
 52 computer Published by the IEEE Computer Society 0018-9162/13/$31.00 © 2013 IEEE

Cover Fe ature

Steven Swanson and Adrian M. Caulfield, University of California, San Diego

Emerging nonvolatile storage technologies 
promise orders-of-magnitude bandwidth 
increases and latency reductions, but 
fully realizing their potential requires 
minimizing storage software overhead 
and rethinking the roles of hardware and 
software in storage systems. 

T he 1956 introduction of IBM’s first hard drive revo-
lutionized how computer systems store data, but 
since then, computer systems have had to deal 
with storage system performance that lags far 

behind that of memory, processors, and networks. This 
reality has shaped the evolution of computing hardware, 
system software, and applications in fundamental and 
complex ways. In particular, poor storage hardware per-
formance has made the performance of software layers 
that manage storage—local and remote file systems, stor-
age hardware drivers, storage networks, databases, and 
virtual memory systems—relatively unimportant to over-
all system performance.

Emerging fast, nonvolatile memory (NVM), such as flash 
and phase-change memory (PCM), alter the performance 
landscape of storage entirely and require software de-
signers to rethink the importance and role of software in 
storage systems. Storage software’s latency and energy 
will become dominant costs in storage systems, and that 
will mean reengineering these systems to minimize those 
costs.

In existing disk-based systems, software plays an 
important role in improving system performance.  
For example, scheduling storage accesses more care- 
fully or managing a database’s buffer pool more 
intelligently can significantly reduce both the number 
and cost of I/O operations. Software can also provide 
useful services like replication, encryption, compression, 
transactional guarantees, provenance tracking, and thin 
provisioning.

But executing all this code costs both time and energy. 
For disk-based storage systems, the software costs are 
minuscule relative to hardware costs: for a 4-Kbyte access 
to a commodity disk, the stock Linux software stack 
accounts for just 0.3 percent of the latency and 0.4 percent 
of the energy.

NVM alters this balance entirely. For the same 4-Kbyte 
access to a prototype solid-state drive (SSD) we built in 
the lab, the same software accounts for 70 percent of 
the latency and 87.7 percent of the energy. This means 
that running existing storage software stacks on top of 
new storage technologies is a recipe for disappointment 
and inefficiency. The resulting system will not realize 
the performance and efficiency gains that the NVM’s raw  
speed and efficiency should enable.

Making the best use of NVM requires rethinking the 
role and structure of software and hardware in storage 
systems. We have spent the past four years redesigning 
storage software and hardware to meet the needs of 
fast NVM and have identified three Rs that have proven 
useful in letting NVM performance shine through 
while minimizing disruptive changes to other system 
components: refactor storage hardware and software to 

Refactor, 
Reduce, Recycle: 
Restructuring the 
I/O Stack for the 
Future of Storage



 AuGuSt 2013 53

reduce software bottlenecks, reduce software overhead 
where possible, and recycle existing components. We 
have developed and evaluated these principles during 
the construction of several prototype storage systems that 
target fast NVM.

SHIFTING STORAGE TECHNOLOGIES
Storage system performance, efficiency, and features 

stem from interactions among the storage hardware, the 
CPU, and, in distributed systems, the network. Solid-state 
NVM is revolutionizing storage hardware and altering its 
relationship to the other components.

Plumbing a storage system
Modern storage systems—particularly their software 

components—are complex and diverse. Systems can be 
tens of gigabytes in a smartphone to tens of petabytes 
in a datacenter. Myriad file systems, remote access 
protocols, and schemes are available to improve reliability, 
accessibility, and performance. 

Figure 1 illustrates the hardware and software 
components that make up a typical storage system. Within 
a single computer, the operating system’s I/O stack provides 
applications with access to persistent storage. The file 
system provides mechanisms for naming and organizing 
files and manages the storage spread across one or more 
block devices. A block device might be a local hard drive, 
a local redundant array of independent disks (RAID), or a 
remote disk available through a storage area network (SAN) 
protocol like Fibre Channel or Internet Small Computer 
System Interface (iSCSI).

The operating system’s generic block device driver 
works in conjunction with device-specific device drivers 
(for example, for a high-performance RAID card or 
hardware-accelerated SAN card) to issue read and write 
requests to a physical storage device, such as a disk, a 
RAID, or a remote disk.

