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Abstract—Malware is pervasive in networks, and poses a critical threat to network security. However, we have very limited

understanding of malware behavior in networks to date. In this paper, we investigate how malware propagates in networks from a

global perspective. We formulate the problem, and establish a rigorous two layer epidemic model for malware propagation from

network to network. Based on the proposed model, our analysis indicates that the distribution of a given malware follows exponential

distribution, power law distribution with a short exponential tail, and power law distribution at its early, late and final stages, respectively.

Extensive experiments have been performed through two real-world global scale malware data sets, and the results confirm our

theoretical findings.

Index Terms—Malware, propagation, modelling, power law
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1 INTRODUCTION

MALWARE are malicious software programs deployed
by cyber attackers to compromise computer systems

by exploiting their security vulnerabilities. Motivated by
extraordinary financial or political rewards, malware own-
ers are exhausting their energy to compromise as many net-
worked computers as they can in order to achieve their
malicious goals. A compromised computer is called a bot,
and all bots compromised by a malware form a botnet. Bot-
nets have become the attack engine of cyber attackers, and
they pose critical challenges to cyber defenders. In order to
fight against cyber criminals, it is important for defenders to
understand malware behavior, such as propagation or
membership recruitment patterns, the size of botnets, and
distribution of bots.

To date, we do not have a solid understanding about the
size and distribution of malware or botnets. Researchers
have employed various methods to measure the size of bot-
nets, such as botnet infiltration [1], DNS redirection [3],
external information [2]. These efforts indicate that the size
of botnets varies from millions to a few thousand. There are
no dominant principles to explain these variations. As a
result, researchers desperately desire effective models and
explanations for the chaos. Dagon et al. [3] revealed that

time zone has an obvious impact on the number of available
bots. Mieghem et al. [4] indicated that network topology has
an important impact on malware spreading through their
rigorous mathematical analysis. Recently, the emergence of
mobile malware, such as Cabir [5], Ikee [6], and Brador [7],
further increases the difficulty level of our understanding
on how they propagate. More details about mobile malware
can be found at a recent survey paper [8]. To the best of our
knowledge, the best finding about malware distribution in
large-scale networks comes from Chen and Ji [9]: the distri-
bution is non-uniform. All this indicates that the research in
this field is in its early stage.

The epidemic theory plays a leading role in malware
propagation modelling. The current models for malware
spread fall in two categories: the epidemiology model and
the control theoretic model. The control system theory
based models try to detect and contain the spread of mal-
ware [10], [11]. The epidemiology models are more focused
on the number of compromised hosts and their distribu-
tions, and they have been explored extensively in the com-
puter science community [12], [13], [14]. Zou et al. [15] used
a susceptible-infected (SI) model to predict the growth of
Internet worms at the early stage. Gao and Liu [16] recently
employed a susceptible-infected-recovered (SIR) model to
describe mobile virus propagation. One critical condition
for the epidemic models is a large vulnerable population
because their principle is based on differential equations.
More details of epidemic modelling can be find in [17]. As
pointed by Willinger et al. [18], the findings, which we
extract from a set of observed data, usually reflect parts of
the studied objects. It is more reliable to extract theoretical
results from appropriate models with confirmation from
sufficient real world data set experiments. We practice this
principle in this study.

In this paper, we study the distribution of malware in
terms of networks (e.g., autonomous systems (AS), ISP
domains, abstract networks of smartphones who share the
same vulnerabilities) at large scales. In this kind of setting,
we have a sufficient volume of data at a large enough scale
to meet the requirements of the SI model. Different from the
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traditional epidemic models, we break our model into two
layers. First of all, for a given time since the breakout of a
malware, we calculate how many networks have been com-
promised based on the SI model. Second, for a compro-
mised network, we calculate how many hosts have been
compromised since the time that the network was compro-
mised. With this two layer model in place, we can deter-
mine the total number of compromised hosts and their
distribution in terms of networks. Through our rigorous
analysis, we find that the distribution of a given malware
follows an exponential distribution at its early stage, and
obeys a power law distribution with a short exponential tail
at its late stage, and finally converges to a power law distri-
bution. We examine our theoretical findings through two
large-scale real-world data sets: the Android based malware
[19] and the Conficker [20]. The experimental results
strongly support our theoretical claims. To the best of our
knowledge, the proposed two layer epidemic model and
the findings are the first work in the field.

Our contributions are summarized as follows.

