PEval(k,)
sk« k Return(K, ¢) Return(K) Return(K, ¢)

Return (pk, sk)

Fig. 13. Program of Encap.
Fig. 12. Sahai-Waters KEM from O and Puncturable PRF [23].

from G"*! passes the verification test 7 = []i_, ciaiHB * in the decapsulation algorithm with negligible
probability 1/p. Therefore, the decapsulation algorithm has tailored functionality.
Together with Lemma 3, it follows that the KEM in Figure 11 is a tailored, and therefore suitable for

the application of Theorem 1.

5.3 Tailored KEM Based on Indistinguishability Obfuscation and Puncturable PRF

Background definitions for this construction can be found in [23] and Appendix C.

Sahai and Waters [23] gave a KEM construction from an indistinguishability obfuscator (¢Q) and a
puncturable PRF, as shown in Figure 12. Their construction makes use of a Pseudo-Random Generator
(PRG) PRG : {0,1}* — {0,1}?% and a puncturable PRF family PRF = (PGen, PEval, Punc) whose functions
map {0, 1} to {0,1}". We assume that (descriptions of) PRG and PRF are implicitly part of the inputs to
KEM.Kg, KEM.Decap in Figure 12 and Encap in Figure 13.

The ciphertext space of the KEM is C = {0, 1}2", the valid ciphertext set is ¥ = {1 | » = PRG(r);r €
{0,1}*}, and the key space is K = {0, 1}*. Obviously, both of C and K are efficiently samplable and explain-
able with SampleC™*(C, %) := 1 and SampleK (K, K) := K.

Lemma 5 If iO(-) is an indistinguishability obfuscator for P/poly, PRG is a secure PRG, and PRF is a
puncturable PRF, then the Sahai-Waters KEM in Figure 12 is IND-tCCCA secure.

Proof. In [23], the Sahai-Waters KEM was proved to be IND-CCA secure, so it is obviously IND-CCCA
secure.

Next we prove the VCI property, based on the security of PRG. If there is a ppt adversary A that can
distinguish a random ciphertext from a random valid ciphertext with non-negligible probability, then we can
construct a ppt algorithm B that breaks the security of PRG. Suppose B is given an element ¢* and tries
to decide whether ¢* is the output of PRG or a randomly chosen element from C. B will simulate a VCI
experiment for A. It first chooses a puncturable PRF PRF and calls KEM.Kg(1") to generate (pk, sk). The
public key pk is given to A. Then B gives ¢* as the challenge encapsulation to A. Using the secret key sk and
algorithm PEval, B is able to provide a (constrained) decryption oracle for A. Finally, B outputs whatever
A outputs. Then it is easy to see that A’s non-negligible advantage in the VCI security game results in a
non-negligible advantage for B in breaking the security of PRG.

The IND-CCCA security and VCI property in combination with Lemma 1 establish that the Sahai-Waters
KEM in Figure 12 has IND-tCCCA security. O

Extracting puncturable PRFs are a strengthening of puncturable PRF's introduced in [23]; essentially, an
extracting puncturable PRF acts as a strong extractor on its inputs.

Definition 9 (Extracting puncturable PRF) Let €(-) and hpin(-) be functions. A puncturable PRF
family PRF=(PGen, PEval, Punc) mapping {0,1}**() t0 {0,1}%2(%) is said to be extracting with error ¢(k) for
min-entropy function h,,in () if for all k € N and for all random variables X on {0,1}**%) with min-entropy
greater than hp,,(k), the statistical distance between (k, PEval(k, X)) and (k,Uy,()) is at most €(k), where
k < PGen(1%) and Uy, denotes the uniform distribution over {0,1}%2("). The family PRF is said to be
extracting puncturable if the error e(k) is negligible (for some choice of function hyin).

The existence of extracting puncturable PRF's is implied by the existence of one-way functions, as was
proved in [23]:

Lemma 4. [23] Assume that one-way functions exist. Then for all efficiently computable functions ¢1(k),
l5(K), e(k) and hpin (k) such that €1 (k) > hpin (k) > l2(k) +2e(k) +2, there exists an extracting puncturable
PRF family PRF = (PGen, PEval, Punc) mapping {0,1}*(®) to {0,1}%2(%) with error function e(x) = 27+
and min-entropy function (k).

