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I present a method for analyzing multichannel recordings in response to repeated stimulus presentation.
Quadratic Component Analysis (QCA) extracts responses that are stimulus-induced (triggered by the stimulus
but not precisely locked in time), as opposed to stimulus-evoked (time-locked to the stimulus). Induced
responses are often found in neural response data frommagnetoencephalography (MEG), electroencephalography
(EEG), or multichannel electrophysiological and optical recordings. The instantaneous power of a linear
combination of channels can be expressed as a weighted sum of instantaneous cross-products between
channel waveforms. Based on this fact, a technique known as Denoising Source Separation (DSS) is used
to find the most reproducible “quadratic component” (linear combination of cross-products). The linear
component with a square most similar to this quadratic component is taken to approximate the most
reproducible evoked activity. Projecting out the component and repeating the analysis allows multiple
induced components to be extracted by deflation. The method is illustrated with synthetic data, as well as
real MEG data. At unfavorable signal-to-noise ratios, it can reveal stimulus-induced activity that is invisible to
other approaches such as time-frequency analysis.

© 2011 Elsevier Inc. All rights reserved.
Introduction

Repeated stimulation can produce responses of two sorts: evoked
activity that is time-locked to the stimulus, and induced activity that
is triggered by the stimulus but not precisely time or phase locked.
Evoked responses can be enhanced by averaging over trials, but
induced responses cannot. Examples of induced response are an
ongoing oscillatory process that is modulated by stimulation, or an
event or burst of events that occurs with random latency. The aim
of this paper is to facilitate the study of induced responses.

Data recorded by electroencephalography (EEG) or magneto-
encephalography (MEG) often have very poor signal to noise ratio.
Even with relatively low-noise recording techniques, such as multi-
channel electrode arrays used in animal electrophysiology or intracranial
recordings in human subjects, a weak source of interest may be masked
by competing brain activity. Techniques to reduce noise and separate
sources are crucial to make sense of such data. There are three basic
approaches to improving signal to noise ratio (SNR): averaging over
trials, filtering and time-frequency analysis, and component analysis.

Induced responses are commonly approached using time-frequency
analysis, which allows the experimenter to search for particular
frequency regions in which the induced response appears most
clearly. This can be understood as a technique to improve the SNR,
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assuming that signal and noise occur in distinct spectral regions.
After the phase is discarded, magnitudes may be averaged over trials
to further enhance SNR. This approach works best if the activity of
interest is locally narrow-band (for example oscillatory activity), but it is
less effective for activity that is wide-band, for example consisting of im-
pulsive events or spikes.

Component analysis leverages the degrees of freedom offered by
multichannel data by forming linear combinations of observations
that optimize SNR. It can takemany forms, from simple channel selection
or electrode re-referencing, to independent component analysis (ICA)
(Delorme and Makeig, 2004; Makeig et al., 1996) and beamforming
(Hillebrand et al., 2005; Sekihara et al., 2006). In each case, a weighted
average of the sensor waveforms is formed to maximize sensitivity to
the source of interest and minimize contributions from competing
sources and noise. Random search for the best weights in the high-
dimensional weight space would be prohibitively expensive, which is
whymethods that can find solutions that optimize plausibly useful
criteria are precious. We use “denoising source separation” (DSS)
(Valpola and Pajunen, 2000; Särelä, 2004; Särelä and Valpola, 2005), a
general purpose component analysis method that can be used to
optimize various criteria, for example reproducibility over trials
(de Cheveigné and Simon, 2008b; de Cheveigné, 2010).