� We propose a two layer malware propagation model
to describe the development of a given malware at
the Internet level. Compared with the existing single
layer epidemic models, the proposed model repre-
sents malware propagation better in large-scale
networks.

� We find the malware distribution in terms of net-
works varies from exponential to power law with
a short exponential tail, and to power law distri-
bution at its early, late, and final stage, respec-
tively. These findings are first theoretically proved
based on the proposed model, and then confirmed
by the experiments through the two large-scale
real-world data sets.

The rest of the paper is structured as follows. Related
work is briefly listed in Section 2. We present the prelimi-
naries for the proposed model in Section 3. The studied
problem is discussed in Section 4. A two layer malware
propagation model is established in Section 5, and followed
by a rigorous mathematical analysis in Section 6. Experi-
ments are conducted to confirm our findings in Section 7. In
Section 8, we provide a further discussion about the study.
Finally, we summarize the paper and present future work
in Section 9.

2 RELATED WORK

The basic story of malware is as follows. A malware pro-
gramer writes a program, called bot or agent, and then
installs the bots at compromised computers on the Inter-
net using various network virus-like techniques. All of
his bots form a botnet, which is controlled by its owners
to commit illegal tasks, such as launching DDoS attacks,
sending spam emails, performing phishing activities, and
collecting sensitive information. There is a command and
control (C&C) server(s) to communicate with the bots and
collect data from bots. In order to disguise himself from
legal forces, the botmaster changes the url of his C&C fre-
quently, e.g., weekly. An excellent explanation about this
can be found in [1].

With the significant growing of smartphones, we have
witnessed an increasing number of mobile malware. Mal-
ware writers have develop many mobile malware in recent
years. Cabir [5] was developed in 2004, and was the first
malware targeting on the Symbian operating system for
mobile devices. Moreover, it was also the first malware
propagating via Bluetooth. Ikee [6] was the first mobile mal-
ware against Apple iPhones, while Brador [7] was devel-
oped against Windows CE operating systems. The attack
victors for mobile malware are diverse, such as SMS, MMS,
Bluetooth, WiFi, and Web browsing. Peng et al. [8] pre-
sented the short history of mobile malware since 2004, and
surveyed their propagation models.

A direct method to count the number of bots is to use bot-
net infiltration to count the bot IDs or IP addresses. Stone-
Gross et al. [1] registered the URL of the Torpig botnet
before the botmaster, and therefore were able to hijack the
C&C server for ten days, and collect about 70G data from
the bots of the Torpig botnet. They reported that the foot-
print of the Torpig botnet was 182,800, and the median and
average size of the Torpig’s live population was 49,272 and
48,532, respectively. They found 49,294 new infections dur-
ing the ten days takeover. Their research also indicated that
the live population fluctuates periodically as users switch
between being online and offline. This issue was also tacked
by Dagon et al. in [3].

Another method is to use DNS redirection. Dagon et al.
[3] analyzed captured bots by honypot, and then identi-
fied the C&C server using source code reverse engineer-
ing tools. They then manipulated the DNS entry which is
related to a botnet’s IRC server, and redirected the DNS
requests to a local sinkhole. They therefore could count
the number of bots in the botnet. As discussed previously,
their method counts the footprint of the botnet, which
was 350,000 in their report.

In this paper, we use two large scale malware data sets
for our experiments. Conficker is a well-known and one of
the most recently widespread malware. Shin et al. [20] col-
lected a data set about 25 million Conficker victims from all
over the world at different levels. At the same time, mal-
ware targeting on Android based mobile systems are devel-
oping quickly in recent years. Zhou and Jiang [19] collected
a large data set of Android based malware.

In [2], Rajab et al. pointed out that it is inaccurate to
count the unique IP addresses of bots because DHCP and
NAT techniques are employed extensively on the Internet
([1] confirms this by their observation that 78.9 percent of
the infected machines were behind a NAT, VPN, proxy,
or firewall). They therefore proposed to examine the hits
of DNS caches to find the lower bound of the size of a
given botnet.

