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Abstract. We define abstract proof procedures for performing cred-
ulous and sceptical non-monotonic reasoning, with respect to the argu-
mentation-theoretic formulation of non-monotonic reasoning proposed in
[1]. Appropriate instances of the proposed proof procedures provide con-
crete proof procedures for concrete formalisms for non-monotonic reason-
ing, for example logic programming with negation as failure and default
logic. We propose (credulous and sceptical) proof procedures under differ-
ent argumentation-theoretic semantics, namely the conventional stable
model semantics and the more liberal partial stable model or preferred
extension semantics. We study the relationships between proof proce-
dures for different semantics, and argue that, in many meaningful cases,
the (simpler) proof procedures for reasoning under the preferred exten-
sion semantics can be used as sound and complete procedures for rea-
soning under the stable model semantics. In many meaningful cases still,
proof procedures for credulous reasoning under the preferred extension
semantics can be used as (much simpler) sound and complete procedures
for sceptical reasoning under the preferred extension semantics. We com-
pare the proposed proof procedures with existing proof procedures in the
literature.

1 Introduction

In recent years argumentation [1, 3, 4, 6, 12, 15, 21, 23, 24, 29, 30, 32] has played an
important role in understanding many non-monotonic formalisms and their se-
mantics, such as logic programming with negation as failure, default logic and
autoepistemic logic. In particular, Eshghi and Kowalski [9] have given an inter-
pretation of negation as failure in Logic Programming as a form of assumption
based reasoning (abduction). Continuing this line of work, Dung [5] has given



a declarative understanding of this assumption based view, by formalizing the
concept that an assumption can be safely accepted if “there is no evidence to
the contrary”. It has also been shown in [5] that the assumption based view pro-
vides a unifying framework for different semantics of logic programming. Later,
this view has been further put forward [1, 6, 12] by the introduction the notions
of attack and counterattacks between sets of assumptions, finally leading to an
argumentation-theoretic understanding of the semantics of logic programming
and nonmonotonic reasoning. In particular, Dung [6] has introduced an abstract
framework of argumentation, that consists of a set of arguments and an attack
relation between them. However, this abstract framework leaves open the ques-
tion of how the arguments and their attack relationship are defined. Addressing
this issue, Bondarenko et al. [1] has defined an abstract, argumentation-theoretic
assumption-based framework to non-monotonic reasoning that can be instanti-
ated to capture many of the existing approaches to non-monotonic reasoning,
namely logic programming with negation as failure, default logic [25], (many
cases of) circumscription [16], theorist [22], autoepistemic logic [18] and non-
monotonic modal logics [17]. The semantics of argumentation can be used to
characterize a number of alternative semantics for non-monotonic reasoning,
each of which can be the basis for credulous and sceptical reasoning. In par-
ticular, three semantics have been proposed in [1, 6] generalizing, respectively,
the semantics of admissible scenaria for logic programming [5], the semantics of
preferred extensions [5] or partial stable models [26] for logic programming, and
the conventional semantics of stable models [10] for logic programming as well
as the standard semantics of theorist [22], circumscription [16], default logic [25],
autoepistemic logic [18] and non-monotonic modal logic [17].

More in detail, Bondarenko et al. understand non-monotonic reasoning as ex-
tending theories in some monotonic language by means of sets of assumptions,
provided they are “appropriate” with respect to some requirements. These are
expressed in argumentation-theoretic terms, as follows. According to the seman-
tics of admissible extensions, a set of assumptions is deemed “appropriate” iff it
does not attack itself and it attacks all sets of assumptions which attack it. Ac-
cording to the semantics of preferred extensions, a set of assumptions is deemed
“appropriate” iff it is maximally admissible, with respect to set inclusion. Ac-
cording to the semantics of stable extensions, a set of assumptions is deemed
“appropriate” iff it does not attack itself and it attacks every assumption which
it does not belong.

Given any such semantics of extensions, credulous and sceptical non-mono-
tonic reasoning can be defined, as follows. A given sentence in the underlying
monotonic language is a credulous non-monotonic consequence of a theory iff
it holds in some extension of the theory that is deemed “appropriate” by the
chosen semantics. It is a sceptical non-monotonic consequence iff it holds in all
extensions of the theory that are deemed “appropriate” by the chosen semantics.

In this paper we propose abstract proof procedures for performing credulous
and sceptical reasoning under the three semantics of admissible, preferred and

2



stable extensions, concentrating on the special class of flat frameworks. This
class includes logic programming with negation as failure and default logic.

We define all proof procedures parametrically with respect to a proof pro-
cedure computing the semantics of admissible extensions. A number of such
procedures have been proposed in the literature, e.g. [9, 5, 7, 8, 15].

We argue that the proof procedures for reasoning under the preferred exten-
sion semantics are “simpler” than those for reasoning under the stable extension
semantics. This is an interesting argument in that, in many meaningful cases
(e.g. when the frameworks are order-consistent [1]), the proof procedures for
reasoning under the preferred extension semantics can be used as sound and
complete procedures for reasoning under the stable model semantics.

The paper is organized as follows. Section 2 summarises the main features of
the approach in [1]. Section 3 gives some preliminary definitions, used later on
in the paper to define the proof procedures. Sections 4 and 5 describe the proof
procedures for performing credulous reasoning under the preferred and stable ex-
tension semantics, respectively. Sections 6 and 7 describe the proof procedures
for performing sceptical reasoning under the stable and preferred extension se-
mantics, respectively. Section 8 compares the proposed proof procedures with
existing proof procedures proposed in the literature. Section 9 concludes.