In brief, DSS involves the following steps: (a) orthogonalization by
PCA of the data matrix, (b) normalization of the principal components
so as to render the data “spherical”, (c) application of a contrast func-
tion to emphasize directions that satisfy the criterion, and (d) a final
PCA to rotate the data so that the first component maximizes the
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criterion, the second maximizes it within the subspace orthogonal to
the first, and so on. The first two steps (PCA and normalization) are es-
sential to neutralize the influence of variance, so that the solution is de-
termined only by the contrast function. DSS is analogous to ICA, but
differs in that it searches directly for linear components that optimize
the criterion of interest, rather than indirectly via a measure of statistical
independence (that may or may not isolate a similar component). It dif-
fers from PCA in that the criterion optimized is not power. Like beam-
forming it suppresses competing sources while preserving the source of
interest, but differs in the criterion used to define that source. Whereas
beamforming preserves components coming from a particular location,
DSS preserves thosewith a particular property. DSS (and similarmethods
such as FOP andCSP)might thus be understood as a “geometry-free” ver-
sion of beamforming. DSS is complementary to these well estab-
lished tools. DSS closely resembles the Filtering by Optimal
Projection (FOP) and Common Spatial Pattern (CSP) algorithms
(Blankertz et al., 2008; Boudet et al., 2007; Koles et al., 1990) that
have beenwidely used for classification in the Brain Computer Interface
(BCI) literature, see also Cichocki (2004), Fukunaga (1990), Parra et al.
(2005).

Recently we applied DSS to find linear combinations of channels
that maximize reproducibility (de Cheveigné and Simon, 2008b;
de Cheveigné, 2010). This approach is extremely effective to reveal
evoked brain activity, even very weak, as it capitalizes on both trial-
averaging and component analysis. Unfortunately it does not work for
induced activity, both because averaging over trials provides no benefit,
and because we lack a criterion to direct the component analysis.

The present paper extends the usefulness of DSS by applying it to
cross-products between sensor waveforms. This allows the search to
explore a larger space (of dimension J(J+1)/2, where J is the number
of sensors), and to tap higher-order correlation structures, such as
repeatable stimulus-induced patterns of power or correlation between
sources.We use searchwithin the space of cross-products as an auxiliary
to search within the J-dimensional space of linear components, but
the quadratic solutions may also be of interest in their own right,
as indicators of significant brain activity that is reliably related to
stimulation.
Methods

Signal model

Waveforms measured at the sensors X(t)=[x1(t),⋯,xJ(t)]⊤ are
assumed to be a linear superposition of interesting brain activity
and uninteresting noise activity:

X tð Þ ¼ XB tð Þ þ XN tð Þ: ð1Þ

The first term results from the superposition within sensors of
brain sources XB(t)=ABSB(t), and the second from the superposition
of noise sourcesXN(t)=ANSN(t), whereAB andAN aremixingmatrices
that describe how each source affects each sensor. Our aim is to
enhance components XB(t) and suppress components XN(t) by
combining observations linearly. Specifically, given a hypothetical
source sb(t) we wish to find a linear combination of channels
∑ j wjxj(t) that maximizes that source's SNR.

Here we assume that sb(t) consists of induced activity, triggered by
repeated presentations of a stimulus but not accurately time-locked
so that it cannot be enhanced merely by averaging over trials. Our
operational definition of “induced” is that the short-term power is
reproducible, and our objective is to find a linear combination of
sensor waveforms with a maximally reproducible pattern of power
(variance) over time relative to the stimulus.
Given a linear combination of sensor waveforms:

y tð Þ ¼ ∑
j

wjxj tð Þ; ð2Þ

its instantaneous power can be expressed as:

y2 tð Þ ¼ ∑
j

wjxj tð Þ
" #2

¼ ∑
jk

wjwkzjk tð Þ: ð3Þ

In other words, it is a linear combination of instantaneous cross-
products zjk(t)=xj(t)xk(t). We will refer to a linear combination of
cross-products (with arbitrary weights) as a quadratic component.
Because of symmetry there are J(J+1)/2 distinct cross-products,
and so the space of quadratic components is of dimension J(J+1)/2,
whereas the space of linear components is of dimension J: not every
quadratic component equals the square of a linear component as in
Eq. (3).

The J(J+1)/2weights of a quadratic component can be arranged in
a symmetric matrix [Ujk] by sharing weights equally between zjk(t)
and zkj(t). The rank of such a matrix is usually J, whereas the rank of
the matrix [Wjk]=[wjwk] is one, which is yet another way of saying
that not every quadratic component maps to the square of a linear
component. Using singular value decomposition, [Ujk] can be
expressed as a sumofmatrices of rank one. Discarding all terms except
the largest (corresponding to the largest eigenvalue), [Ujk] can be
approximated by this rank-one matrix, that corresponds to a linear
component which, squared, can be used as an approximation of the
quadratic component. Thus, given an arbitrary quadratic component,
we have a means to approximate it as the square of a linear
component.