One strength of storage-system software stacks is 
their modular design. Kernel modules, for example, can 
implement useful features like encryption, compression, 
and replication by creating virtual block devices that 
interpose on I/O requests and pass them on to another 
(also potentially virtual) block device. 

But this approach also has weaknesses. First, it relies 
on the operating system for all aspects of storage access 
and management. The kernel not only sets policy, such as 
allocating disk space to files and maintaining permissions, 
but also enforces that policy by checking permissions 
on each access, for example, and it manages low-level 
hardware access. This setting and enforcing combination 
can lead to inefficiencies. The second weakness of this 
approach, at least for NVM, is its generality. Because the 
storage system and its layers are meant to be generic, it is 
difficult to implement optimizations that are based on the 

underlying hardware. As hardware diversity increases, 
this difficulty will translate to more and more missed 
opportunities. 

Storage technologies
Compared to the riot of diversity in storage software, 

the landscape for storage hardware has been largely 
homogeneous, since hard drives have been the only option. 
Flash-based SSDs bring a big dose of heterogeneity, and 
emerging NVM promises even more. 

Spinning-disk drives. Spinning-disk hard drives have 
been the primary storage media for most of computing 
history, and they will continue to be the cheapest option 
(excluding tape) on a cost-per-bit basis. Although hard 
drive performance does vary, those variations are small. 
For example, the fastest enterprise hard drives offer only 
about 30 percent more bandwidth than commodity drives 
(≈200 MBps versus 150 MBps).

The largest shortcoming of hard drives is their long 
latency. Average hard drive latencies are from 2 ms 
to over 11 ms. This sluggishness is especially painful 
for applications such as databases, which require 
acknowledgment that data is safe on the disk before 
moving on.

Hard drives are also power hungry. Under heavy load, 
high-performance hard drives consume about 16 W,  
or 45 mJ, per random access I/O operation.

Flash-based SSDs. NAND flash is the first type of NVM 
to see wide commercial adoption. SSDs based on flash 
memory have become ubiquitous as the storage medium 
for mobile devices. They are also supplanting spinning 
disks in storage applications in which performance is 
more important than cost per bit.

Application

File system

Kernel block I/O

Kernel driver

SSDDisk

Operating
system

User space

Hardware

SAN

Figure 1. I/O system components. A typical I/O stack 
combines file systems, a generic kernel block I/O layer, 
device-specific drivers, and one or more block-based 
storage devices. SSD: solid-state drive; SAN: storage area 
network.



 54 computer

Cover Fe ature

SSDs excel at performing random, unpredictable 
accesses very quickly and efficiently. A state-of-the-art 
SSD, like FusionIO’s ioDrive2 Duo, offers a read (write) 
latency of 47 μs (15 μs). SSDs can handle many requests in 
parallel, sustaining hundreds of thousands of random I/O 
operations per second (IOPS) at just 75 μJ per IOP—a 600× 

difference relative to disk. A high-end SSD can sustain 
between 1.5 and 3 GBps. 

Next-generation memory. Several emerging technolo-
gies promise to improve on flash’s performance. Both 
PCM and spin-torque transfer magnetic RAM (STT-MRAM) 
are available commercially. Micron and Samsung have 

Software Considered Harmful

N onvolatile memory (NVM) shifts the balance between hard-
ware and software costs in storage systems, and thereby 

redefines software’s role. In disk-based systems, the energy that 
the storage stack consumes running on a power-hungry CPU pales 
in comparison to a disk’s energy requirements. As a result, it is 
possible to improve performance and save energy by adding 
software to a disk-based system.

But host-side software is slow and energy-hungry compared  
to NVM, and the more software the host executes to manage I/O 
requests, the slower those requests will be. This means that using 
existing storage stacks to manage NVM-based storage is a recipe 

for disappointment and inefficiency, and it will be difficult if not 
impossible to improve performance and efficiency by adding 
software to the system. Conversely, reducing interactions with 
software components and refactoring them to reduce their costs is 
an effective way to improve performance and efficiency.

Measurements of software and hardware costs in 
contemporary storage systems illustrate software’s shifting role. In 
the off-the-shelf Linux storage stack, a single 512-byte I/O 
operation requires about 19 μs of processor time on a 2.27-GHz 
Nehalem processor. A single active Nahalem core consumes 
around 28 W, or 532 μJ, per I/O operation.