2 Argumentation-based Semantics

In this section we briefly review the notion of assumption-based framework [1],
showing how it can be used to extend any deductive system for a monotonic
logic to a non-monotonic logic.

A deductive system is a pair (L, R) where

– L is a formal language consisting of countably many sentences, and
– R is a set of inference rules of the form

α1, . . . ,αn

α

where α,α1, . . . ,αn ∈ L and n ≥ 0. If n = 0, then the inference rule is an
axiom.

A set of sentences T ⊆ L is called a theory.
A deduction from a theory T is a sequence β1, . . . ,βm, where m > 0, such

that, for all i = 1, . . . ,m,

– βi ∈ T , or
– there exists

α1, . . . ,αn

βi
in R such that α1, . . . ,αn ∈ {β1, . . . ,βi−1}.

T $ α means that there is a deduction (of α) from T whose last element is α.
Th(T ) is the set {α ∈ L |T $ α}. Deductive systems are monotonic, in the sense
that T ⊆ T ′ implies Th(T ) ⊆ Th(T ′). They are also compact, in the sense that
T $ α implies T ′ $ α for some finite subset T ′ of T .

Given a deductive system (L, R), an argumentation-theoretic framework with
respect to (L, R) is a tuple 〈T, Ab, 〉 where
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– T, Ab ⊆ L, Ab '= {}
– is a mapping from Ab into L. α is called the contrary of α.

The theory T can be viewed as a given set of beliefs, and Ab as a set of candidate
assumptions that can be used to extend T . An extension of a theory T is a theory
Th(T ∪∆), for some ∆ ⊆ Ab. Sometimes, informally, we refer to the extension
simply as T ∪∆ or ∆.

Given a deductive system (L, R) and an argumentation-theoretic framework
〈T, Ab, 〉 with respect to (L, R), the problem of determining whether a given
sentence σ in L is a non-monotonic consequence of the framework is understood
as the problem of determining whether there exist “appropriate” extensions
∆ ⊆ Ab of T such that T ∪∆ $ σ. In particular, σ is a credulous non-monotonic
consequence of 〈T, Ab, 〉 if there exists some “appropriate” extension of T .
Many logics for default reasoning are credulous in this same sense, differing
however in the way they understand what it means for an extension to be “ap-
propriate”. Some logics, in contrast, are sceptical, in the sense they they require
that σ belong to all “appropriate” extensions. However, the semantics of any of
these logics can be made sceptical or credulous, simply by varying whether a
sentence is deemed to be a non-monotonic consequence of a theory if it belongs
to all “appropriate” extensions or if it belongs to some “appropriate” extension.

A number of notions of “appropriate” extensions are given in [1], for any
argumentation-theoretic framework 〈T, Ab, 〉 with respect to (L, R). All these
notions are formulated in argumentation-theoretic terms, with respect to a no-
tion of “attack” defined as follows. Given a set of assumptions ∆ ⊆ Ab:

– ∆ attacks an assumption α ∈ Ab iff T ∪∆ $ α
– ∆ attacks a set of assumptions ∆′ ⊆ Ab iff ∆ attacks an assumption α, for

some α ∈ ∆′.

In this paper we will consider the notions of “stable”, “admissible” and “pre-
ferred” extensions, defined below.

Let a set of assumptions ∆ ⊆ Ab be closed iff ∆ = {α ∈ Ab |T ∪ ∆ $ α}.
Then, ∆ ⊆ Ab is stable if and only if

1. ∆ is closed,
2. ∆ does not attack itself, and
3. ∆ attacks α, for every assumption α '∈ ∆.

Furthermore, ∆ ⊆ Ab is admissible if and only if

1. ∆ is closed,
2. ∆ does not attack itself, and
3. for each closed set of assumptions ∆′ ⊆ Ab,

if ∆′ attacks ∆ then ∆ attacks ∆′.

Finally, ∆ ⊆ Ab is preferred if and only if ∆ is maximally admissible, with
respect to set inclusion.
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In general, every admissible extension is contained in some preferred exten-
sion. Moreover, every stable extension is preferred (and thus admissible) [1] but
not vice versa. However, in many cases, e.g. for stratified and order-consistent
argumentation-theoretic frameworks (see [1]), preferred extensions are always
stable1.

In this paper we concentrate on flat frameworks [1], namely frameworks in
which every set of assumptions ∆ ⊆ Ab is closed. For this kind of frameworks,
the definitions of admissible and stable extensions can be simplified by dropping
condition 1 and by dropping the requirement that ∆′ be closed in condition 3 of
the definition of admissible extension. In general, if the framework is flat, both
admissible and preferred extensions are guaranteed to exist. Instead, even for
flat frameworks, stable extensions are not guaranteed to exist. However, in many
cases, e.g. for stratified argumentation-theoretic frameworks [1], stable extensions
are always guaranteed to exist.

Different logics for default reasoning differ, not only in whether they are
credulous or sceptical and how they interpret the notion of what it means to be
an “appropriate” extension, but also in their underlying framework.