Themethod in this paper finds themaximally reproducible quadratic
component of a set of data using the DSS algorithm, and then
approximates it by the nearest squared linear component in the
sense just defined.

Algorithm

Given a data matrix of size [J,T,N] (channels×time×trials), the
following steps are performed:

1. The mean of each sensor waveform is subtracted and the waveforms
are normalized to give equal weight to all sensors. PCA is performed
andonly thefirstK components are retained to reduce computational
cost.

2. Cross-products are formed and low-pass filtered (smoothed) by
convolution with a squarewindowof size P, and the initial P samples
are removed to avoid the onset artifact. There are K(K+1) distinct
cross-products, which we augment with a constant component
that serves to absorb DC power in subsequent steps. This results in
a matrix of size [K(K+1)+1,T−P,N].

3. DSS is applied to the matrix of cross-products. Specifically: a first
PCA is performed and the PC waveforms are normalized. They
are then averaged over repetitions and a second PCA is performed
on the average to find the directions of maximal repeated power.
The product of first PCA matrix, normalization matrix, and second
PCA matrix defines a matrix that, applied to the matrix of cross-
product waveforms, yields K(K+1)+1 quadratic component
waveforms.

4. The first component (constant) is discarded, and the second
component is selected as the most reproducible quadratic
component.

This optimal quadratic component is of interest as a statistic that
shows that the neural response is reliably related to the stimulus.
However it does not fulfill our goal of finding a linear combination
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Fig. 1. Simulated data. The target consists of 100 repetitions of gaussian noise
amplitude-modulated by a sinusoid (left top: one trial). This target is mixed with
gaussian noise interference (left bottom) to form two “sensor signals” (center) with
SNR=10−8. The algorithm extracts the most reproducible linear combination of
cross-products (right top), and uses that to derive a linear combination of “sensors”
similar to the target (right bottom).
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Fig. 2. Simulated data. In the top row, the target consists of a random-phase sinusoid
modulated by one period of a sinusoid-shaped envelope, added equally to all channels.
The interference consists of 9 white gaussian noise sources distributed over the sensor
channels via a 9×10 randommatrix, SNR=10−8. In the bottom row, the target consists of
a 60 ms pulse with a random latency added equally to all 274 channels. The interference
consists of real MEG background noise, recorded from an MEG system with a subject
present, SNR=10−8. In both cases the algorithm successfully recovers the target (3rd
column).
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of sensor waveforms with a square that is maximally reproducible.
That goal can be approached by the following additional step.

5. The K(K+1)/2 weights of the best quadratic component are
rearranged within a symmetric K×K squarematrix. The coefficients
of the eigenvector with largest eigenvalue (in norm) define a linear
component, the square of which is taken to approximate the
quadratic component found in step 4.

A final step can be used to extract multiple components by
deflation:

6. The linear component found in step 5 is projected out of the data,
and the analysis is repeated from step 1.

In the event that multiple components are found, we cannot
guarantee that each maps to a neural source. All we can say is that
the components collectively define a subspace that contains the
induced response. Components are orthogonal by construction,
whereas neural sources participating in the same computation are
likely to be correlated, so a one-to-one correspondence is unlikely
(except perhaps for the first component).

The purpose of smoothing in step 2 is to average out thefine temporal
structure and better estimate the short-term power. The value of P is not
critical, and smoothing can often be omitted. Insufficient smoothing
seems to be detrimental if the target is pulse-like with little serial
correlation (as in the first simulation below), whereas excessive
smoothing may encourage multiple evoked sources to merge into a
common quadratic component.

Implementation

The algorithm was implemented in Matlab. The PCA in step 1
serves to concentrate most of the variance in a small number of
components, reducing computational cost (possibly at the expense
of components of interest if they are weak). A value of K=50
seems a reasonable compromise in practice. To save space, rather than
explicitly representing all cross-products for the entire data, covariance
matrices may be calculated on smaller chunks and then added.

Results

The algorithm is evaluated first with synthetic test data, and then
with MEG data.