These software costs are roughly constant regardless of the 
underlying storage technology, but the relative cost of software 
changes completely. Figure A illustrates this shift. For disks, 
software accounts for just 0.27 percent of I/O operational latency, 
but for the ioDrive (a high-end flash-based solid-state drive) and 
Moneta (our prototype SSD for next-generation memory), it 
accounts for 22 percent and 70 percent, respectively. The shift is 
almost as dramatic for energy: 0.42 percent of the disk’s I/O 
operational energy goes to software versus 73 percent and 95 
percent for ioDrive and Moneta.

The shifting ratio of software to hardware costs has profound 
effects on how designers should approach crafting a storage 
system. As an example, consider the decision to add the logical 
volume manager (LVM) to a Linux storage stack to make 
expanding system capacity easier. Table A shows the comparison 
between a disk-based system, ioDrive, and the NVM-based 
Moneta SSD. Adding this layer increases software latency by 2 μs 
and energy consumption by 56 μJ per I/O operation. In the disk-
based system, these increases are negligible, but they are much 
higher for the ioDrive, and highest of all for Moneta.

To minimize the harm that operating system software causes, 
system designers need to reengineer storage systems to 
minimize software’s role. In some cases, this will require 
extensions or modifications to storage hardware, but often it 
means applying well-known design principles to refactor 
existing systems.

Table A. Impact of adding a logical volume manager 
(LVM) to three storage systems.

Storage system

Software 
latency 

increase 
(percent)

Energy 
consumption 

increase 
(percent)

Disk-based 0.03 0.04
ioDrive (flash-based SSD) 4.30 15.50
Moneta (NVM-based SSD) 10.70 18.70

Figure A. Software’s impact on latency and energy. Without 
significantly reengineering the storage software stack, 
software latency and energy per I/O operation will quickly 
dominate I/O costs.

So
ftw

ar
e’s

 co
nt

rib
ut

ion
 to

 en
er

gy
 (p

er
ce

nt
)

0

10

20

30

40

50

60

70

80

90

100

0.4

96.9

75.3

87.7 98.8

Hard drive SATA SSD PCIe−�ash PCIe−PCM DDR NVM

So
ftw

ar
e’s

 co
nt

rib
ut

ion
 to

 la
te

nc
y (

pe
rce

nt
)

0

10

20

30

40

50

60

70

80

90

100

0.3

19.3 21.9

70.0

94.1

PCIe = Peripheral Component 
  Interconnect Express
PCM = phase-change memory
SSD = solid-state drive



 AuGuSt 2013 55

produced gigabit PCM devices, and Ever-
spin is sampling DDR3-based STT-MRAM 
DIMMs.

According to projections from the 
International Technology Roadmap 
for Semiconductors,1 a semiconductor 
manufacturing trade group, PCM will 
eventually offer read performance on 
par with dynamic RAM and write per-
formance within a small factor of that 
possible with DRAM. STT-MRAM and the 
memristor promise similar or better per-
formance. Experiments in our lab suggest 
that SSDs built from memory will perform 
I/O operations in 1.2 to 4 μs, consume no 
more than 20 to 40 μJ per I/O operation, 
and sustain at least 1 million IOPS.

THREE Rs IN BRIEF
Storage software’s changing role requires a change in the 

software stack’s architecture. Over the past four years, we 
have built a sequence of prototype NVM storage systems that 
have enabled us to wrestle with these changes firsthand. We 
have found that the combination of refactoring, reducing, 
and recycling can maximize performance with minimal 
disruption to the rest of the system.

Refactor
Redistributing storage system functionality across the 

application, operating system, and hardware can improve 
software efficiency. Existing software stacks rely on the 
operating system for all aspects of I/O processing. The 
operating system and file system are responsible for both 
setting storage policy and enforcing that policy. In our 
experience, the largest gains have come from separating 
these two, minimizing the amount of enforcement 
necessary, and then moving enforcement into hardware. As 
the “Software Considered Harmful” sidebar explains, relying 
on hardware, rather than software, for policy enforcement 
and implementation can be particularly profitable. 