Bondarenko et al. [1] show how the framework can be instantiated to obtain
theorist [22], (some cases of) circumscription [16], autoepistemic logic [18], non-
monotonic modal logics [17], default logic [25], and logic programming, with
respect to, e.g., the semantics of stable models [10] and partial stable models
[26], the latter being equivalent [13] to the semantics of preferred extensions [5].
They also prove that the instances of the framework for default logic and logic
programming are flat.

Default logic is the instance of the abstract framework 〈T, Ab, 〉 where the
$ is first-order logic augmented with domain-specific inference rules of the form

α1, . . . ,αm,Mβ1, . . . ,Mβn

γ

where αi, βj , γ are sentences in classical logic. T is a classical theory and Ab
consists of all expressions of the form Mβ where β is a sentence of classical logic.
The contrary Mβ of an assumption Mβ is ¬β. The conventional semantics of
extensions of default logic [25] corresponds to the semantics of stable extensions
of the instance of the abstract framework for default logic [1]. Moreover, default
logic inherits the semantics of admissible and preferred extensions, simply by
being an instance of the framework.

Logic programming is the instance of the abstract framework 〈T, Ab, 〉
where T is a logic program, the assumptions in Ab are all negations not p of
atomic sentences p, and the contrary not p of an assumption is p. $ is Horn logic
provability, with assumptions, not p, understood as new atoms, p∗ (see [9]). The
logic programming semantics of stable models [10], admissible scenaria [5], and
partial stable models [26]/preferred extensions [5] correspond to the semantics
of stable, admissible and preferred extensions, respectively, of the instance of the
abstract framework for logic programming [1].
1 See the Appendix for the definition of stratified and order-consistent frameworks.
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In the remainder of the paper we will concentrate on computing credulous
and sceptical consequences under the semantics of preferred and stable exten-
sions. We will rely upon a proof procedure for computing credulous consequences
under the semantics of admissible extensions (see Sect. 8 for a review of such pro-
cedures). Note that we ignore the problem of computing sceptical consequences
under the semantics of admissible extensions as, for flat frameworks, this prob-
lem reduces to that of computing monotonic consequences in the underlying
deductive system. Indeed, in flat frameworks, the empty set of assumptions is
always admissible.

We will propose abstract proof procedures, but, for simplicity, we will illus-
trate their behaviour within the concrete instance of the abstract framework for
logic programming.

3 Preliminaries

In the sequel we assume that a framework is given and we omit mentioning it
explicitly if clear by the context.

Let S be a set of sets. A subset B of S is called a base of S if for each
element s in S there is an element b in B such that b ⊆ s.

We assume that the following procedures are defined, where α is a sentence
in L and ∆ ⊆ Ab is a set of assumptions:

– support(α,∆) computes a set of sets ∆′ ⊆ Ab such that α ∈ Th(T ∪∆′) and
∆′ ⊇ ∆.
support(α,∆) is said to be complete if it is a base of the set {∆′ ⊆ Ab|α ∈
Th(T ∪∆′) and ∆′ ⊇ ∆}.

– adm expand(∆) computes a set of sets ∆′ ⊆ Ab such that ∆′ ⊇ ∆ and ∆′

is admissible.
adm expand(∆) is said to be complete if it is a base of the set of all
admissible supersets of ∆.

We will assume that the above procedures are nondeterministic. We will write,
e.g.

A := support(α,∆)

meaning that the variable A is assigned, if any, a result of the procedure support.
Such a statement represents a backtracking point, which may eventually fail if
no further result can be produced by support.

The following example illustrates the above procedures.

Example 1. Consider the following logic program

p ← q, not r
q ← not s
t ← not h
f
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and the sentence p. Possible outcomes of the procedure support(p, {}) are ∆1 =
{not s, not r} and ∆2 = {not s, not r, not f}. Possible outcomes of the proce-
dure adm expand(∆1) are ∆1 and ∆1 ∪ {not h}. No possible outcomes exist for
adm expand(∆2).

Note that different implementations for the above procedures are possible. In
all examples in the remainder of the paper we will assume that support and
adm expand return minimal sets. In the above example, ∆1 is a minimal support
whereas ∆2 is not, and ∆1 is a minimal admissible expansion of ∆1 whereas
∆1 ∪ {not h} is not.

4 Computing Credulous Consequences under Preferred
Extensions

To show that a sentence is a credulous consequence under the preferred exten-
sion semantics, we simply need to check the existence of an admissible set of
assumptions which entails the desired sentence. This can be done by:

– finding a support set for the sentence
– showing that the support set can be extended into an admissible extension.

Proof procedure 4.1 (Credulous Preferred Extensions).

CPE(α):
S := support(α, {});
∆ := adm expand(S);
return ∆

Notice that the two assignments in the procedure are backtracking points, due
to the nondeterministic nature of both support and adm expand.

Example 2. Consider the following logic program

p ← not s
s ← q
q ← not r
r ← not q

and the sentence p. The procedure CPE(p) will perform the following steps:

– first the set S = {not s} is generated by support(p, {})
– then the set ∆ = {not s, not q} is generated by adm expand(S)
– finally, ∆ is the set returned by the procedure

Consider now the conjunction p, q. The procedure CPE((p, q))2 would fail, since
2 Note that, in the instance of the framework of [1] for logic programming, conjunction

of atoms are not part of the underlying deductive system. However, conjunctions can
be accommodated by additional program clauses. E.g., in the given example, the logic
program can be extended by t ← p, q, and CPE can be called for t.
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– S = {not s, not r} is generated by support((p, q), {})
– there exists no admissible set ∆ ⊇ S.