Simulated data

Two channels, target is modulated wideband gaussian noise
The target consisted of white gaussian noise modulated by half a

period of a sinusoid, repeated 100 times, each time with a different
noise carrier (Fig. 1 left top), whereas interference consisted of unmo-
dulated gaussian noise (Fig. 1 left bottom). Interference was identical
in both channels, whereas the signal was added to both channels with
opposite phase, with an RMS amplitude 0.0001 times that of the inter-
ference (SNR=10−8). It is thus very hard to guess the presence of the
target in the mixtures (Fig. 1 center). The algorithm nevertheless finds
a clearly repeatable quadratic component (Fig. 1 right top), and a corre-
sponding linear component that resembles the target (Fig. 1 right bot-
tom). This example demonstrates that the algorithm can extract a
weak induced target in the absence of any spectral disparity between
target and interferer.

Ten channels, target is modulated sinusoid with random phase
The target consisted of a random-phase sinusoidal carriermodulated

by half the period of a sinusoid (Fig. 2 top left). The target was repeated
100 times, each timewith a different carrier phase, and added equally to
all channels with an RMS amplitude 0.0001 times that of the
interference (SNR=10−8). Interference consisted of 9 independent
sources of white gaussian noise distributed over channels via a
9×10 random mixing matrix. Again, the presence of the target is im-
possible to guess visually within the interference (Fig. 2 top center),
but the algorithm nevertheless recovers it (Fig. 2 top right). This exam-
ple shows that the algorithm can extract a very weak oscillatory target
from within multichannel data.

274 channels, target is pulse with random latency
The target consisted of a 60 mspulsewith a latency randomly chosen

from within a 0.5 s interval (Fig. 2 bottom left), mixed across channels
via a 1×274 randommatrix. The noise consisted of background activity
recorded from an MEG system with a subject present. The RMS ampli-
tude of the signal was set to 0.0001 times that of the noise
(SNR=10−8). The algorithm successfully extracted the target signal
(Fig. 2 bottom right). This example shows that the algorithm can deal
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Fig. 3. Simulated data. Left: two targets, each consisting of a random-phase sinusoid
modulated by one period of a sinusoid-shaped envelope (left column). Each line is a
different trial. The targets were embedded in interference consisting of 8white gaussian
noise sources distributed over the sensor channels via a 8×10 random matrix, at
SNR=10−8. A first application of the algorithm produced a quadratic component
(column 2 top). The blue line represents the mean over repetitions, and the gray
band ±2 standard deviations of a bootstrap resampling of themean. The corresponding
linear component is shown in column 2, bottom. After this linear component was
projected out of the data, a second application of QCA produced a second quadratic
component and corresponding linear component (column 3). Subsequent applications
of QCA revealed no further interesting components (column 4), suggesting that the first
two iterations exhausted all induced activity. (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this article.)
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with noise typical of anMEG system (with spectral, temporal and spatial
correlations).

Ten channels, two targets
Two targets consisted each of a random phase sinusoidal carrier

modulated by half the period of a sinusoid (Fig. 3, left column). The
targets differed by the frequency of their carrier. Each was added
equally to all channels via a 1×10 random matrix, with an RMS am-
plitude of 0.0001 times the noise (SNR=10−8). The interference
consisted of 8 independent sources of white gaussian noise distributed
over channels via a 8×10 randommixingmatrix. The algorithmwas ap-
plied three times, and each time the solution was projected out before
the next iteration. The first two iterations (Fig. 3, columns 2 and 3)
yielded two linear components that share some characteristics of both
targets, but are not identical to either. This illustrates an important prop-
erty of themethod: the extracted components do not necessarilymap to
individual sources; rather they span a subspace that contains the
sources. Subsequent iterations revealed no further components
(Fig. 3, column 4), implying that the first two iterations exhausted
the underlying targets. In this simulation both targets shared the
same envelope, but simulations with different envelopes gave similar
results (not shown). This example shows that the algorithm is not con-
fused by the presence of multiple reproducible sources.

Real MEG data

MEG data were taken from a study that reported stimulus-specific
gamma activity in a visual task (Duncan et al., 2009). Data were
recorded from a whole-head MEG system equipped with 275
gradiometers, at a 600 Hz sampling rate after low-pass filtering in
hardware at 150 Hz. The reader is referred to the original report for
details of the experiment and interpretation of the data.