Reduce
Executing common case operations should require as 

little software interaction as possible. Designers should 
codesign hardware and software to get software out of 
the way so systems can fully exploit the raw performance 
of NVM. Using disk-centric software to manage NVM, for 
example, often reveals latent performance bottlenecks 
and disk-centric optimizations that restrain performance. 
Bottlenecks can include highly contended locks and 
extra layers of indirection or queuing. Troublesome disk-
centric optimizations include complex I/O schedulers 
and, surprisingly, the operating system’s disk-caching 
mechanisms.

Recycle
NVM demands big changes in how storage works, but 

it is often possible to leverage existing technologies and 
software components, which reduces design effort and 
thus eases the path of adoption. 

Although reducing and refactoring software inter-
actions can significantly alter the architecture of the 
storage system, we have found that careful design can 
allow for extensive reuse of software components. This 
saves time and makes it easier to integrate NVM into ex-
isting systems.

CASE STUDY: MONETA
One of our prototypes is the Moneta SSD,2-4 which 

targets emerging, fast NVM and is the first system we built 
to understand how NVM performance should influence 
software architecture. As Figure 2 shows, I/O requests 
arrive from the host machine through programmed I/O 
(PIO) requests over Peripheral Component Interconnect 
Express (PCIe) and enter a request queue. The scoreboard 
tracks the status of in-flight operations and signals the host 
when they complete. The scoreboard also coordinates the 
operation of the DMA and ring controllers.

We implemented Moneta on the BEE3 f ield-
programmable gate array (FPGA) prototyping platform. The 
BEE3 provides four FPGAs and can host either 64 Gbytes of 
DDR2 DRAM or 8 Gbytes of PCM. Moneta has been running 
in our lab since 2009, and in 2011, the PCM-equipped version 
became the world’s first publicly demonstrated PCM SSD.5

For the case studies we describe, Moneta used DRAM 
(and a custom memory controller) to emulate the 
performance characteristics of future PCM technology. In 
this configuration, Moneta can perform a random 4-Kbyte 
read or write in 8 μs, and we estimate that a commercial 
version of the device would consume between 88 and 240 
μJ per I/O operation.

PIO

DMA

Request
queue 

DMA
control

Ring
control

Score-
board

Rin
g (

4 G
B/

s)8 Gbytes

8 Gbytes

8 Gbytes

8 Gbytes 8 Gbytes

8 Gbytes

8 Gbytes

8 Gbytes

Figure 2. Moneta’s internal architecture. Like other high-end solid-state drives 
(SSDs), Moneta attaches to a host server through Peripheral Component 
Interconnect Express and provides fast access to eight banks of nonvolatile 
memory (NVM) arranged around a high-performance ring-based interconnect.



 56 computer

Cover Fe ature

Reduce
The first set of software optimizations we implemented 

for Moneta3 streamlined the Linux software stack by 
addressing two bottlenecks that lay dormant in disk-
based systems but crippled Moneta’s performance. We 
also implemented many optimizations to reduce latency 
and increase parallelism. Overall, we reduced software 
latency by 43 percent and realized an 18-fold increase in 
bandwidth for small accesses.

I/O requests. The Linux I/O scheduling framework 
forces the thread issuing the I/O request to place the 
request in a queue. Later, the single scheduling thread 
removes the request, schedules it, and eventually issues 
it. The framework is flexible and supports pluggable I/O 
schedulers, but the context switch it requires adds 2 μs of 
software latency. The Moneta driver eliminates the queues 
and allows each thread to issue its own I/O requests to 
hardware, avoiding context switches and increasing 
parallelism.

Interrupts. Hard drive controllers use interrupts to 
notify the kernel when operations complete. When a 
thread issues an I/O request, it goes to sleep and waits for 
the kernel to reschedule it in response to the interrupt. The 
process of sleeping and waking from sleep adds 6 μs of 
software latency. Instead of interrupts, threads spin while 
waiting for Moneta to complete requests smaller than 4 
Kbytes, since doing so is faster (and more efficient) than 
sleeping and awakening.

Refactor and recycle
Even with a streamlined software stack, software 

accounts for 57 percent of the latency and 87.7 percent of 
the energy required to perform an I/O request to Moneta. 
Further improvements required moving beyond software 
optimization to software restructuring.