Theorem 1 (Soundness and Completeness of CPE).

1. If CPE(α) succeeds then there exists a preferred extension ∆ such that α ∈
Th(T ∪∆).

2. If both support and adm expand are complete then for each preferred exten-
sion E there exist appropriate selections such that CPE(α) returns ∆ ⊆ E.

Proof.

1. It follows immediately from the fact that each admissible set of assumptions
could be extended into a preferred extension.

2. Let E be a preferred extension such that α ∈ Th(T∪E). Since support(α, {})
is complete, there is a set S ⊂ E such that S could be computed by
support(α, {}). From the completeness of adm expand, it follows that there
is ∆ ⊆ E such that ∆ is computed by adm expand(S). ,-

5 Computing Credulous Consequences under Stable
Extensions

A stable model is nothing but a preferred extension which entails either α or
its contrary, for each assumption α [1]. Hence, to show that a sentence is a
credulous consequence under the stable model semantics, we simply need to find
an admissible extension which entails the sentence and which can be extended
into a stable model.

We assume that the following procedures are defined:

– full cover(Γ ) returns true iff the set of sentences Γ entails any assumption
or its contrary, false otherwise;

– uncovered(Γ ) nondeterministically returns, if any, an assumption which is
undefined, given Γ , i.e. neither the assumption nor its contrary is entailed
by Γ .

In the following procedure CSM , both full cover and uncovered will be
applied to sets of assumptions only.

Proof procedure 5.1 (Credulous Stable Models).

CSM(α):
∆ := CPE(α);
loop

if full cover(∆)
then return ∆
else β := uncovered(∆)

∆ := adm expand(∆ ∪ {β});
end if

end loop
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Note that CSM is a non-trivial extension of CPE: once an admissible extension
is selected, as in CPE, CSM needs to further expand the selected admissible
extension, if possible, to render it stable. This is achieved by the main loop in
the procedure.

Clearly, the above procedure may not terminate if the underlying framework
〈T, Ab, 〉 contains infinitely many assumptions, since in this case the main
loop may go on forever. In the following theorem we assume that the set of
assumptions Ab is finite.

Theorem 2 (Soundness and Completeness of CSM).
Let 〈T, Ab, 〉 be a framework such that Ab is finite.

1. If CSM(α) succeeds then there exists a stable extension ∆ such that α ∈
Th(T ∪∆).

2. If both support and adm expand are complete then for each stable extension
E such that α ∈ Th(T ∪ E) there exist appropriate selections such that
CSM(α) returns E.

Proof. The theorem follows directly from theorem 3. ,-

The CSM procedure is based on backward-chaining in contrast to the procedure
of Niemelä et al. [19, 20] that is based on forward-chaining. We explain the
difference between the two procedures in the following example.
Example 3.

p ← not q
q ← not r
r ← not q

Assume that the given query is p. The CSM procedure would compute
{not q} as a support for p. The procedure adm expand({not q}) will produce
∆ = {not q} as its result. Since ∆ covers all assumptions, ∆ is the result pro-
duced by the procedure. Niemelä et. al procedure would start by picking an
arbitrary element from {not p, not q, not r} and start to apply the Fitting op-
erator to it to get a fixpoint. For example, not r may be selected. Then the set
B = {q, not r} is obtained. Since there is no conflict in B and B does not cover
all the assumptions, not p will be selected. Since {not p, q, not r} covers all as-
sumptions, a test to check whether p is implied from it is performed with false
as the result. Therefore backtracking will be made and not q will be selected
leading to the expected result.

A drawback of Niemelä et. al procedure is that it may have to make too many
unnecessary choices as the above example shows. However forward chaining may
help in getting closer to the solution more efficiently. The previous observations
suggest a modification of the procedure which tries to combine both backward
and forward chaining. This can be seen as an integration of ours and Niemelä
et. al procedures. In the new procedure, CSM2, we make use of some additional
procedures and notations:
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– Given a set of sentences Γ , Γ− denotes the set of assumptions contained in
Γ .

– A set of sentences Γ is said to be coherent if Γ− is admissible and Γ ⊆
Th(T ∪ Γ ),

– Given a set of sentences Γ , expand(Γ ) defines a forward expansion of Γ
satisfying the following conditions:
1. Γ ⊆ expand(Γ )
2. If Γ is coherent then

(a) expand(Γ ) is also coherent, and
(b) for each stable extension E, if Γ− ⊆ E then expand(Γ )− ⊆ E.

Proof procedure 5.2 (Credulous Stable Models).

CSM2(α):
∆ := CPE(α);
Γ := expand(∆);
loop

if full cover(Γ )
then return Γ−

else
β := uncovered(Γ );
∆ := adm expand(Γ− ∪ {β});
Γ := expand(∆ ∪ Γ );

end if
end loop

As anticipated, the procedure expand can be defined in various ways. If
expand is simply the identity function, i.e. expand(∆) = ∆ the procedure CSM2
collapses down to CSM . In some other cases, expand could also effectively per-
form forward reasoning, and try to produce the deductive closure of the given
set of sentences. This can be achieved by defining expand in such a way that

expand(∆) = Th(T ∪∆).