21

Lemma 6 If PRF is an extracting puncturable PRF obtained from Lemma 4, then the decapsulation algo-
rithm KEM.Decap of the Sahai-Waters KEM in Figure 12 has tailored functionality.

Proof. We show that the output of PRF(sk, 1)) is statistically close to the uniform distribution on {0, 1}* so
long as 1) is chosen from C uniformly at random, and the puncturable PRF satisfies the bounds in Lemma 4.

Recall that PRF maps 2« bits to x bits. When) is randomly chosen from {0, 1}?*, the min-entropy of ¢
is 2k. According to Lemma 4, the statistical distance between (k, PEval(k, 1)) and (k, U,) is upper-bounded
by 2-(/2=1 where k < PGen(1*) and U, is the uniform distribution over {0,1}*. Hence, KEM.Decap has
2—(5/2=1)_tailored functionality. O

Theorem 7. IfiO(-) is an indistinguishability obfuscator for P/poly, PRG is a secure PRG, and PRF is an
extracting puncturable PRF, then the Sahai-Waters KEM in Figure 12 is a tailored KEM.

Proof. The fact that the KEM in Figure 12 is a tailored KEM follows immediately from Lemma 5, Lemma
6 and the fact that C = {0,1}?* and K = {0, 1}* are efficiently samplable and explainable.

The existence of one-way functions implies the existence of PRGs and extracting puncturable PRFs.
Hence the existence of one-way functions and O implies the existence of a tailored KEM by the above
theorem. Such a tailored KEM can further be used to build a PKE scheme encrypting ¢ bits at a time
with the help of an information-theoretically secure (¢ + s)-XAC (for suitable parameter s), by following the
construction in Figure 4; the SIM-SO-CCA security of the PKE scheme follows from Theorem 1. Thus we
obtain the following corollary:

Corollary 8 Suppose one-way functions and indistinguishability obfuscation for P/poly exist. Then there
exists a PKE scheme with SIM-SO-CCA security.

Acknowledgements

This work was done while Shengli Liu visited Prof. Kenneth G. Paterson’s research group at Royal Hol-
loway, University of London. The first author was supported by the National Natural Science Foundation
of China (Grant No. 61170229 and 61373153), the Specialized Research Fund for the Doctoral Program of
Higher Education (Grant No. 20110073110016), and the Scientific innovation projects of Shanghai Educa-
tion Committee (Grant No. 12Z7Z021). The second author was supported by EPSRC Leadership Fellowship
EP/H005455/1 and by EPSRC Grant EP/L018543/1.

References

1. Barak, B., Goldreich, O., Impagliazzo, R., Rudich, S., Sahai, A., Vadhan, S.P., Yang, K.: On the (im)possibility
of obfuscating programs. In: Kilian, J. (ed.) Advances in Cryptology - CRYPTO 2001, 21st Annual International
Cryptology Conference, Santa Barbara, California, USA, August 19-23, 2001, Proceedings. LNCS, vol. 2139, pp.
1-18. Springer (2001), http://dx.doi.org/10.1007/3-540-44647-8_1

2. Barak, B., Goldreich, O., Impagliazzo, R., Rudich, S., Sahai, A., Vadhan, S.P., Yang, K.: On the (im)possibility
of obfuscating programs. J. ACM 59(2), 6 (2012), http://doi.acm.org/10.1145/2160158.2160159

3. Bellare, M., Hofheinz, D., Yilek, S.: Possibility and impossibility results for encryption and commitment secure
under selective opening. In: Joux, A. (ed.) EUROCRYPT 2009. LNCS, vol. 5479, pp. 1-35. Springer (2009)

4. Bellare, M., Waters, B., Yilek, S.: Identity-based encryption secure against selective opening attack. In: Ishai,
Y. (ed.) Theory of Cryptography - 8th Theory of Cryptography Conference, TCC 2011, Providence, RI, USA,
March 28-30, 2011. Proceedings. LNCS, vol. 6597, pp. 235-252. Springer (2011), http://dx.doi.org/10.1007/
978-3-642-19571-6_15

5. Bohl, F., Hoftheinz, D., Kraschewski, D.: On definitions of selective opening security. In: Fischlin, M., Buchmann,
J., Manulis, M. (eds.) Public Key Cryptography - PKC 2012 - 15th International Conference on Practice and
Theory in Public Key Cryptography, Darmstadt, Germany, May 21-23, 2012. Proceedings. LNCS, vol. 7293, pp.
522-539. Springer (2012), http://dx.doi.org/10.1007/978-3-642-30057-8_31

