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ABSTRACT 
After numerous breakthroughs in medicine, microbiology, and pathology in the past century, lung cancer 
still remains as a leading cause of cancer-related death even in the developed countries. Lung cancer 
accounts roughly for 30% of all cancer-related deaths in the world. Diagnosis and treatments are still 
based on traditional histopathology. It is of paramount importance to predict the survivability of patients 
in early stages of lung cancer so that specific treatments can be sought. Nonetheless, histopathology has 
been shown by previous studies to be inadequate in predicting lung cancer development and clinical 
outcome. The microarray technology allows researchers to examine the expression of thousands of genes 
simultaneously. This paper describes a state-of-the-art machine learning based approach called averaged 
one-dependence estimators with subsumption resolution to tackle the problem of predicting whether a 
patient in early stages of lung cancer will survive by mining DNA microarray gene expression data. To 
lower the computational complexity, we employ an entropy-based gene selection approach to select 
relevant genes that are directly responsible for lung cancer survivability prognosis. The proposed system 
has achieved an average accuracy of 92.31% in predicting lung cancer survivability over 2 independent 
datasets.  The experimental results provide confirmation that gene expression mining can be used to predict 
survivability of patients in early stages of lung cancer.  
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1. INTRODUCTION 
Lung cancer continues to contribute as one of the most common cause of cancer-related mortality 
even in the developed countries [1].  Lung cancer accounts roughly for 30% of all cancer deaths 
in the world. The number of deaths from lung cancer is greater than the total number of deaths 
from the next three most notorious cancers (breast, colon, and prostate) combined [2]. Despite 
recent advances in cancer diagnosis and treatment, the overall 10-year survival rate still remains 
at a mediocre level of 8–10%  [3]. Table 1 lists the lung cancer survival rates. Lung cancer 
prognosis essentially depends on the subtype and stage of the lung cancer. The 5-year survival 
rate is the percentage of people who are still alive 5 years or longer after being diagnosed with 
lung cancer [4]. Although survival rates are statistically known, it is not currently possible to 
identity high-risk patients [5-7]. Diagnosis of lung cancer has remained essentially unchanged for 
30 years [8], and continues to be based on conducting histopathological examination of tissue 
samples as shown in Figure 1 [9]. Histopathology has been shown by previous studies to be 
inadequate in both prognosis and treatment [10]. Therefore, it is extremely difficult for physicians 
to know which patients diagnosed with lung cancer will survive. The probability that a lung cancer 
will recur and the probable timing depend on the type of the primary cancer. Gene expression 
profiling using the DNA microarray technology could bring about the ability to predict the 
survivability of lung cancer patients by analyzing the gene expression levels of the cancer cells.   
 
 



International Journal on Bioinformatics & Biosciences (IJBB) Vol.4, No.2, June 2014 

   2 
 

Table 1. Lung cancer survival rates [4, 11]. 

Stage Tumor, node, metastasis (TNM) staging 5-year survival rate 

IA T1, N0, M0 More than 70% 
IB T2, N0, M0  60% 
IIA T1, N1, M0  50% 
IIB T2, N1, M0 30% 
 T3, N0-N1, M0 40% 
IIIA T1-T3, N2, M0 10%-30% 
IIIB Any T4, any N3, M0 Less than 10% 
IV Any M1 Less than 5% 

 
 
 

 

Figure 1. Lung cancer tissue for histopathogical examination [12]. 

In this paper, we tackle the problem of predicting lung cancer survivability by mining DNA 
microarray gene expression data. During the past few decades, applications of pattern recognition 
and machine learning techniques have emerged in many domains [13-22]. Pattern recognition and 
machine learning techniques have also recently become popular in the arena of microarray gene 
expression analysis. There have been some attempts to predict cancer survivability using machine 
learning techniques. For instance, Beer et al. [3] employed univariate Cox regression to predict 
survivability of patients with lung adenocarcinoma using microarray gene expression analysis. 
Ensemble techniques have also become popular in gene expression mining. Shedden et al. [23] 
utilized an ensemble of eight classifiers, each of which produced either categorical or continuous 
risk scores. Final scoring and classification was carried out using penalized Cox regression. 
Urgard et al. [24] applied Bayesian regression analysis and Kaplan-Meier survival analysis to 
determine metagenes associated with lung cancer survival. Their experiments showed that gene-
expression patterns and metagene profiles could be applied to predict the probability of survival 
outcomes of lung cancer patients.  Ford et al. [25] proposed a General Regression Neural Network 
(GRNN) Oracle ensemble that combined several Partial least squares (PLS) models trained to 
predict lung cancer outcome from 12 different gene networks. They concluded that it was possible 
to correctly predict lung cancer outcome by combining the results based on their proposed 
individual gene network models.  Similarly, Norris et al.[26] applied the very same GRNN oracle 
to predict cancer outcome. They confirmed that GRNN led to high prediction accuracy. This paper 
describes an approach based on a state-of-the-art machine learning technique called averaged one-
dependence estimators with subsumption resolution to tackle the problem of predicting lung 
cancer outcome from microarray gene expression data. 
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2. CANCER SURVIVABILITY PREDICTION  