In still other cases, expand(∆) could be extended to be closed under the Fitting’s
operator.

As in the case of Theorem 2, we need to assume that the set of assumptions
in the underlying framework is finite, in order to prevent non termination of the
main loop.

Theorem 3 (Soundness and Completeness of CSM2).
Let 〈T, Ab, 〉 be a framework such that Ab is finite.

1. If CSM2(α) succeeds then there exists a stable extension ∆ such that α ∈
Th(T ∪∆).

2. If both CPE and adm expand are complete then for each stable extension
E such that α ∈ Th(T ∪ E) there exist appropriate selections such that
CSM2(α) returns E.
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Proof.

1. We first prove by induction that at the beginning of each iteration of the
loop, Γ is coherent. The basic step is clear since ∆ is admissible.
Inductive Step: Let Γ be coherent. From ∆ := adm expand(Γ− ∪ {β}), it
follows that ∆ is admissible. Because Γ− ⊆ ∆ and Γ ⊆ Th(T ∪Γ ), it follows
that Γ ⊆ Th(T ∪∆). From (∆∪Γ )− = ∆, it follows that ∆∪Γ is coherent.
Therefore expand(∆ ∪ Γ ) is coherent.
It is obvious that for any coherent set of sentences Γ such that full cover(Γ )
holds, Γ− is stable.

2. Let E be a stable model such that α ∈ Th(T ∪E). Because CPE is complete,
there is a selection such that executing the command ∆ := CPE(α) yields
an admissible ∆ ⊆ E. From the properties of expand, it follows that Γ
obtained from Γ := expand(∆), is coherent and Γ− ⊆ E. If full cover(Γ )
does not hold, then we can always select a β ∈ E−Γ−. Therefore due to the
completeness of adm expand, we can get a ∆ that is a subset of E. Hence
Γ obtained from Γ := expand(∆∪ Γ ), is coherent and Γ− ⊆ E. Continuing
this process until termination, which is guaranteed by the hypothesis that
Ab is finite, will return E as the result of the procedure. ,-

However, if in the underlying framework every preferred extension is also stable,
then CSM can be greatly simplified by dropping the main loop, namely CSM
coincides with CPE. As shown in [1], this is the case if the underlying framework
is order-consistent (see Appendix).

Theorem 4 (Soundness and completeness of CPE wrt stable models
and order consistency).
Let the underlying framework be order-consistent.

1. If CPE(α) succeeds then there exists a stable extension ∆ such that α ∈
Th(T ∪∆).

2. If both support and adm expand are complete then for each stable extension
E there exist appropriate selections such that CPE(α) returns ∆ ⊆ E.

The use of CPE instead of CSM , whenever possible, greatly simplifies the
task of performing credulous reasoning under the stable semantics, in that it
allows to keep the search for a stable extension “localised”, as illustrated by the
following example.

Example 4. Consider the following order-consistent logic program

p ← not s
q ← not r
r ← not q

which has two preferred (and stable) extensions containing p, corresponding to
the sets of assumptions ∆1 = {not s, not r} and ∆2 = {not s, not q}. The
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procedure CPE(p) would compute the admissible extension {not s} as a result,
since {not s} is a support for p and it is admissible (there are no attacks against
not s) . On the other hand, the procedure CSM(p) would produce either ∆1 or
∆2, which are both stable sets extending {not s}.

6 Computing Sceptical Consequences under Stable
Extensions

First, we define the notion of “contrary of sentences”, by extending the notion of
“contrary of assumptions”. In all concrete instances of the abstract framework,
e.g. logic programming, default logic, autoepistemic logic and non-monotonic
modal logic, for each non-assumption sentence β there is a unique assumption
α such that α = β, so the natural way of defining the “contrary of a sentence”
β which is not an assumption is

β = α such that α = β.
But in general, it is possible that for some non-assumption sentence β there

may be no assumption α such that α = β, or there may be more than one
assumption α such that α = β.

Thus, for general frameworks, we define the concept of contrary of sen-
tences which are not assumptions as follows. Let β be a sentence such that
β '∈ Ab.

– if there exists α such that α = β then β = {γ|γ = β}
– if there exists no α such that α = β then we introduce a new assumption
κβ , not already in the language, and we define
• κβ = β
• β = {κβ}

Note that, in this way, the contrary of a sentence β /∈ Ab is a set of assump-
tions.

Let us denote by Ab′ ⊇ Ab the new set of assumptions. It is easy to see that
the original framework, 〈T, Ab, 〉, and the extended framework, 〈T, Ab′, 〉,
are equivalent in the following sense:

– if ∆ ⊆ Ab is admissible wrt the original framework then it is also admissible
wrt the new framework;

– if ∆′ ⊆ Ab′ is admissible wrt the new framework then ∆′ ∩ Ab is admissible
wrt the original framework.

Therefore from now on, we will assume that for each sentence β which is not
an assumption there exists at least an assumption α such that α = β.

In order to show that a sentence β is entailed by each stable model, we can
proceed as follows:

– check that β is a credulous consequence under the stable model semantics
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– check that the contrary of the sentence is not a credulous consequence under
the stable models semantics.

Notice that if β /∈ Ab the second step amounts to checking that each α ∈ β
is not a credulous consequence under the stable models semantics.

Moreover, notice that the first step of the computation cannot be omitted
(as one could expect) since there may be cases in which neither β nor its con-
trary hold in any stable model (e.g. in the framework corresponding to the logic
program p ← not p).