6. Canetti, R., Dwork, C., Naor, M., Ostrovsky, R.: Deniable encryption. In: Jr., B.S.K. (ed.) Advances in Cryptology
- CRYPTO 97, 17th Annual International Cryptology Conference, Santa Barbara, California, USA, August 17-21,
1997, Proceedings. LNCS, vol. 1294, pp. 90-104. Springer (1997), http://dx.doi.org/10.1007/BFb0052229

7. Canetti, R., Feige, U., Goldreich, O., Naor, M.: Adaptively secure multi-party computation. In: Miller, G.L.
(ed.) Proceedings of the Twenty-Eighth Annual ACM Symposium on the Theory of Computing, Philadelphia,
Pennsylvania, USA, May 22-24, 1996. pp. 639-648. ACM (1996), http://doi.acm.org/10.1145/237814.238015

22

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

Cramer, R., Shoup, V.: Universal hash proofs and a paradigm for adaptive chosen ciphertext secure public-key
encryption. In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 45-64. Springer (2002)

Cramer, R., Shoup, V.: Design and analysis of practical public-key encryption schemes secure against adap-
tive chosen ciphertext attack. SIAM J. Comput. 33(1), 167-226 (Jan 2004), http://dx.doi.org/10.1137/
S0097539702403773

Damgard, I., Nielsen, J.B.: Improved non-committing encryption schemes based on a general complexity as-
sumption. In: Bellare, M. (ed.) Advances in Cryptology - CRYPTO 2000, 20th Annual International Cryptology
Conference, Santa Barbara, California, USA, August 20-24, 2000, Proceedings. LNCS, vol. 1880, pp. 432-450.
Springer (2000), http://dx.doi.org/10.1007/3-540-44598-6_27

Dwork, C., Naor, M., Reingold, O., Stockmeyer, L.J.: Magic functions. J. ACM 50(6), 852-921 (2003), http:
//doi.acm.org/10.1145/950620.950623

Fehr, S., Hofheinz, D., Kiltz, E., Wee, H.: Encryption schemes secure against chosen-ciphertext selective opening
attacks. In: Gilbert, H. (ed.) Advances in Cryptology - EUROCRYPT 2010, 29th Annual International Conference
on the Theory and Applications of Cryptographic Techniques, French Riviera, May 30 - June 3, 2010. Proceedings.
LNCS, vol. 6110, pp. 381-402. Springer (2010), http://dx.doi.org/10.1007/978-3-642-13190-5_20

Garg, S., Gentry, C., Halevi, S., Raykova, M., Sahai, A., Waters, B.: Candidate indistinguishability obfuscation
and functional encryption for all circuits. In: 54th Annual IEEE Symposium on Foundations of Computer Science,
FOCS 2013, 26-29 October, 2013, Berkeley, CA, USA. pp. 40-49. IEEE Computer Society (2013), http://doi.
ieeecomputersociety.org/10.1109/F0CS.2013.13

Hemenway, B., Libert, B., Ostrovsky, R., Vergnaud, D.: Lossy encryption: Constructions from general assumptions
and efficient selective opening chosen ciphertext security. In: Lee, D.H., Wang, X. (eds.) ASTACRYPT 2011. LNCS,
vol. 7073, pp. 70-88. Springer (2011)

Hofheinz, D.: All-but-many lossy trapdoor functions. In: Pointcheval, D., Johansson, T. (eds.) EURO-
CRYPT 2012. LNCS, vol. 7237, pp. 209-227. Springer (2012)

Hofheinz, D., Kiltz, E.: Secure hybrid encryption from weakened key encapsulation. In: Menezes, A. (ed.)
CRYPTO 2007. LNCS, vol. 4622, pp. 553-571. Springer (2007)

Hofheinz, D., Rupp, A.: Standard versus selective opening security: Separation and equivalence results. In: Lindell,
Y. (ed.) Theory of Cryptography - 11th Theory of Cryptography Conference, TCC 2014, San Diego, CA, USA,
February 24-26, 2014. Proceedings. Lecture Notes in Computer Science, vol. 8349, pp. 591-615. Springer (2014),
http://dx.doi.org/10.1007/978-3-642-54242-8_25