Rajab et al. [21] reported that botnets can be categorized
into two major genres in terms of membership recruitment:
worm-like botnets and variable scanning botnets. The latter
weights about 82 percent in the 192 IRC bots that they inves-
tigated, and is the more prevalent class seen currently. Such
botnets usually perform localized and non-uniform scan-
ning, and are difficult to track due to their intermittent and
continuously changing behavior. The statistics on the life-
time of bots are also reported as 25 minutes on average with
90 percent of them staying for less than 50 minutes.
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Malware propagation modelling has been extensively
explored. Based on epidemiology research, Zou et al. [15]
proposed a number of models for malware monitoring at
the early stage. They pointed out that these kinds of model
are appropriate for a system that consists of a large number
of vulnerable hosts; in other words, the model is effective at
the early stage of the outbreak of malware, and the accuracy
of the model drops when the malware develops further. As
a variant of the epidemic category, Sellke et al. [12] pro-
posed a stochastic branching process model for characteriz-
ing the propagation of Internet worms, which especially
focuses on the number of compromised computers against
the number of worm scans, and presented a closed form
expression for the relationship. Dagon et al. [3] extended
the model of [15] by introducing time zone information aðtÞ,
and built a model to describe the impact on the number of
live members of botnets with diurnal effect.

The impact of side information on the spreading behav-
ior of network viruses has also been explored. Ganesh et al.
[22] thoroughly investigated the effect of network topology
on the spead of epidemics. By combining Graph theory and
a SIS (susceptible—infective—susceptible) model, they
found that if the ratio of cure to infection rates is smaller
than the spectral radius of the graph of the studied network,
then the average epidemic lifetime is of order log n, where n
is the number of nodes. On the other hand, if the ratio is
larger than a generalization of the isoperimetric constant of
the graph, then the average epidemic lifetime is of order en

a
,

where a is a positive constant. Similarly, Mieghem et al. [4]
applied the N-intertwined Markov chain model, an applica-
tion of mean field theory, to analyze the spread of viruses in
networks. They found that tc ¼ 1

�maxðAÞ, where tc is the sharp
epidemic threshold, and �maxðAÞ is the largest eigenvalue of
the adjacency matrix A of the studied network. Moreover,
there have been many other methodologies to tackle the
problem, such as game theory [23].

3 PRELIMINARIES

Preliminaries of epidemic modelling and complex networks
are presented in this section as this work is mainly based on
the two fields.

For the sake of convenience, we summarize the symbols
that we use in this paper in Table 1.

3.1 Deterministic Epidemic Models

After nearly 100 years development, the epidemic models
[17] have proved effective and appropriate for a system that
possesses a large number of vulnerable hosts. In other
words, they are suitable at a macro level. Zou et al. [15]

demonstrated that they were suitable for the studies of
Internet based virus propagation at the early stage.

We note that there are many factors that impact the mal-
ware propagation or botnet membership recruitment, such
as network topology, recruitment frequency, and connection
status of vulnerable hosts. All these factors contribute to the
speed of malware propagation. Fortunately, we can include
all these factors into one parameter as infection rate b in
epidemic theory. Therefore, in our study, let N be the total
number of vulnerable hosts of a large-scale network (e.g., the
Internet) for a given malware. There are two statuses for any
one of the N hosts, either infected or susceptible. Let IðtÞ be
the number of infected hosts at time t, thenwe have

dIðtÞ
dt

¼ bðtÞ N �RðtÞ � IðtÞ �QðtÞ½ �IðtÞ � dRðtÞ
dt

; (1)

where RðtÞ, and QðtÞ represent the number of removed
hosts from the infected population, and the number of
removed hosts from the susceptible population at time t.
The variable bðtÞ is the infection rate at time t.

For our study, model (1) is too detailed and not necessary
as we expect to know the propagation and distribution of a
given malware. As a result, we employ the following sus-
ceptible-infected model:

dIðtÞ
dt

¼ bIðtÞ N � IðtÞ½ �; (2)

where the infection rate b is a constant for a given malware
for any network.

We note that the variable t is continuous in model (2) and
(1). In practice, we measure IðtÞ at discrete time points.
Therefore, t ¼ 0; 1; 2; . . . . We can interpret each time point
as a new round of malware membership recruitment, such
as vulnerable host scanning. As a result, we can transform
model (2) into the discrete form as follows:

IðtÞ ¼ ð1þ aDÞIðt� 1Þ � bDIðt� 1Þ2; (3)

where t ¼ 0; 1; 2; . . . ; D is the unit of time, Ið0Þ is the initial
number of infected hosts (we also call them seeds in this
paper), and a ¼ bN , which represents the average number
of vulnerable hosts that can be infected by one infected host
per time unit.