Lemma 1. Let E be a stable extension. Then for each non-assumption β such
that β '∈ Th(T ∪ E), the following statements are equivalent:

1. β ∩ E '= ∅
2. β ⊆ E

Proof. It is clear that the second condition implies the first. We need only to
prove now that the first condition implies the second one. Let β∩E '= ∅. Suppose
that β−E '= ∅. Let α ∈ β−E. Then it is clear that α ∈ Th(T∪E). Contradiction
to the condition that α = β and β '∈ Th(T ∪ E). ,-

Proof procedure 6.1 (Sceptical Stable Models).

SSM(α):
if CSM(α) fails then fail;
select β ∈ α;
if CSM(β) succeeds then fail;

Notice that the SSM procedure makes use of the CSM procedure. To prevent
non termination of CSM we need to assume that the set of assumptions Ab′ of
the underlying extended framework is finite. This guarantees the completeness
of CSM (cfr. Theorem 2).

Theorem 5 (Soundness and Completeness of SSM). Let CSM be com-
plete.

1. If SSM(α) succeeds then α ∈ Th(T ∪∆), for every stable extension ∆.
2. If α ∈ Th(T ∪∆), for every stable extension ∆, and the set of stable exten-

sions is not empty, then SSM(α) succeeds.

Proof.

1. Let SSM(α) succeed. Assume now that α is not a skeptical consequence wrt
stable semantics. There are two cases: α ∈ Ab and α '∈ Ab.
Consider the first case where α ∈ Ab. It follows that there is a stable exten-
sion E such that α ∈ Th(T ∪ E). Because of the completeness of CSM, it
follows that CSM(α) succeeds. Hence SSM(α) fails, contradiction.
Let α '∈ Ab. From lemma 1, it follows that there is a stable extension E such
that E ∩ α '= ∅. That means CSM(β) succeeds for some β ∈ α. Lemma 1
implies CSM(β) succeeds for each β ∈ α. Hence SMM(α) fails. Contradic-
tion.
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2. Because CSM is complete, it is clear that CSM(α) succeeds. Also because of
the soundness of CSM, CSM(β) fails for each β ∈ α. Therefore it is obvious
that SSM succeeds. ,-

For a large class of argumentation frameworks, preferred extensions and sta-
ble models semantics coincide, e.g. if the frameworks are order-consistent [1]. In
these frameworks, the procedure SSM can be simplified significantly as follows.

Proof procedure 6.2 (Sceptical Stable Models via CPE).

SSMPE(α):
if CPE(α) fails then fail;
select β ∈ α;
if CPE(β) succeeds then fail ;

The procedure is structurally the same as the earlier SSM , but it relies upon
CPE rather than CSM , and is therefore “simpler” in the same way that CPE
is “simpler” than CSM , as discussed earlier in Sect. 5.

Theorem 6 (Soundness and completeness of SSMPE wrt sceptical sta-
ble semantics). Let the underlying framework be order-consistent and CPE be
complete.

1. If SSMPE(α) succeeds then α ∈ Th(T ∪∆), for every stable extension ∆.
2. If α ∈ Th(T ∪∆), for every stable extension ∆, then SSMPE(α) succeeds.

Note that the second statement in the above theorem does not require the ex-
istence of stable extensions. This is due to the assumption that order-consistency
always guarantees such condition.

7 Computing Sceptical Consequences under Preferred
Extensions

The naive way of showing that a sentence is a sceptical consequence under the
preferred extensions semantics is to consider each preferred extension in turn
and check that the sentence is entailed by it.

The earlier procedure SSMPE can be used as a simplification of the naive
method only if every preferred extension is guaranteed to be stable. In general,
however, the procedure SSMPE is not sound under the preferred extensions
semantics, since there might exist preferred extensions in which, for some as-
sumption α, neither α nor its contrary hold, as the following example shows.

Example 5.

p ← not p
p ← q
q ← not r
r ← not q

14



Notice that there are two preferred extensions,namely E1 = {not q, r} and E2 =
{not r, q, p}. E2 is also a stable extension, whereas E1 is not since neither p
nor not p hold in E1. Notice that SSMPE(p) would succeed, hence giving an
unsound result.

Nonetheless, in the general case, the following theorem shows that it is pos-
sible to restrict the number of preferred extensions to consider. This theorem is
a variant of theorem 16 in [30], as we will discuss in Sect. 8.

Theorem 7. Given an argumentation-theoretic framework 〈T, Ab, 〉 and a
sentence α in its language, α is a sceptical non-monotonic consequence of T
with respect to the preferred extension semantics, i.e. α ∈ Th(T ∪ ∆) for all
preferred ∆ ⊆ Ab, iff

1. α ∈ Th(T ∪∆0), for some admissible set of assumptions ∆0 ⊆ Ab, and
2. for every set of assumptions ∆ ⊆ Ab,

if ∆ is admissible and ∆ attacks ∆0,
then α ∈ Th(T ∪∆′) for some set of assumptions ∆′ ⊆ Ab such that
(a) ∆′ ⊇ ∆, and
(b) ∆′ is admissible.