The file system was a clear culprit, since XFS adds 5 μs 
to each request. Optimizing or rewriting the file system 

were unattractive options for two reasons. First, we 
would need to repeat the process for every file system, 
making it more difficult to widely deploy NVM. Second, 
the file system was only part of the problem. The costs 
of entering and exiting the operating system were also 
significant (accounting for 18 percent of the latency for 
small accesses), so Amdahl’s law would limit the gains an 
optimized file system could provide.

The approach we took addressed both of these 
problems. We refactored the storage stack to change the 
role of the operating system and file system in managing, 
accessing, and protecting storage. At the same time, we 
recycled existing file systems to ensure that Moneta can 
leverage the existing tools and features that these file 
systems provide.

Refactor. We broke the software overhead for process-
ing an I/O request into two parts: the cost of implementing 
file system protection and the cost of translating a file and 
file offset into a physical storage location.

The file system plays two roles in implementing 
permissions. It is responsible for setting access policy for 
the storage device by modifying permission bits, allocating 
extents on the storage device, and assembling extents 
into logically contiguous files. These policy decisions 
ultimately determine which processes should have access 
to which extents. The file system is also responsible for 
enforcing permissions. Every read and write operation 
enters the kernel, where the file system mediates access, 
ensuring that applications access only the files they have 
successfully opened.

Although the file system’s allocation and protection 
policies are complex and file system specific, the policy’s 
summary—the boundary and permission bits for each 
extent—is compact and generic. Moreover, the file system 
makes policy decisions only when it must extend a file or 
modify metadata. Common-case read and write operations 
require only enforcement.

(a) 0.5 2 8 32 128

Ba
nd

wi
dt

h (
GB

/s)

0.0

1.0

2.0

3.0

4.0

(b)
Random request size (Kbytes) (50/50 reads and writes)

0.5 2 8 32 128
0.00

0.25

0.50

0.75

1.00

(c) 0.5 2 8 32 128
0.0

5.0

10.0

15.0

20.0

Posix
Memory drive + RRR

Moneta + iSCSI
Moneta SAN + RRR

Baseline Moneta
Moneta + RRR

Figure 3. Bandwidth improvements from the three Rs for (a) Moneta, (b) distributed Moneta, and (c) memory drive systems. 
Minimizing software overhead leads to huge improvements in bandwidth for all three systems across a wide range of access 
sizes. SAN: storage access network; iSCSI: Internet Small Computer System Interface.



 AuGuSt 2013 57

On the basis of this analysis, we refactored the I/O stack 
to remove trusted software (the operating system and file 
system) from the code path for common-case read and 
write operations. The refactored system comprises four 
components:

 • User-space driver for Moneta. The LibMoneta library 
provides direct access to the Moneta hardware and, for 
most operations, does not need to call into the operat-
ing system. The library provides a Posix-compatible 
interface, so applications require no modifications.

• Virtualized hardware interface. Each process uses a 
private logical interface to access Moneta, allowing 
multiple applications to use Moneta simultaneously.

• Hardware permission checks. The Moneta hardware 
provides a protection table for each application that 
specifies which portion of the storage device the 
process can access. Accesses outside those regions 
fail.

 • Permissions manager in the kernel. To grant an ap-
plication access to the storage device, LibMoneta 
communicates with the kernel’s permissions man-
ager, which manages the application’s protection 
table. The cost of communicating with the permis-
sions manager is small, since it is amortized over all 
future accesses to file data. The permissions manager 
is generic and works with many file systems.

As a result of these changes, the software latency 
for common-case reads and writes does not include 
entering the kernel or executing any file system code, 
and the additional code executed in LibMoneta is small 
by comparison. Overall, these changes reduce software 
latency by 11.13 μs (69 percent), with a similar reduction 
in software energy per I/O operation. Permission checks 
add just 0.18 μs to access latency.

As Figure 3a shows, refactoring the Moneta software 
stack reduces software overhead by 62 percent and 
greatly increases bandwidth as well. Relative to the initial 
implementation, sustained bandwidth for small, random 
reads and writes is 22 times greater, and large transfer 
performance nearly doubles.

Recycle. Implementing the refactored software stack 
was complex but required no modifications to the file 
system. Like most file systems, XFS provides an interface 
that allows the kernel to extract file-layout information 
in a generic format. This interface is all that the Moneta 
kernel and user-space drivers need to function properly.