In order to simplify our analysis, let D ¼ 1, it could be
one second, one minute, one day, or one month, even one
year, depending on the time scale in a given context. Hence,
we have a simpler discrete form given by

IðtÞ ¼ ð1þ aÞIðt� 1Þ � b Iðt� 1Þð Þ2: (4)

Based on Equation (4), we define the increase of infected
hosts for each time unit as follows.

DIðtÞ , IðtÞ � Iðt� 1Þ; t ¼ 1; 2; . . . : (5)

To date, many researches are confined to the “early
stage” of an epidemic, such as [15]. Under the early stage
condition, IðtÞ << N , therefore, N � IðtÞ � N . As a result,
a closed form solution is obtained as follows:

IðtÞ ¼ Ið0ÞebNt: (6)

TABLE 1
Notations of Symbols in This Paper
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Whenwe take the ln operation onboth sides of Equation (6),
we have

ln IðtÞ ¼ bNtþ ln Ið0Þ: (7)

For a given vulnerable network, b, N and Ið0Þ are con-
stants, therefore, the graphical representation of Equation (7)
is a straight line.

Based on the definition of Equation (5), we obtain the
increase of new members of a malware at the early stage as

DIðtÞ ¼ ðebN � 1ÞIðt� 1Þ
¼ ðebN � 1ÞIð0ÞebNðt�1Þ: (8)

Taking the ln operation on both side of (8), we have

ln DIðtÞ ¼ bNðt� 1Þ þ ln ððebN � 1ÞIð0ÞÞ: (9)

Similar to Equation (7), the graphical representation of
equation (9) is also a straight line. In other words, the num-
ber of recruited members for each round follows an expo-
nential distribution at the early stage.

We have to note that it is hard for us to know whether
an epidemic is at its early stage or not in practice. More-
over, there is no mathematical definition about the term
early stage.

In epidemic models, the infection rate b has a critical
impact on the membership recruitment progress, and b is
usually a small positive number, such as 0.00084 for worm
Code Red [12]. For example, for a network with N ¼ 10;000
vulnerable hosts, we show the recruited members under
different infection rates in Fig. 1. From this diagram, we can
see that the recruitment goes slowly when b ¼ 0:0001, how-
ever, all vulnerable hosts have been compromised in less
than 7 time units when b ¼ 0:0003, and the recruitment pro-
gresses in an exponential fashion.

This reflects the malware propagation styles in practice.
For malware based on “contact”, such as blue tooth con-
tacts, or viruses depending on emails to propagate, the
infection rate is usually small, and it takes a long time to
compromise a large number of vulnerable hosts in a given
network. On the other hand, for some malware, which take

active actions for recruitment, such as vulnerable host scan-
ning, it may take one or a few rounds of scanning to recruit
all or a majority of the vulnerable hosts in a given network.
We will apply this in the following analysis and perfor-
mance evaluation.

3.2 Complex Networks

Research on complex networks have demonstrated that the
number of hosts of networks follows the power law. People
found that the size distribution usually follows the power
law, such as population in cities in a country or personal
income in a nation [24]. In terms of the Internet, researchers
have also discovered many power law phenomenon, such
as the size distribution of web files [25]. Recent progresses
reported in [26] further demonstrated that the size of net-
works follows the power law.

The power law has two expression forms: the Pareto dis-
tribution and the Zipf distribution. For the same objects of
the power law, we can use any one of them to represent it.
However, the Zipf distributions are tidier than the expres-
sion of the Pareto distributions. In this paper, we will use
Zipf distributions to represent the power law. The Zipf
expression is as follows:

Prfx ¼ ig ¼ C

ia
; (10)

where C is a constant, a is a positive parameter, called
the Zipf index, Prfx ¼ ig represents the probability of the
ith ði ¼ 1; 2; . . .Þ largest object in terms of size, andP

i Prfx ¼ ig ¼ 1.
A more general form of the distribution is called the

Zipf-Mandelbrot distribution [27], which is defined as
follows:

Prfx ¼ ig ¼ C

ðiþ qÞa ; (11)

where the additional constant q ðq � 0Þ is called the plateau
factor, which makes the probability of the highest ranked
objects flat. The Zipf-Mandelbrot distribution becomes the
Zipf distribution when q ¼ 0.