Proof. The only if half is trivial.
The if half is proved by contradiction. Suppose there exists a set of assumptions
∆∗ such that ∆∗ is preferred and α '∈ Th(T ∪ ∆∗). Suppose ∆0 is the set of
assumptions provided in part 1.
If ∆0 = ∅ then α ∈ Th(T ) and therefore α ∈ Th(T ∪∆∗), thus contradicting the
hypothesis.
Therefore, ∆0 '= ∅. Consider the following two cases:

(i) ∆∗ ∪∆0 attacks itself, or
(ii) ∆∗ ∪∆0 does not attack itself.

Case (ii) implies that ∆∗ ∪∆0 is admissible, thus contradicting the hypothesis
that ∆∗ is preferred (and therefore maximally admissible).
Case (i) implies that

(i.1) ∆∗ ∪∆0 attacks ∆∗, or
(i.2) ∆∗ ∪∆0 attacks ∆0.

Assume that (i.1) holds. .
∆∗ ∪∆0 attacks ∆∗

⇒ {by admissibility of ∆∗}
∆∗ attacks ∆∗ ∪∆0

⇒ {by admissibility, ∆∗ does not attack itself}
∆∗ attacks ∆0

⇒ {by part 2 }
α ∈ Th(T ∪∆∗)

thus contradicting the hypothesis.
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Assume now that (i.2) holds.
∆∗ ∪∆0 attacks ∆0

⇒ {by admissibility of ∆0}
∆0 attacks ∆∗ ∪∆0

⇒ {by admissibility, ∆0 does not attack itself}
∆0 attacks ∆∗

⇒ {by admissibility of ∆∗}
∆∗ attacks ∆0

⇒ {by part 2 }
α ∈ Th(T ∪∆∗)

thus contradicting the hypothesis. ,-

This result can be used to define the following procedure to check whether or
not a given sentence is a sceptical consequence with respect to the preferred
extension semantics.

Let us assume the following procedure is defined

– attacks(∆) computes a base of the set of all attacks against the set of as-
sumptions ∆.

Proof procedure 7.1 (Sceptical Preferred Extensions).

SPE(α):
∆ := CPE(α);
for each A := attacks(∆)

for each ∆′ := adm expand(A)
∆′′ := support(α,∆′);
if adm expand(∆′′) fails then fail end if

end for
end for

The following soundness theorem is a trivial corollary of theorem 7.

Theorem 8 (Soundness and Completeness of SPE). Let adm expand be
complete.

1. if SPE(α) succeeds, then α ∈ Th(T ∪∆), for every preferred extension ∆.
2. If CPE is complete and α ∈ Th(T ∪ ∆), for every preferred extension ∆,

then SPE(α) succeeds.

In many cases where the framework has exactly one preferred extension that
is also stable (for example when the framework is stratified), it is obvious that
the CPE procedure could be used as a procedure for skeptical preferred extension
semantics.
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8 Related Work

The proof procedures we propose in this paper rely upon proof procedures for
computing credulous consequences under the semantics of admissible extensions.
A number of such procedures have been proposed in the literature.

Eshghi and Kowalski [9] (see also the revised version proposed by Dung in
[5]) propose a proof procedure for logic programming based upon interleaving
abductive derivations, for the generation of negative literals to “derive” goals,
and consistency derivations, to check “consistency” of negative literals with
atoms “derivable” from the program. The proof procedure can be understood
in argumentation-theoretic terms [12], as interleaving the generation of assump-
tions supporting goals or counter-attacking assumptions (abductive derivations)
and the generation of attacks against any admissible support (consistency deriva-
tions), while checking that the generated support does not attack itself.

Dung, Kowalski and Toni [7] propose abstract proof procedures for computing
credulous consequences under the semantics of admissible extensions, defined via
logic programs.

Kakas and Toni [15] propose a number of proof procedures based on the
construction of trees whose nodes are sets of assumptions, and such that nodes
attack their parents, if any. The proof procedures are defined in abstract terms
and, similarly to the procedures we propose in this paper, can be adopted for any
concrete framework that is an instance of the abstract one. The procedures allow
to compute credulous consequences under the semantics of admissible extensions
as well as under semantics that we have not considered in this paper, namely
the semantics of weakly stable extensions, acceptable extensions, well-founded
extensions. The concrete procedure for computing credulous consequences un-
der the semantics of admissible extensions, in the case of logic programming,
corresponds to the proof procedure of [9].

Dung, Kowalski and Toni [8] also propose abstract proof procedures for com-
puting credulous consequences under the semantics of admissible extensions,
that can be instantiated to any instance of the framework of [1]. These proce-
dures are defined in terms of trees whose nodes are assumptions, as well as via
derivations as in [9].

Kakas and Dimopoulos [2] propose a proof procedure to compute credulous
consequences under the semantics of admissible extensions for the argumenta-
tion framework of Logic Programming without Negation as Failure proposed in
[14]. Here, negation as failure is replaced and extended by priorities over logic
programs with no negation as failure but with explicit negation instead.

Other proof procedures for computing credulous consequences under the sta-
ble extension semantics and sceptical consequences under the semantics of pre-
ferred and stable extensions have been proposed.

Thielscher [30] proposes a proof procedure for computing sceptical conse-
quences under the semantics of preferred extensions for the special case of logic
programming [31]. This proof procedure is based upon a version of theorem 7
(theorem 16 in [30]). However, whereas [30] uses the notion of “conflict-free set
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of arguments” (which is an atomic, abstract notion), we use the notion of admis-
sible set of assumptions. Moreover, theorem 16 in [30] replaces the condition in
part 2 of theorem 7 “∆′ attacks ∆0” by the (equivalent) condition correspond-
ing to “∆′ ∪ ∆0 attacks itself”. For a formal correspondence between the two
approaches see [31].