 
The objective of lung cancer survivability prediction is to predict whether a particular a patient in 
an early stage of lung cancer will survive given the gene expression data from tissue samples. We 
propose a three-layered framework that consists of gene selection, discretization, and prediction 
as shown in Figure 2. The complexity of a machine learning classifier depends upon the 
dimensionality of the input data [27]. There is also a phenomenon known as the ‘curse of 
dimensionality’ that arises with high dimensional input data [28]. In the case of genetic data 
classification, not all the genes in a genetic sequence might be responsible for predicting cancer 
survivability. Therefore, we propose to employ a gene selection process to select relevant 
prognostic genes in an unsupervised manner and an entropy-based discretization process to 
discretize gene expression levels. Section 2.1 describes the process of gene selection and Section 
2.2 describes the process of discretization. After dimensionality reduction, we propose to perform 
cancer survivability prediction using the averaged one-dependence estimators with subsumption 
resolution (AODEsr).  Section 2.3 describes the process of prediction. 
 

Figure 2. High-level flow diagram of lung cancer survivability prediction framework (part of the image 
obtained from [29]). 
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2.1. Entropy-based gene selection 

The complexity of any machine learning classifier depends upon the dimensionality of the input 
data [27]. Generally, the lower the complexity of a classifier, the more robust it is. Moreover, 
classifiers with low complexity have less variance, which means that they vary less depending on 
the particulars of a sample, including noise, outliers, etc. [27]. In the case of cancer lung 
survivability prediction, not all the genes in a genetic sequence might be prognostic biomarkers 
for survival ability. Therefore, we need to have a gene selection method that chooses a subset of 
relevant prognostic genes, while pruning the rest of the genes in the microarray gene expression 
data [30, 31]. In essence, we are interested in finding the best subset of the set of genes that can 
sufficiently predict cancer survivability. Ideally, we have to choose the best subset that contains 
the least number of genes that most contribute to the prediction accuracy, while discarding the 
rest of the genes. There are 2n possible subsets that can arise from an n-gene long genetic 
sequence. In essence, we have to choose the best subset out of 2n possible subsets. Because 
performing an exhaustive sequential search over all possible subsets is computationally 
expensive, we need to employ heuristics to find a reasonably good subset that can sufficiently 
predict cancer survivability.  
 
We employ a prognostic gene selection process based on an information-theoretic concept of 
entropy. Given a set of genes X and ݌ሺݔ௜ሻ which represents the probability of the ith gene, then 
the entropy of genes, which measures the amount of ‘uncertainty’, is defined by: 

 
 

ሺܺሻܪ ൌ െ ෍݌ሺݔ௜ሻ
௡

௜ୀଵ

݃݋݈ ௜ሻ (1)ݔሺ݌

 
Entropy is a non-negative number. ܪሺܺሻ is 0 when X is absolutely certain to be predicted. The 
conditional entropy of class label Y given the genes is defined by: 
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The information gain (IG) of the genes from the class label Y is defined to be: 
 

 
ሺܻܩܫ  | ܺሻ ൌ ሺܻሻܪ െ ሺܻܪ | ܺሻ (3)

 
 
The gain ratio (GR) between the genes and the class label Y is defined to be: 
 

 
 

ሺܻܴܩ | ܺሻ ൌ
ሺܻܩܫ | ܺሻ

ሺܻሻܪ
 (4)