For the purpose of the present study, data were preprocessed by
(a) projecting out components dominated by power at 50 Hz and
harmonics (projection to the subspace orthogonal to those components,
de Cheveigné and Simon, 2007), (b) projecting out components
dominated by the evoked response to the stimulus (de Cheveigné
and Simon, 2008b), and (c) suppressing sensor-specific components
due to sensor noise (de Cheveigné and Simon, 2008a). Data were
then submitted to a PCA, and the first 50 principal components
retained. The data set then consisted of a 3D matrix of size 1500
samples, 50 principal components, and 86 trials (responses to stimuli
in the left visual field). QCA was applied as described in Methods, in
three stages that differed in details of processing parameters.

In a first stage, the algorithmwas applied towideband data (no filter
was applied other than the initial hardware filter). No smoothing was
applied to the quadratic components. The first row of Fig. 4 shows the
best quadratic component (left column, upper plot) and the linear com-
ponent with closest square (left column, lower plot) averaged over tri-
als. The gray band represents ±2 standard deviations of a bootstrap
resampling of the mean (Efron and Tibshirani, 1993), performed by
drawing a random sample of trials (with replacement) repeated 200
times. The time course of the linear component for individual trials is
shown as a raster plot in column 2. The activity consists in relatively
slow deflections, with a density that is greatest during the second half
of the epoch. The topography (column 3) is restricted to a single frontal
channel, suggesting muscular activity in the eyes (despite the instruc-
tion given to subjects to fixate a fixed point on the screen). This linear
componentwas then regressed out, and the processing repeated to pro-
duce a second component (row 2 of Fig. 4) that had amore widespread
frontal distribution (column 3). Its spectrum (column 4) is low-pass but
less steep than the first. In addition to these, the analysis revealed addi-
tional components with spectra and spatial distributions similar to the
second (not shown). It should be stressed that individual components
do not necessarilymap to individual neural sources. In particular the spa-
tial distribution may not reflect that of a neural source. Instead, compo-
nents should be understood as spanning a subspace of the data that
contains the neural activity of interest (see below).

In a second stage, data were high-pass filtered with 4 Hz cutoff
(4th order Butterworth) to attenuate the slow components that dom-
inated the results of the first stage, and thus improve the SNR of mid-
frequency activity before attempting QCA. The best component, illus-
trated on row 3 of Fig. 4, has a relatively narrow spectrum peaking at
10 Hz (column 4), an occipital or parietal distribution (column 3), and
an amplitude that dips after trial onset and after the stimulus transi-
tion at 2.5 s (columns 2 and 1). A second component (obtained
after projecting out the first) has a similar time course but a spectrum
that peaks at both 10 and 15 Hz. In addition to these, a total of about
10 similar components were found, mostly with occipital/parietal dis-
tributions and spectra peaking at 10 or 15 Hz (or both). Together they
span a subspace of relatively high dimensionality, implying quite a
complex set of sources. The time-course, similar for all these compo-
nents, fits the description of an often-observed “event-related desyn-
chronization” (ERD), although the rather rapid transition to the
dip is perhaps suggestive of a drop in amplitude rather than desyn-
chronization of ongoing oscillations.

In a third stage, data were high-pass filteredwith a 30 Hz cutoff (4th
order Butterworth) to attenuate the strong low and mid-frequency
components and improve the SNR of gamma-band components
(whichwere the focus of the original study). The best quadratic compo-
nent, illustrated on row 5 of Fig. 4, has a relatively narrow spectrum
peaking at about 50 Hz (column4), a relatively focal occipital distribution
(column 3), and an amplitude step at the stimulus transition at 2.5 s
(columns 2 and 1).