Niemelä [19] and Niemelä and Simons [20] give proof procedures for com-
puting credulous and sceptical consequences under stable extensions, for default
logic and logic programming, respectively. As discussed in Sect. 5, their proof
procedures for computing credulous consequences under stable extensions rely
upon forward chaining, whereas the proof procedures we propose for the same
task rely either on backward chaining (CSM) or on a combination of backward
and forward chaining (CSM2).

Satoh and Iwayama [28] define a proof procedure for logic programming, com-
puting credulous consequences under the stable extension semantics for range-
restricted logic programs that admit at least one stable extension. Satoh [27]
adapts the proof procedure in [28] to default logic. The proof procedure applies
to consistent and propositional default theories.

Inoue et al. [11] apply the model generation theorem prover to logic program-
ming to generate stable extensions, thus allowing to perform credulous reasoning
under the stable extension semantics by forward chaining.

9 Conclusions

We have presented abstract proof procedures for computing credulous and scep-
tical consequences under the semantics of preferred and stable extensions for
non-monotonic reasoning, as proposed in [1], relying upon any proof procedure
for computing credulous consequences under the semantics of admissible exten-
sions.

The proposed proof procedures are abstract in that they can be instantiated
to any concrete framework for non-monotonic reasoning which is an instance of
the abstract flat framework of [1]. These include logic programming and default
logic. They are abstract also in that they abstract away from implementation
details.

We have compared our proof procedures with existing, state of the art pro-
cedures defined for logic programming and default logic.

We have argued that the proof procedures for computing consequences under
the semantics of preferred extensions are simpler than those for computing conse-
quences under the semantics of stable extensions, and supported our arguments
with examples. However, note that the (worst-case) computational complexity
of the problem of computing consequences under the semantics of stable ex-
tensions is in general no worse than that of computing consequences under the
semantics of preferred extensions, and in some cases it is considerably simpler
[3, 4]. In particular, in the case of autoepistemic logic, the problem of computing
sceptical consequences under the semantics of preferred extensions is located at
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the fourth level of the polynomial hierarchy, whereas the same problem under
the semantics of stable extensions is located at the second level.

Of course, these results do not contradict the expectation that in practice,
in many cases, computing consequences under the semantics of preferred exten-
sions is easier than under the semantics of stable extensions. Indeed, preferred
extensions supporting a desired sentence can be constructed “locally”, by re-
stricting attention to the sentences in the language that are directly relevant to
the sentence. Instead, stable extensions need to be constructed “globally”, by
considering all sentences in the language, whether they are directly relevant to
the given sentence or not. This is due to the fact that stable extensions are not
guaranteed to exist.

However, note that in all cases where stable extensions are guaranteed to exist
and coincide with preferred extensions, e.g. for stratified and order-consistent
frameworks [1], any proof procedure for reasoning under the latter is a correct
(and simpler) computational mechanism for reasoning under the former.

Finally, the “locality” feature in the computation of consequences under the
preferred extension semantics renders it a feasible alternative to the computation
of consequences under the stable extension semantics in the non-propositional
case, when the language is infinite. Indeed, both CPE and SPE do not require
that the given framework be propositional.
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A Stratified and order consistent frameworks

We recall the definitions of stratified and order consistent flat argumentation-
theoretic frameworks, and theire semantics properties, ad given in [1]. Both
classes are characterized in terms of their attack relationship graphs.

The attack relationship graph of a flat assumption-based framework 〈T, Ab, 〉
is a directed graph whose nodes are the assumptions in Ab and such that there
exists an edge from an assumption δ to an assumption α if and only if δ belongs
to a minimal (with respect to set inclusion) attack ∆ against α.

A flat assumption-based framework is stratified if and only if its attack re-
lationship graph is well-founded, i.e. it contains no infinite path of the form
α1, . . . ,αn, . . . , where for every i ≥ 0 there is an edge from αi+1 to αi.

The notion of order-consistency requires some more auxiliary definitions.
Given a flat assumption-based framework 〈T, Ab, 〉 let δ,α ∈ Ab.

– δ is friendly (resp. hostile) to α if and only if the attack relationship graph
for 〈T, Ab, 〉 contains a path from δ to α with an even (resp. odd) number
of edges.

– δ is two-sided to α, written δ ≺ α, if δ is both friendly and hostile to α.

A flat assumption-based framework 〈T, Ab, 〉 is order-consistent if the
relation ≺ is well-founded, i.e. there exists no infinite sequence of the form
α1, . . . ,αn, . . . , where for every i ≥ 0, αi+1 ≺ αi.

The following proposition summarizes some of the semantics results of [1] as
far as stratified and order-consistent frameworks are concerned.

Proposition 1 (see [1]).

– for any stratified assumption-based framework there exists a unique stable set
of assumptions, which coincides with the well-founded set of assumptions.

– for any order-consistent assumption-based framework stable sets of assump-
tions are preferred sets of assumptions and viceversa.

It is worth recalling that the abstract notions of stratification and order-
consistency generalize the notions of stratification and order-consistency for logic
programming.
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