Distributed storage
Because scale-out computing is on the rise, we also 

wanted to understand how to leverage NVM in large, 
distributed storage systems. Modern enterprise and cloud 
storage systems span thousands of host processors and 

bring with them new and costly software latency and 
energy overhead.

SAN-based storage systems allow storage systems to 
scale, but they suffer from two sources of overhead that 
can obscure the underlying storage performance. The first 
is the device-independent software stack layers, such as 
the file system, and the second is the block transport, the 
combination of software and interconnection hardware 
that provides access to remote storage.

To illustrate the impact of these sources, consider 
the iSCSI and Fibre Channel SAN block transport layers. 
iSCSI uses a conventional network stack to implement 
block transport functions. Including the SAN file system, 
network stack, and so on, the iSCSI layer adds 284 μs to 
a 4-KByte read access. Fibre Channel uses specialized 
storage adapter cards, network gear, and software to 
reduce software overhead. It adds 86 μs to the same 
read. Left unchecked, this overhead would squander any 
performance gains that Moneta provides.

We adapted Moneta for use in distributed storage by 
integrating a network interface directly into the storage 
hardware, and applying the three Rs.6 With the integrated 
network interface, we could refactor and reduce the 
software portion of remote accesses by adding hardware 
support for forwarding remote accesses to other Moneta 
devices on the network. Because distributed Moneta uses 
the same interface as before, we were able to recycle 
LibMoneta and the rest of the optimized I/O interface. As 
a result, Moneta behaves just like a large, shared-disk block 
device. Existing shared-disk file systems work seamlessly 
with LibMoneta to provide consistency across the nodes 
while maintaining the low overhead software stack.

As Figure 3b shows, distributed Moneta performance is 
107 times higher than the iSCSI configuration performance 
for small requests and 4.5 times higher for large requests.

Refactor and reduce. We designed this version of 
Moneta to move all the software overhead of remote 
storage accesses into hardware. Implementing the block 
transport directly in the SSD minimizes software over-
head for remote accesses at the client, and the server SSD 
can service the request with no software interaction.

Recycle. Distributed Moneta transforms Moneta from a 
locally attached storage device into a gateway to a large, 
shared-disk block device distributed throughout the net-
work. This model is a great match for shared-disk file 
systems like general parallel file system (GPFS). Further-

Changes to Moneta ensure that common-
case reads and writes do not require 
entering the kernel or executing any file 
system code.



 58 computer

Cover Fe ature

more, those file systems provide the same interface to 
extract extent and permission information that Moneta 
needs to enforce protections, so we were able to recycle 
LibMoneta as well.

CASE STUDY: MEMORY DRIVES
NVM is also destined for main memory—memory 

attached to the processor’s memory bus—and the 
resulting storage system will be much faster than Moneta. 
As a result, software is even more harmful than in  
PCIe-attached storage. 

The vision for using nonvolatile main memory as 
storage is straightforward: all or part of the main memory 
attached to the processor is a nonvolatile technology. The 
main memory could be PCM, the memristor, or STT-RAM, 
for example. The operating system treats this nonvolatile 
region as a storage device analogous to a RAM disk, which 
we call a memory drive.7

Running a conventional software I/O stack on a 
memory drive would intensify all the software-related 
inefficiencies that Moneta encountered. It also presents 
new opportunities for reducing software interactions. The 
most notable of these is copying data between the storage 
device and main memory.

Reduce
Memory drives can avoid copying by using virtual 

memory techniques to map a file’s contents directly into 
the process’s virtual address space. Memory-mapped files 
are nothing new, but the effect here is quite different. With 
conventional memory-mapped files, the virtual memory 
system pages (copies) the contents of the file back and 
forth between disk and main memory, so stores to the 
mapped file do not immediately become persistent. With 
a memory drive, the file itself (rather than a copy) resides 
in the application’s address space, so there is no need to 
copy data.

Refactor
The virtual memory system also provides the means to 

refactor file systems for memory drives using techniques 
similar to Moneta’s approach. Memory drives can leverage 
the existing virtual memory system to enforce file system 
protection policies. During the mapping operation, the 
file system transfers file system permissions into memory 
page permissions, and the translation look-aside buffer 
(TLB) enforces file system protection policy.