Currently, the metric to say a distribution is a power
law is to take the loglog plot of the data, and we usually
say it is a power law if the result shows a straight line.
We have to note that this is not a rigorous method, how-
ever, it is widely applied in practice. Power law distribu-
tions enjoy one important property, scale free. We refer
interested readers to [28] about the power law and its
properties.

4 PROBLEM DESCRIPTION

In this section, we describe the malware propagation prob-
lem in general.

As shown in Fig. 2, we study the malware propagation
issue at two levels, the Internet level and the network level.
We note that at the network level, a network could be
defined in many different ways, it could be an ISP domain,
a country network, the group of a specific mobile devices,
and so on. At the Internet level, we treat every network of
the network level as one element.

Fig. 1. The impact from infection rate b on the recruitment progress for a
given vulnerable network withN ¼ 10,000.
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At the Internet level, we suppose, there are M net-
works, each network is denoted as Lið1 � i � MÞ. For any
network Li, we suppose it physically possesses Ni hosts.
Moreover, we suppose the possibility of vulnerable hosts
of Li is denoted as pið0 � pi � 1Þ. In general, it is highly
possible that Ni 6¼ Nj, and pi 6¼ pj for i 6¼ j; 1 � i; j � M.
Moreover, due to differences in network topology, operat-
ing system, security investment and so on, the infection
rates are different from network to network. We denote it
as bi for Li. Similarly, it is highly possible that bi 6¼ bj for
i 6¼ j; 1 � i; j � M.

For any given network Li with pi � Ni vulnerable hosts
and infection rate bi. We suppose the malware propagation
starts at time 0. Based on Equation (4), we obtain the num-
ber of infected hosts, IiðtÞ, of Li at time t as follows:

IiðtÞ ¼ ð1þ aiÞIiðt� 1Þ � biðIiðt� 1ÞÞ2

¼ ð1þ bipiNiÞIiðt� 1Þ � biðIiðt� 1ÞÞ2:
(12)

In this paper, we are interested in a global sense of mal-
ware propagation. We study the following question.

For a given time t since the outbreak of a malware, what
are the characteristics of the number of compromised hosts
for each network in the view of the whole Internet. In other
words, to find a function F about IiðtÞð1 � i � MÞ. Namely,
the pattern of

F I1ðtÞ; I2ðtÞ; . . . ; IMðtÞð Þ: (13)

For simplicity of presentation, we use SðLi; tÞ to replace
IiðtÞ at the network level, and IðtÞ is dedicated for the Inter-
net level. Following Equation (13), for any network
Lið1 � i � MÞ, we have

SðLi; tÞ ¼ ð1þ bipiNiÞSðLi; t� 1Þ � bi SðLi; t� 1Þð Þ2: (14)

At the Internet level, we suppose there are k1; k2; . . . ; kt
networks that have been compromised at each round for
each time unit from 1 to t. Any kið1 � i � tÞ is decided by
Equation (4) as follows:

ki ¼ ð1þ bnMÞIði� 1Þ � bn Iði� 1Þð Þ2; (15)

where M is the total number of networks over the Inter-
net, and bn is the infection rate among networks. More-
over, suppose the number of seeds, k0, is known.

At this time point t, the landscape of the compromised
hosts in terms of networks is as follows.

S
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(16)

where Lj
ki
represents the jth network that was compromised

at round i. In other words, there are k1 compromised net-
works, and each of them have progressed t time units; k2
compromised networks, and each of them has progressed
t� 1 time units; and kt compromised networks, and each of
them have progressed 1 time unit.

It is natural to have the total number of compromised
hosts at the Internet level as
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(17)

Suppose kiði ¼ 1; 2; . . .Þ follows one distribution with a
probability distribution of pn (n stands for number), and
the size of a compromised network, SðLi; tÞ, follows
another probability distribution of ps (s stands for size).
Let pI be the probability distribution of IðtÞðt ¼ 0; 1; . . .Þ.
Based on Equation (18), we find pI is exactly the convolu-
tion of pn and ps.

pI ¼ pn 	
 ps; (18)

where 	
 is the convolution operation.
Our goal is to find a pattern of pI of Equation (18).