Huang, Z., Liu, S., Qin, B.: Sender-equivocable encryption schemes secure against chosen-ciphertext attacks
revisited. In: Kurosawa, K., Hanaoka, G. (eds.) Public-Key Cryptography - PKC 2013 - 16th International
Conference on Practice and Theory in Public-Key Cryptography, Nara, Japan, February 26 - March 1, 2013.
Proceedings. Lecture Notes in Computer Science, vol. 7778, pp. 369-385. Springer (2013), http://dx.doi.org/
10.1007/978-3-642-36362-7_23

Huang, Z., Liu, S., Qin, B., Chen, K.: Fixing the sender-equivocable encryption scheme in eurocrypt 2010. In: 2013
5th International Conference on Intelligent Networking and Collaborative Systems, Xi’an city, Shaanxi province,
China, September 9-11, 2013. pp. 366-372. IEEE (2013), http://dx.doi.org/10.1109/INCoS.2013.69

Katz, J., Ostrovsky, R.: Round-optimal secure two-party computation. In: Franklin, M.K. (ed.) Advances in
Cryptology - CRYPTO 2004, 24th Annual International CryptologyConference, Santa Barbara, California, USA,
August 15-19, 2004, Proceedings. LNCS, vol. 3152, pp. 335-354. Springer (2004), http://dx.doi.org/10.1007/
978-3-540-28628-8_21

Lai, J., Deng, R.H., Liu, S., Weng, J., Zhao, Y.: Identity-based encryption secure against selective opening chosen-
ciphertext attack. In: Nguyen, P.Q., Oswald, E. (eds.) Advances in Cryptology - EUROCRYPT 2014 - 33rd
Annual International Conference on the Theory and Applications of Cryptographic Techniques, Copenhagen,
Denmark, May 11-15, 2014. Proceedings. Lecture Notes in Computer Science, vol. 8441, pp. 77-92. Springer
(2014)7 http://dx.doi.org/10.1007/978-3-642-55220-5_5

Peikert, C., Waters, B.: Lossy trapdoor functions and their applications. In: Dwork, C. (ed.) STOC 2008. pp.
187-196. ACM (2008)

Sahai, A., Waters, B.: How to use indistinguishability obfuscation: deniable encryption, and more. In: Shmoys,
D.B. (ed.) Symposium on Theory of Computing, STOC 2014, New York, NY, USA, May 31 - June 03, 2014. pp.
475-484. ACM (2014), http://doi.acm.org/10.1145/2591796.2591825

A CCCA security for KEMs

A chosen-ciphertext attack against a KEM [9] allows an adversary to query a decapsulation oracle Decap(-),
(which runs KEM.Decap) on any input 1) # ¢* where (K’,4*) is given to the adversary, 1* is an encapsulation
of K* and K’ is either K* or random. In a relaxed version of chosen-ciphertext attacks [16], the adversary

is allowed to query a constrained decapsulation oracle Sé\c_z;)(-) only if it has some a priori knowledge about
the decapsulated key, which can be characterized by a ppt Boolean predicate P : L U {L} — {0,1} (for

23

P

simplicity, we put L into the domain and define P(L) = 0). The constrained decapsulation oracle Decap(-)
replies with K for a query ¢ if and only if P(K) = 1 where K < KEM.Decap(sk,).

Constrained CCA security for a KEM (KEM.Kg, KEM.Enc, KEM.Dec) is formalised using the security
experiment shown in Figure 14.

ExpﬁcEc,{}l:f(m) : Decap_ .+ (P, v)
(pk, sk) + KEM.Kg(1"%) If ¢ = 9™ return (L)
K§ + K, (Kf,1*) + KEM.Encap(pk) K + KEM.Decap(sk,)
b ADecap¢w*(<)(pk7Kg7w*) If P(K) =0 return (L);

Return(b) Else return (K)

Fig.14. CCCA security experiment for KEMs.

The advantage of an adversary A in the CCCA experiment is defined as

Advicem,a (%) =

Pr [Expiigu () = 1] = Pr [Expiigid(e) = 1]|.