Recycle
Using the TLB to enforce file system permissions works 

for almost all file systems, so we were able to recycle them 
along with their associated tools and utilities. We also 
provided a Posix-like interface to the memory drive so 
existing applications can run without modification.

Results
Reducing, refactoring, and recycling for memory drives 

yielded performance gains even larger than what was 
possible for Moneta. Bypassing the operating system and 
file system for common-case accesses reduced latency by 
between 87 and 96 percent. As Figure 3c shows, bandwidth 
for random 4-Kbyte requests was 1.9 to 14.8 times greater.

OPEN QUESTIONS
The reductions in software overhead that Moneta and 

memory drives demand are just the beginning of what 
is necessary to fully leverage fast NVM. Open challenges 
remain on at least two fronts: handling metadata and 
application-software costs.

Handling metadata
Both Moneta and memory drives focus on minimizing 

the software overhead in accessing file content. Updates to 
file system metadata, such as creating, enlarging, renaming, 
and deleting files, still go through the kernel and incur all 
the associated latency and energy costs. For metadata-
intensive applications, the cost of metadata updates can 
dominate file access in its impact on performance.

Addressing metadata costs is challenging because the 
system cannot trust applications to modify file system data 
structures correctly. A possible approach is to accumulate 
metadata updates in the user space and apply them at 
once;8 another is to provide applications with private file 
systems with explicit share or export capabilities.

Application-level software costs
The operating system and file system are not the 

only sources of software overhead in storage systems. 
Databases include sophisticated mechanisms for 
optimizing accesses to storage, many of which are 
ineffective or counterproductive for NVM-based storage 
systems. Consequently, the techniques we recommend to 
improve time and energy efficiency are likely to apply to 
databases as well.

Our group has taken the first step to test this idea by 
refactoring the ShoreMT database storage manager to 
better use Moneta. The first step was to reexamine the 
Algorithms for Recovery and Isolation Exploiting Semantics 
(ARIES)9 write-ahead logging algorithm that many 
databases use to support scalable transactions. ARIES 
works hand in glove with disks and includes several disk-
centric designs that unnecessarily reduce performance on 
Moneta. Adding simple hardware support for logging to 
Moneta allowed us to refactor ARIES into Modified ARIES 
Redesigned for SSDs (MARS),10 a more efficient logging 
scheme that can replace ARIES in transactional databases 
and is tailored to NVM characteristics. In our preliminary 
evaluations, MARS reduced software overhead by 65 
percent for small atomic write logging operations.



 AuGuSt 2013 59

THE FOURTH R: REVOLUTION
The three Rs constitute an effective approach to 

integrating NVM into existing storage and memory 
hierarchies because they help expose NVM performance 
without requiring significant, fundamental changes to 
dealing with files and persistent storage. But although this 
evolutionary change is important, it is not sufficient.

NVM has the potential to reshape how programmers 
and applications use and reason about both persistent and 
transient state. For disk-based systems, the performance 
gap between main memory and storage was so great that 
the interface used to access persistent storage made little 
difference.

Now, however, the interface does indeed make a 
difference. For Moneta, providing a Posix-like interface to 
storage increases latency by at least half for small accesses; 
for memory drives, the opportunity cost is even greater: 
treating memory drive content as files misses the idea that 
a memory drive is a type of memory and programmers can 
use it as such—employing the full breadth and depth of 
rich, pointer-based, strongly typed data structures, rather 
than relying on the file-based interface to an untyped byte 
array.

Work on replacing these interfaces has begun,11,12 and 
performance gains are already impressive. However, 
moving beyond these early results requires completely 
rethinking how applications use storage. Systems such 
as Moneta and memory drives give a glimpse of NVM’s 
potential and pave the way for redefining notions about 
computer storage.

F ast NVM is on the rise, and it offers, at long last, the 
promise of storage systems that can keep up with 
processors, networks, and main memory. However, 

the software that manages and provides access to storage 
needs significant reengineering to match the perfor-
mance of these new storage media. Our experience with 
Moneta and memory drives provides a blueprint for how 
to reshape the role storage software plays in mediating 
storage access and how it interacts with storage hard-
ware. By reducing software interactions where possible, 
refactoring management functions between hardware 
and software, and recycling existing software when pos-
sible, software designers can provide a smooth path to 
broader adoption of fast NVM and lay the groundwork for 
more sweeping changes in how applications interact with 
persistent data. 