5 MALWARE PROPAGATION MODELLING

As shown in Fig. 2, we abstract theM networks of the Inter-
net into M basic elements in our model. As a result, any
two large networks, Li and Lj (i 6¼ j), are similar to each
other at this level. Therefore, we can model the studied
problem as a homogeneous system. Namely, all the M net-
works share the same vulnerability probability (denoted as
p), and the same infection rate (denoted as b). A simple
way to obtain these two parameters is to use the means:

p ¼ 1

M

XM
i¼1

pi

b ¼ 1

M

XM
i¼1

bi:

8>>>><
>>>>:

(19)

Fig. 2. The system architecture of the studied malware propagation.
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For any network Li, letNi be the total number of vulnera-
ble hosts, then we have

Ni ¼ p �Ni; i ¼ 1; 2; . . . ;M; (20)

where Ni is the total number of computers of network Li.
As discussed in Section 3, we know that Niði ¼ 1; 2; . . . ;

MÞ follows the power law. As p is a constant in Equation
(20), then Niði ¼ 1; 2; . . . ;MÞ follows the power law as well.
Without loss of generality, let Li represent the ith network
in terms of total vulnerable hosts (Ni). Based on the Zipf dis-
tribution, if we randomly choose a network X, the probabil-
ity that it is network Lj is

PrfX ¼ Ljg ¼ pzðjÞ ¼ NjPM
i¼1 Ni

¼ C

ja
: (21)

Equation (21) shows clearly that a network with a larger
number of vulnerable hosts has a higher probability to be
compromised.

Following Equation (18), at time t, we have k1 þ k2 þ � � �
þkt networks that have been compromised. Combining
with Equation (21), in general, we know the first round of
recruitment takes the largest k1 networks, and the second
round takes the k2 largest networks among the remaining
networks, and so on. We therefore can simplify Equation
(18) as

IðtÞ ¼
Xk1
j¼1

SðNj; tÞpzðjÞ

þ
Xk2
j¼1

SðNk1þj; t� 1Þpzðk1 þ jÞ

þ . . .

þ
Xkt
j¼1

SðNk1þ���þkt�1þj; 1Þ

� pzðk1 þ � � � þ kt�1 þ jÞ: (22)

From Equation (22), we know the total number of com-
promised hosts and their distribution in terms of networks
for a given time point t.

6 ANALYSIS ON THE PROPOSED MALWARE

PROPAGATION MODEL

In this section, we try to extract the pattern of IðtÞ in terms
of SðLi; t

0 Þ, or pI of Equation (18).
We make the following definitions before we progress for

the analysis.

1) Early stage. An early stage of the breakout of a mal-
ware means only a small percentage of vulnerable
hosts have been compromised, and the propagation
follows exponential distributions.

2) Final stage. The final stage of the propagation of a
malware means that all vulnerable hosts of a given
network have been compromised.

3) Late stage. A late stage means the time interval
between the early stage and the final stage.

We note that many researches are focused on the early
stage, and we define the early stage to meet the pervasively
accepted condition, we coin the other two terms for the

convenience of our following discussion. Moreover, we set
variable Te as the time point that a malware’s progress
transfers from its early stage to late stage. In terms of mathe-
matical expressions, we express the early, late and final
stage as 0 � t < Te, Te � t < 1, and t ¼ 1, respectively.

Due to the complexity of Equation (22), it is difficult to
obtain conclusions in a dynamic style. However, we are
able to extract some conclusions under some special
conditions.

Lemma 1. If distributions pðxÞ and qðxÞ follow exponential dis-
tributions, then pðxÞqðxÞ follows an exponential distribution
as well.

Due to the space limitation, we skip the proof and refer
interested readers to [29].

At the early stage of a malware breakout, we have advan-
tages to obtain a clear conclusion.

Theorem 1. For large scale networks, such as the Internet, at the
early stage of a malware propagation, the malware distribution
in terms of networks follows exponential distributions.

Proof. At a time point of the early stage (0 � t < Te) of a
malware breakout, following Equation (6), we obtain the
number of compromised networks as

IðtÞ ¼ Ið0ÞebnMt: (23)

It is clear that IðtÞ follows an exponential distribution.
For any of the compromised networks, we suppose it

has progressed t
0 ð0 < t

0 � t < TeÞ time units, and its
size is

SðLi; t
0 Þ ¼ Iið0ÞebNit

0
: (24)

Based on Equation (24), we find that the size of any
compromised network follows an exponential distribu-
tion. As a result, all the sizes of compromised networks
follow exponential distributions at the early stage.

Based on Lemma 1, we obtain that the malware distri-
bution in terms of network follows exponential distribu-
tions at its early stage. tu
Moreover, we can obtain concrete conclusion of the prop-

agation of malware at the final stage.