 
The GR of a gene is a number between 0 and 1 which approximately represents the ‘prognostic 
capacity’ of the gene. A GR of 0 roughly indicates that the corresponding individual gene has no 
significance in cancer survivability prediction while a GR of 1 roughly indicates that the gene is 
significant in cancer survivability prediction. During the training phase, the GR for each gene is 
calculated according to (4). All the genes are then sorted by their GRs. Genes whose GRs are 
higher than a certain threshold value are selected as discriminating genes while the rest are 
discarded. Training needs to be carried out only once.  
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2.2. Entropy minimization discretization 

Microarray gene expression heat map is essentially a matrix of gene expression levels. Each gene 
expression level is a continuous number. It has been demonstrated in a number of studies that 
many classification algorithms seem to work more effectively on discrete data or even more 
strictly, on binary data [32]. Therefore, discretization is a desired step. Discretization is a process 
in which continuous gene expression levels are transformed into discrete representation which is 
comparable to linguistic expressions such as ‘very low’, low’, ‘high’, and ‘very high’. There are 
numerous discretization techniques in the literature [33]. However, we have adopted EMD 
(Entropy Minimization Discretization) [34] because of its reputation in discretization of high-
dimensional data. The training instances are first sorted in an ascending order. The EMD 
algorithm then evaluates the midpoint between each successive pair of the sorted values of an 
attribute as a potential cut point [35]. While evaluating each candidate cut point, the data are 
discretized into two intervals and the resulting class information entropy is calculated. A binary 
discretization is determined by selecting the cut point for which the entropy is minimal amongst 
all candidates [32]. The binary discretization is applied recursively, always selecting the best cut 
point. A minimum description length criterion (MDL) is applied to decide when to stop 
discretization [34]. The results of the discretization process are carried forward to the prediction 
stage. 
 
 
2.3. Classification 

Naive Bayes (NB), which is fundamentally built on the strong independence assumption, is a very 
popular classifier in machine learning due to its simplicity, efficiency and efficacy [36-39].  There 
have been numerous applications of NB and variants thereof. The conventional NB algorithm 
uses the following formula for classification [40]: 
                                                    
ݐݑ݌ݐݑܱ  ൌ argmax

௬
൫ܲሺݕ | ⋯,ଵݔ , ௡ሻ൯ (5)ݔ

 
NB performs fairly accurate classification. The only limitation to its classification accuracy is the 
accuracy of the process of estimation of the base conditional probabilities. One clear drawback is 
its strong independence assumption which assumes that attributes are independent of each other 
in a dataset. In the field of genetic sequence classification, NB assumes that genes are independent 
of each other in a genetic sequence despite the fact that there are apparent dependencies among 
individual genes. Because of this fundamental limitation of NB, researchers have proposed 
various techniques such as one-dependence estimators (ODEs) [41] and super parent one-
dependence estimators (SPODEs) [42] to ease the attribute independence assumption. In fact, 
these approaches alleviate the independence assumption at the expense of computational 
complexity and a new set of assumptions. Webb [36] proposed a semi-naive approach called 
averaged one-dependence estimators (AODEs) in order to weaken the attribute independence 
assumption by averaging all of a constrained class of classifiers without introduction of new 
assumptions. The AODE has been shown to outperform other Bayesian classifiers with 
substantially improved computational efficiency [36]. The AODE essentially achieves very high 
classification accuracy by averaging several semi-naive Bayes models that have slightly weaker 
independence assumptions than a pure NB. The AODE algorithm is effective, efficient and offers 
highly accurate classification. The AODE algorithm uses the following formula for classification 
[40]: 
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Semi-naive Bayesian classifiers attempt to preserve the numerous strengths of NB while reducing 
error by relaxing the attribute independence assumption [40]. Backwards sequential elimination 
(BSE) is a wrapper technique for attribute elimination that has proved to be effective at this task. 
Zheng et al. [40] proposed a new approach called lazy estimation (LE), which eliminated highly 
related attribute values at classification time without the computational overheads that are 
intrinsic in classic wrapper techniques. Their experimental results show that LE significantly 
reduces bias and error without excessive computational overheads. In the context of the AODE 
algorithm, LE has a significant advantage over BSE in both computational efficiency and error. 
This novel derivative of the AODE is called the averaged one-dependence estimators with 
subsumption resolution (AODEsr). In essence, the AODEsr enhances the AODE with a 
subsumption resolution by detecting specializations among attribute values at classification time 
and by eliminating the generalization attribute value [40]. Because the AODEsr has a very weak 
independence assumption, it performs well in classification. Therefore, we employ an AODEsr 
classifier to perform lung cancer survivability prediction. 
 