A spectrogram (Fig. 5 top) shows a time course quite similar to that
reported in the original study (Duncan et al., 2009, their Fig. 1C), with
an initial downward chirp from about 56 Hz to 49 Hz. That study
applied 20–70 Hz bandpass filtering and a spatial filter based on a
beamformer algorithm. The similarity corroborates our analysis and
suggests that QCA and beamforming may have found approximately
the same component (i.e. spatial filter). The time course is much clearer
than if time-frequency analysis were applied directly to selected sensor
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Fig. 4. Real data. Stimulus-induced components revealed by QCA analysis applied to MEG data recorded in response to visual stimulation (Duncan et al., 2009). Each trial consisted
of two intervals of 2.5 s, the first containing a uniform field and the second an obliquely-oriented grating (see reference for further details). Each row describes one induced com-
ponent of the response revealed by QCA. The first column shows the average over trials of the quadratic component (top), together with the instantaneous power of the linear com-
ponent with closest square (bottom). Gray bands represent ±2 standard deviations of a bootstrap resampling of the mean. The second column shows a raster plot of individual
repetitions of the closest squared component, the third column shows its spatial distribution, and the last column its power spectrum (normalized by dividing by the mean over
spectral bins). In general: cortical activity can be understood as belonging to a space spanned by these components, but there is not necessarily a one-to-one map between com-
ponents and neural sources. See text for a discussion of each row.
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channels (Fig. 5 bottom). Projecting out this component and repeating
the analysis revealed no further gamma components. The reader is
referred to Duncan et al. (2009) for a discussion of the significance of
these responses for brain function, the purpose here being merely to
illustrate the ability of our algorithm to extract them from MEG data.
Discussion

The simulations showed that the method can retrieve non-repeating
activity (that cannot be enhanced by averaging), for wideband targets
(time-frequency analysiswould also have failed), and at very unfavorable
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SNRs (as low as 10−8). With real MEG data from a study using visual
stimulation, the method retrieved a gamma-band response very similar
to that obtained in that study by other means, together with multiple
other induced response components. It thus seems to attain the goal
defined in the Introduction, of extracting weak induced activity from
multichannel data. The method produces linear components (weighted
sums of sensor signals), in analogous fashion to other component
analysis techniques such as beamforming or ICA.

Caveats and cautions

Themethod requires forming J(J+1)/2 cross-products and calculating
covariance matrices of size (J(J+1)/2)2, which may be prohibitive in
processing and memory costs. The initial PCA alleviates this problem,
but introduces the risk that a component that is of interest but weak
in power might be discarded. If the data epoch is short and/or
the sampling rate is small, the matrix of cross-products may not be
of full rank. Smoothing (step 2) might exacerbate the effect by
introducing serial correlation that reduces the “effective” number
of samples. However this is not a serious issue as DSS is robust to
rank-deficient data.

There are many free parameters and thus a risk of overfitting, that
may result in seemingly repeatable components by chance. The risk is
greater for larger values of the smoothing parameter P, as the serial
correlation induced by smoothing reduces the degrees of freedom in
the data. Any conclusions based on this method should be challenged
by cross-validation or bootstrap, or corroborated in other ways. This
risk is illustrated in Fig. 6. The top left hand panel represents the
best component produced by QCA for the 30 Hz high-pass data of
Duncan et al. (2009) for P=100 (instead of P=1 as in Fig. 4 bottom).
The large amplitude of the mean (blue) relative to the bootstrap stan-
dard deviation (gray) suggests a clearly repeatable response. Howev-
er the same analysis applied to a random matrix of same size also
seems to produce a repeatable component (Fig. 6 top right), in
this case the result of overfitting encouraged by the large value of
the smoothing parameter. Bootstrap resampling (Fig. 6 bottom) re-
solves the issue: for the genuine response the component is reproduc-
ible across resamplings, for the noisy data it is not.

The method is sensitive to any source of repeatable power, not all
of which are of interest. For example artifacts such as eyeblinks or
muscular activity may tend to occur more at certain times within
the epoch (e.g. Fig. 4, first row). More insidiously, repeatable power
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may arise from seemingly harmless preprocessing operations. For
example if a filter is applied to each epoch individually, the onset
artifact will appear as repeatable power. This may be avoided by
applying the filter to the raw data before cutting into trials, or
else by using FIR filters of order P and removing the first P-1 samples
of each trial. As another example, in the presence of a slow drift in
the sensor signals, removal of the mean from each trial will cause
the power of the drift component to be smaller at the epoch center
relative to its extremities, again resulting in a repeatable pattern of
power. This can be avoided by applying high-pass filtering to the
raw data before cutting them into trials.

DSS is guaranteed to find the most repeatable linear component (if
applied to sensor waveforms) or quadratic component (if applied to
cross-products). However this does not guarantee optimal repeatability
of the power of the linear component found in step 5, although in
practice the solutions seem to be quite good. In this sense the algorithm
can be seen as a tool to direct the search within weight space to find
induced activity.