References
 1. “ITRS 2011 Tables: Emerging Research Devices,” Int’l 

Tech. Roadmap for Semiconductors, 2011; www.itrs.net/
Links/2011ITRS/2011Tables/ERD_2011Tables.xlsx.

 2. A.M. Caulfield et al., “Understanding the Impact of 
Emerging Nonvolatile Memories on High-Performance, 

I/O-Intensive Computing,” Proc. ACM/IEEE Int’l Conf. High-
Performance Computing, Networking, Storage and Analysis 
(SC 10), IEEE, 2010, pp. 1-11.

 3. A.M. Caulfield et al., “Moneta: A High-Performance 
Storage Array Architecture for Next-Generation, 
Nonvolatile Memories,” Proc 43rd IEEE/ACM Int’l Symp. 
Microarchitecture (MICRO 43), IEEE, 2010, pp. 385-395.

 4. A.M. Caulfield et al., “Providing Safe, User Space Access to 
Fast, Solid-State Disks,” Proc. 17th Int’l Conf. Architectural 
Support for Programming Languages and Operating 
Systems (ASPLOS 12), ACM, 2012, pp. 387-400.

 5. A. Akel et al., “Onyx: A Prototype Phase-Change Memory 
Storage Array,” Proc. 3rd Usenix Conf. Hot Topics in Storage 
and File Systems (HotStorage 11), Usenix, 2011, pp. 1-15.

 6. A.M. Caulfield and S. Swanson, “QuickSAN: A Storage Area 
Network for Fast, Distributed, Solid State Disks,” to appear 
in Proc. 40th Int’l Symp. Computer Architecture (ISCA 13), 
ACM, 2013.

 7. L.A. Eisner, T. Mollov, and S. Swanson, “Quill: Exploiting 
Fast Nonvolatile Memory by Transparently Bypassing the 
File System,” tech. report CS2013-0991, Dept. Computer 
Science & Eng., Univ. of Calif., San Diego, 2013.

 8. H. Volos et al., “Storage-Class Memory Needs Flexible 
Interfaces,” to appear in Proc. 4th Asian-Pacific Workshop 
on Systems (APSys 13), ACM, 2013.

 9. C. Mohan et al., “ARIES: A Transaction Recovery Method 
Supporting Fine-Granularity Locking and Partial Rollbacks 
Using Write-Ahead Logging,” IEEE Trans. Database 
Systems, vol. 17, no. 1, 1992, pp. 94-162.

 10. J. Coburn et al., “From ARIES to MARS: Transaction Support 
for Next-Generation Solid-State Drives,” to appear in Proc. 
24th Int’l Symp. Operating Systems Principles (SOSP 13), 
ACM, 2013.

 11. J. Coburn et al., “NV-Heaps: Making Persistent Objects Fast 
and Safe with Next-Generation, Nonvolatile Memories,” 
Proc. 16th Int’l Conf. Architectural Support for Programming 
Languages and Operating Systems (ASPLOS 11), ACM, 2011, 
pp. 105-118.

 12. H. Volos, A.J. Tack, and M.M. Swift, “Mnemosyne: 
Lightweight Persistent Memory,” Proc. 16th Int’l Conf. 
Architectural Support for Programming Languages and 
Operating Systems (ASPLOS 11), ACM, 2011, pp. 91-104.

Steven Swanson is an associate professor in the De-
partment of Computer Science and Engineering at the 
University of California, San Diego, where he also directs 
the university’s Non-Volatile Systems Laboratory. His re-
search interests include the systems, architecture, security, 
and reliability issues surrounding nonvolatile, solid-state 
memory. Swanson received a PhD in computer science and 
engineering from the University of Washington. He is a 
member of ACM. Contact him at swanson@cs.ucsd.edu.

Adrian M. Caulfield is a graduate student in the Non-Vola-
tile Systems Laboratory at the University of California, San 
Diego. His research focuses on the application of emerging 
NVM technologies in high-performance storage systems. 
Caulfield received a PhD in computer science and engi-
neering from the University of California, San Diego. He is 
a member of ACM. Contact him at acaulfie@cs.ucsd.edu.