Theorem 2. For large scale networks, such as the Internet, at the
final stage (t ¼ 1) of a malware propagation, the malware
distribution in terms of networks follows the power law
distribution.

Proof. At the final stage, all vulnerable hosts have been
compromised, namely,

SðLi;1Þ ¼ Ni; i ¼ 1; 2; . . . ;M:

Based on our previous discussion, we know Niði ¼
1; 2; . . . ;MÞ follows the power law. As a result, the theo-
rem holds. tu
Now, we move our study to the late stage of malware

propagation.

Theorem 3. For large scale networks, such as the Internet, at the
late stage (Te � t < 1) of a malware breakout, the malware
distribution include two parts: a dominant power law body
and a short exponential tail.
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Proof. Suppose a malware propagation has progressed for
tðt > > TeÞ time units. Let t0 ¼ t� Te. If we separate all
the compromised IðtÞ hosts by time point t0, we have two
groups of compromised hosts.

Following Theorem 2, as t0 >> Te, the compromised
hosts before t0 follows the power law. At the same time,
all the compromised networks after t0 are still in their
early stage. Therefore, these recently compromised net-
works follow exponential distributions.

Now, we need to prove that the networks compro-
mised after time point t0 are at the tail of the distribu-
tion. First of all, for a given network Li, for t1 > t2,
we have

SðLi; t1Þ � SðLi; t2Þ: (25)

For two networks, Li and Lj, if Ni � Nj, then Li

should be compromised earlier than Lj. Combining this
with (25), we know the later compromised networks usu-
ally lie at the tail of the distribution.

Due to the fact that t0 >> Te, the length of the expo-
nential tail is much shorter than the length of the main
body of the distribution. tu

7 PERFORMANCE EVALUATION

In this section, we examine our theoretical analysis through
two well-known large-scale malware: Android malware
and Conficker. Android malware is a recent fast developing
and dominant smartphone based malware [19]. Different
from Android malware, the Conficker worm is an Internet
based state-of-the-art botnet [20]. Both the data sets have
been widely used by the community.

From theAndroidmalware data set, we have an overview
of the malware development from August 2010 to October
2011. There are 1,260 samples in total from 49 different

Android malware in the data set. For a given Android mal-
ware program, it only focuses on one or a number of specific
vulnerabilities. Therefore, all smartphones share these vul-
nerabilities form a specific network for that Android mal-
ware. In other words, there are 49 networks in the data set,
and it is reasonable that the population of each network is
huge. We sort the malware subclasses according to their size
(number of samples in the data set), and present them in a
loglog format in Fig. 3, the diagram is roughly a straight line.
In other words, we can say that the Android malware distri-
bution in terms of networks follows the power law.

We now examine the growth pattern of total number of
compromised hosts of Android malware against time,
namely, the pattern of IðtÞ. We extract the data from the
data set and present it in Table 2. We further transform the
data into a graph as shown in Fig. 4. It shows that the mem-
ber recruitment of Android malware follows an exponential
distribution nicely during the 15 months time interval. We
have to note that our experiments also indicate that this
data does not fit the power law (we do not show them here
due to space limitation).

In Fig. 4, we match a straight line to the real data through
the least squares method. Based on the data, we can esti-
mate that the number of seeds (Ið0Þ) is 10, and a ¼ 0:2349.
Following our previous discussion, we infer that the propa-
gation of Android malware was in its early stage. It is rea-
sonable as the size of each Android vulnerable network is
huge and the infection rate is quite low (the infection is basi-
cally based on contacts).

We also collected a large data set of Conficker from vari-
ous aspects. Due to the space limitation, we can only present
a few of them here to examine our theoretical analysis.

First of all, we treat AS as networks in the Internet. In
general, ASs are large scale elements of the Internet. A few
key statistics from the data set are listed in Table 3. We

Fig. 3. The probability distribution of Androidmalware in terms of networks.

TABLE 2
The Number of Different Android Malware against Time (Months) in 2010-2011

Fig. 4. The growth of total compromised hosts by Android malware
against time from August 2010 to October 2011.
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present the data in a loglog format in Fig. 5, which indicates
that the distribution does follow the power law.

A unique feature of the power law is the scale free prop-
erty. In order to examine this feature, we measure the com-
promised hosts in terms of domain names at three different
domain levels: the top level, level 1, and level 2, respec-
tively. Some statistics of this experiment are listed in
Table 4.