Now let gq denote the number of decapsulation queries made by A. The uncertainty of A measures the
average fraction of keys for which the evaluation of predicate P;(-) is equal to 1 in the CCCA experiment,
where P; is the predicate used in the i-th query by A, i.e.,

| G
uncert A(k) := “ ZPr [P{(K)=1].
d i=1

Definition 10 (IND-CCCA Security [16]) The KEM KEM is secure against constrained chosen cipher-
text attacks (IND-CCCA secure) if for all ppt adversaries A such that uncerta(k) is negligible (in k), the

advantage Adviigm 4 (k) is also negligible in k.

B (Target) Collision Resistant Hash Functions

Definition 11 (CR hash function) Let H be a family of hash functions associated with two ppt algorithms
(HGen, HEval). On input a security parameter k, HGen outputs a (description of a) function H : Dy — R.
Algorithm HEval, on input an element © € Dy, outputs H(x) € R,.. Then H is collision-resistant if for all
ppt algorithms B the following advantage is negligible in x:

Advyi (k) :==Prlz’ # 2 ANH(2') = H(z) | H < HGen(1"), (z,2") - B(H)].

Definition 12 (TCR hash function) Let H be a family of hash functions associated with two ppt al-
gorithms (HGen, HEval). The security notion of target collision-resistance (TCR) requires that for all ppt
algorithms B the following advantage is negligible in k:

Advﬁ%(/@) =Pr[2 #xANH(z') = H(z) | H + HGen(1%),z + D,,z' < B(H,z)].

C Indistinguishability Obfuscation (¢©) and Puncturable PRFs

Indistinguishability Obfuscation (iQO) was proposed in [1,2]. Informally, it requires that the obfuscations of
two distinct but equal-sized programs, which implement identical functionality, are computationally indistin-
guishable. The first candidate construction for iO for polynomial-sized circuits was given in [13]. We follow
the formal definitions in [23].

Definition 13 (Indistinguishability Obfuscation (iO) for P/poly [23]) Let k be a security parameter.

A uniform ppt machine iO is called an indistinguishability obfuscator for a circuit class Circy, if the following
two conditions are satisfied.

24

punc—>b

Exppre.a (%) :
(0,8) + A1(17); k < PGen(1%); ks + Punc(k, S)
y1 = PEval(k, S); yo < {0,110 b« Ay(0, ks, S, p)
Return(d’)

Fig. 15. Experiment for defining punctured PRF pseudo-randomness.

— Identical functionality: For all k € N, for all C € Circ,, on input (17,C), iO outputs equal-sized
circuits all having functionality identical to C, i.e, for all inputs x,

Pr[C'(z) = C(z) | €' « iO(1%,C)] = 1.

— Indistinguishability: For all (not necessarily uniform) ppt stateful adversaries D = (D1, Ds), there
exists a negligible function (k) satisfying the following condition. Suppose that for all x

Pr[Co(z) = Ci(2) | (Cp,Cq,0) + D1(17)] > 1 — &(k).
Then

|PI‘ [DQ(O’, iO(KZ, Co) =1 | (Co,cl,U) — Dl(lﬁ)]
— Pr[D2(0,iO(k,C1) = 1| (Co,Cy,0) < D1 (17)]] < (k).

A uniform ppt machine iO is called an indistinguishability obfuscator for P/poly if iO is an indistinguisha-
bility obfuscator for the class of circuits of size at most k.

Definition 14 (Puncturable PRF) A puncturable family of PREs PRF is indexed by k, parameterized
by computable functions ({1(k),l2(k)), and consists of three ppt algorithms (PGen, PEval, Punc). Algorithm
PGen(1%) samples a random key k, PEval(k,x) computes the function PRF(-), which maps {0,1}(%) to
{0,1Y2) and PPunc(k, S) takes as input the index k and a polynomial-sized set S of inputs and outputs a
punctured key ks. The following conditions are satisfied:

— Functionality preserved under puncturing. For all ppt adversaries A, for all polynomial-sized
subsets S C {0,1}1*%) given by S « A(1%), for all x € {0,1}1(*) \ S, we have that

Pr[PEval(k,x) = PEval(ks,x) | k < PGen(1%), kg < Punc(k,S)] = 1.

— Pseudo-random at punctured points. For all stateful ppt adversaries A = (A1, A2), define the
advantage of A against the punctured pseudo-randomness of PRF to be

A o() = [P [() = 1] — Pr [Bxiics’ () = 1]

where Exp,’ff;jb(n) is defined in Figure 15. Then Advpge 4 (k) is negligible.

25