 
3. EXPERIMENTS 
The proposed lung cancer survivability framework was implement in C# 5.0 programming 
language using IKVM. Figure 3 illustrates a screenshot of the implemented lung cancer 
survivability prediction system. 

 

Figure 3. Screenshot of implemented lung cancer survivability prediction system. 
 
We tested our proposed system using two independent datasets from the literature as listed in 
Table 2. For each dataset, we carried out leave-one-out cross validations (LOOCV) where an N-
sized dataset was partitioned into N equal-sized sub-datasets. Out of the N sub-datasets, a single 
sub-dataset was retained as the validation data for testing the model, and the remaining N - 1 sub-
datasets were used as training data. The whole cross-validation process was then repeated N - 1 
more times such that each of the N sub-datasets got used exactly once as the validation data. The 
results were then averaged over all the N trials. We used a critical value of 1, frequency limit of 
250, an M-estimate weight value of 0.03 for the AODEsr model for all the trails.  
 

Table 2. Two independent lung cancer datasets used in our experiments. 

Dataset #Genes #Samples 

Beer et al. [3] 7129 96 
Wigle et al. [2] 2880 39 
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For each dataset, we performed one LOOCV experiment for varying number of selected genes 
ranging from 5 to 75. The genes for each trail were selected using the entropy-based technique 
outlined in Section 2.2. Table 3 lists our experimental results in a tabular format. The most 
surprising finding was that the system achieved a 100% accuracy in predicting lung cancer 
survivability for any number of genes for Beer et al.’s dataset. The results indicate that there are 
only a few genes that act as prognostic biomarkers for lung cancer survivability. In other words, 
using a few genes will be enough to predict whether a particular lung cancer patient will survive. 
The system achieved much lower accuracy for Wigle et al.’s dataset. This might be because of 
outliers and very low number of samples in Wigle et al.’s dataset. Theoretically, accuracy should 
monotonically increase with an increase in the number of selected genes because AODEsr, like 
any other Bayesian classifiers, is not sensitive to irrelevant features. Adding extra genes should 
not theoretically downgrade accuracy. However, as shown in Table 3, for Wigle et al.’s dataset, 
the system achieved an 87.18% accuracy with 20 genes and an 84.62% accuracy for 50 genes, 
exhibiting a departure from monotonicity. The disruption in monotonicity might be because of 
the intrinsic imperfection in the gene selection procedure. The steady-state average LOOCV 
accuracy of our lung cancer survivability predictor is 92.31%. It is worth iterating the fact that we 
used the AODEsr classifier with the same set of parameters (critical value of 1, frequency limit 
of 250, an M-estimate weight value of 0.03) throughout all the experiments to prevent bias. The 
accuracy rate of the proposed cancer survivability prediction system using the AODEsr classifier 
with the entropy-based selection process seems to be significantly higher than the base line 
accuracy of binary classification, which is 50%.   
 
 
Table 3. LOOCV accuracy of the system on 2 datasets with varying number of selected genes. 

Number of genes 
LOOCV accuracy

Beer et al. [3] Dataset Wigle et al. [2] Dataset 

5 100 82.05
10 100 84.62
15 100 84.62
20 100 87.18
50 100 84.62
75 100 84.62

 
  

4. CONCLUSION 
Lung cancer is a major leading cause of cancer-related deaths in the world. Current treatments for 
lung cancer are still based on traditional histopathology. It is of paramount importance to predict 
the survivability of patients suffering from lung cancer so that specific treatments can be sought. 
Nonetheless, histopathology has been shown by previous studies to be inadequate in predicting 
lung cancer development and clinical outcome. We have presented a machine learning based 
approach to predict lung cancer survivability from microarray gene expression data. We employ 
a state-of-the-art machine learning approach called the averaged-on dependence estimator with 
subsumption resolution (AODEsr) to tackle the problem of predicting lung cancer survivability. 
Given a set of gene expression data, the system predicts whether a patient suffering from lung 
cancer will survive. To lower the computational complexity and to increase the generalization 
capability of the system, we employ an entropy-based gene selection algorithm to select relevant 
prognostic genes for lung cancer survival. We have carried out experiments on 2 independent 
datasets acquired from the literature. This proposed system has achieved an accuracy of 92.31% 
in predicting lung cancer survivability.  The experimental results demonstrate the efficacy of our 
framework.  
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