Once again, we present the data in a loglog format in
Figs. 6a, 6b and 6c, respectively. The diagrams show that
the main body of the three scale measures are roughly
straight lines. In other words, they all fall into power law
distributions. We note that the flat head in Fig. 6 can be
explained through a Zipf-Mandelbrot distribution. There-
fore, Theorem 2 holds.

In order to examine whether the tails are exponential, we
take the smallest six data from each tail of the three levels. It

is reasonable to say that they are the networks compromised
at the last 6 time units, the details are listed in Table 5 (we
note that t ¼ 1 is the sixth last time point, and t ¼ 6 is the
last time point).

When we present the data of Table 5 into a graph as
shown in Fig. 7, we find that they fit an exponential dis-
tribution very well, especially for the level 2 and level 3
domain name cases. This experiment confirms our claim
in Theorem 3.

8 FURTHER DISCUSSION

In this paper, we have explored the problem of malware
distribution in large-scale networks. There are many direc-
tions that could be further explored. We list some important
ones as follows.

1) The dynamics of the late stage. We have found that
the main body of malware distribution follows the
power law with a short exponential tail at the late
stage. It is very attractive to explore the mathemati-
cal mechanism of how the propagation leads to such
kinds of mixed distributions.

2) The transition from exponential distribution to
power law distribution. It is necessary to investigate
when and how a malware distribution moves from
an exponential distribution to the power law. In
other words, how can we clearly define the transition
point between the early stage and the late stage.

3) Multiple layer modelling. We hire the fluid model in
both of the two layers in our study as both layers are
sufficiently large and meet the conditions for the
modelling methods. In order to improve the accu-
racy of malware propagation, we may extend our
work to nðn > 2Þ layers. In another scenario, we

TABLE 3
Statistics for Conficker Distribution in Terms of ASs

Fig. 5. Power law distribution of Conficker in terms of autonomous
networks.

TABLE 4
Statistics for Conficker Distribution in Terms of Domain

Names at the Three Top Levels

Fig. 6. Power law distribution of Conficker botnet in the top three levels of domain names.
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may expect to model a malware distribution for mid-
dle size networks, e.g., an ISP network with many
subnetworks. In these cases, the conditions for the
fluid model may not hold. Therefore, we need to
seek suitable models to address the problem.

4) Epidemic model for the proposed two layer model.
In this paper, we use the SI model, which is the
simplest for epidemic analysis. More practical mod-
els, e.g., SIS or SIR, could be chosen to serve the
same problem.

5) Distribution of coexist multiple malware in net-
works. In reality, multiple malware may coexist at
the same networks. Due to the fact that different mal-
ware focus on different vulnerabilities, the distribu-
tions of different malware should not be the same. It
is challenging and interesting to establish mathemat-
ical models for multiple malware distribution in
terms of networks.

9 SUMMARY AND FUTURE WORK

In this paper, we thoroughly explore the problem of mal-
ware distribution at large-scale networks. The solution to
this problem is desperately desired by cyber defenders as
the network security community does not yet have solid
answers. Different from previous modelling methods, we
propose a two layer epidemic model: the upper layer
focuses on networks of a large scale networks, for example,
domains of the Internet; the lower layer focuses on the hosts
of a given network. This two layer model improves the
accuracy compared with the available single layer epidemic
models in malware modelling. Moreover, the proposed two
layer model offers us the distribution of malware in terms
of the low layer networks.

We perform a restricted analysis based on the proposed
model, and obtain three conclusions: The distribution for a
given malware in terms of networks follows exponential
distribution, power law distribution with a short exponen-
tial tail, and power law distribution, at its early, late, and
final stage, respectively. In order to examine our theoretical
findings, we have conducted extensive experiments based
on two real-world large-scale malware, and the results con-
firm our theoretical claims.

In regards to future work, we will first further investigate
the dynamics of the late stage. More details of the findings
are expected to be further studied, such as the length of the
exponential tail of a power law distribution at the late stage.
Second, defenders may care more about their own network,
e.g., the distribution of a given malware at their ISP
domains, where the conditions for the two layer model may
not hold. We need to seek appropriate models to address
this problem. Finally, we are interested in studying the dis-
tribution of multiple malware on large-scale networks as

we only focus on one malware in this paper. We believe it is
not a simple linear relationship in the multiple malware
case compared to the single malware one.
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