As pointed out in the Methods section, multiple components
found by repeating the analysis (as in Fig. 4) do not necessarily each
correspond to an individual source within the brain. All that can be
said is that observable neural sources reside within the subspace
spanned by the components. Components produced by DSS or QCA
are mutually orthogonal, which is unlikely to be the case of neural
sources that participate in sensory processing. Further processing
is required to find components within this subspace that map to
individual neural sources. This is outside the scope of this paper.

If a weak component of interest is accompanied by stronger
induced components, those may need to be “stripped away” before
the component of interest can be extracted. There is a risk that the
weaker component is lost in this process, particularly if it is partly
colinear with others. For example the gamma response of Fig. 4 bottom
was much weaker than the ocular, evoked, and induced alpha compo-
nents. In such situations it may be useful to attenuate those competing
components by filtering, as we did, prior to applying QCA.

Relation with time-frequency analysis

Time-frequency analysis is a common tool for the study of induced
responses. It can be understood as performing two functions:
demodulation (as in the squaring operation of Eq. (2)) and SNR
enhancement (on the assumption that signal and noise have different
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spectral properties). It also provides a descriptive tool to characterize
properties of the source. Time-frequency analysis has three important
drawbacks: (a) it is useful only if the target or interference have distinct
spectro-temporal properties, (b) convolution with the filter or analysis
kernel smears the response over time, possibly leading to incorrect
conclusions about the latency and time course of neural processes,
(c) it introduces a bias towards interpreting neural responses as
oscillatory. QCA can reveal sources with little or no spectral struc-
ture embedded in wideband noise (Figs. 1, 2 bottom). It can also
reveal genuine oscillatory activity (e.g. Fig. 4, rows 3–5) with
good temporal resolution. Importantly, QCA can also be combined
with filtering (as in Fig. 4, rows 3–5) or time-frequency analysis
(as in Fig. 5), effectively enhancing the effectiveness of these tools.

Beyond the induced response

The approachmight usefully be extended in at least three directions.
First, induced activity, defined as a linear component with repeatable
power, lives within an J-dimensional manifold of the J(J+1)/2 space
of quadratic components explored by QCA. Mathematically it is clear
that there are other objects within that space, and these might be of in-
terest if they relate reliably to processeswithin the brain. A hypothetical
example might be if two neural sources, neither of which is repeatable
(evoked) or with repeatable power (induced), synchronize at specific
times relative to stimulation. In other words, QCA has the potential to
reveal stimulus-related brain activity that is neither evoked nor in-
duced. This possibility remains to be investigated.

Second, for simplicity and definiteness this paper focused on acti-
vity related to repeated stimulation, but the DSS operation is applica-
ble to a wider range of situations, for example to contrast between
two experimental conditions, or between different time intervals of
a response, etc. Furthermore, the idea of applying linear analysis to
cross-products might also be usefully used with other linear analysis
techniques such as ICA (Lindgren and Hyvärinen, 2007).

Finally, QCAmight usefully be applied to time-shifted data (similar
to what was proposed for DSS in de CheveignŽ, 2010). Time shifts
allow the solution to implement finite impulse response filters (FIR)
to be applied to the sensor waveforms, and to compensate for
between-channel delays. They may also allow the analysis to discover
higher-order spatiotemporal (or spatio-spectral) patterns within the
data. These avenues remain to be explored.

Conclusion

Quadratic component analysis (QCA) is a new method for the
discovery of patterns of neural activity within multichannel data. It
finds the optimal linear combination of cross-products of sensor
channels to maximize repeatability, and derives from it a linear
combination that optimizes the signal-to-noise ratio of the neural
response. It is applicable to induced responses (not stimulus-
locked) that are hard to reveal by other methods. It can also, in
principle, reveal neural activity that is neither evoked nor induced,
as the space spanned by quadratic components is larger than that
spanned by linear components. In simulations the method accurately
retrieved sources embedded in noise (white noise or MEG noise) at
extremely unfavorable signal-to-noise ratios. Applied to real MEG
data the method revealed numerous stimulus-induced responses.
QCA is complementary with other established methods such as
time-frequency analysis or beamforming, that are routinely used to
characterize induced activity. As such it is potentially an important
new tool to measure brain activity.
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