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ABSTRACT

In cloud computing, inter-operations between data-storage
and web-application providers can protect users from lock-
ing their data and applications into a single cloud provider.
Currently, web-based access control standards are applica-
ble only when data owners and cloud service providers are
in the same trusted domain. Unfortunately, this condi-
tion cannot be satisfied in untrusted clouds, where cloud
providers may access sensitive information without autho-
rization. Most previous studies require end-user certificates
or specific APIs and depart from existing standards. In this
paper, we propose a new authorization scheme (A Auth)
that builds on the OAuth standard by leveraging ciphertext-
policy attribute based encryption and an ElGamal-like mask
over the HTTP protocol. Our scheme provides end-to-end
encryption and ABE-based tokens to enable authorization
by both authorities and owners and to move policy enforce-
ment from clouds to destinations. With our user-centric ap-
proach, owners can take control of their data when it rests
in semi-untrusted cloud storage. Moreover, with most cryp-
tographic functions delegated from owners to authorities,
owners can gain computation power from clouds. Security
analysis shows that our scheme maintains the same security
level as the original encryption scheme and protects users
from exposing their credential to application providers. In
our extensive simulation, AAuth’s greater overhead was bal-
anced by greater security than OAuth’s. Furthermore, our
scheme works seamlessly with storage providers by retaining
the providers’” APIs in the usual way.

Categories and Subject Descriptors

D.4.6 [Operating System]|: Security and Protection—Ac-
cess controls; K.6.5 [Management of Computing and
Information Systems]: Security and Protection— Unau-
thorized access
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1. INTRODUCTION

In computer security, access control is an essential compo-
nent in approving the access privileges of consumers. Tra-
ditionally, a centralized access control system has only two
roles: 1) clients who act as consumers on behalf of resource
owners, 2) a centralized server that authenticates consumers
and authorizes access to resource according to consumers’
capabilities or resources’ Access Control Lists (ACLs). With
the development of Single Sign-On (SSO) systems like Ker-
beros [8], an authenticator and an authorizer can be sepa-
rated from a centralized server, while the owner and con-
sumer are left to act in the same client.

Web application ubiquity on the Internet has made, shar-
ing resources between HTTP-service providers a dramatic
requirement for both users and providers. For example, a
photo lab prints a customer’s pictures from her Flickr. Con-
sequently, an IETF working group is exploring an authoriza-
tion standard, called OAuth [5] [6], that allows one service
provider (aka a third-party client), who is not an owner, to
access the resources of another service provider (aka a re-
source server) on behalf of the owner without exposing the
owner’s secret credentials to the third-party client. To this
end, the OAuth uses HTTP redirections and tokens to in-
troduce an authorization layer, which separates an owner’s
role from a third-party client and provides a secure way for
an owner to allow one provider to access his/her resources
that are hosted by other providers.

Although standards exist for authorization, they all rely
on that users trust their service providers to keep and pro-
cess their data. This assumption is rational if all parties are
in the same trusted domain or owners never expose sensitive
data outside their on-premise data center. With the emer-
gence of cloud computing, this assumption may not be true
since IT infrastructure is outsourced to public clouds whose
Cloud Service Providers (CSPs) may be dishonest. In this
hostile environment, users must trade control of data for
flexibility, scalability, and reduced expenses from untrusted
CSPs. Finally, users may decide to lock in a single CSP if
they believe it can mitigate concerns about data security.
This belief impedes the open-cloud concept, and no one can



guarantee security because of the following problems: 1)
An authorizer may arbitrarily grant accesses to its conspira-
tors. 2) Resource servers hosting sensitive information may
reveal this information. 3) A resource server may refuse to
obey predefined capabilities or ACLs. 4) On large-scale like
the Internet, assuming that all participants are in a single
trusted domain is infeasible and non-scalable.

Rather than suffering from vendor lock-in or hoping for
trusted CSPs, we propose a novel authorization scheme ABE-
based Authorization (AAuth) based on the OAuth au-
thorization standard and Ciphertext-Policy Attribute Based
Encryption (CP-ABE): 1) AAuth employs a user-centric
approach by using a web browser preloaded with CA cer-
tificates as an HTTP trust-platform for owners. 2) Our
scheme also replaces the traditional tokens with ABE-based
tokens (termed ABE-tokens). Thus, the ACLs are bundled
in ciphertext and enforced when consumers try to decrypt
the ciphertext with the private keys in ABE-tokens. 3) To
achieve our user-centric approach, we allow owners to limit
the lifetime and scope of ABE-tokens by adding other owner-
controlled attributes, called confined attributes. We also
modify the CP-ABE scheme proposed by Bethencourt [1] so
that an authority, an authorizer, and an owner contribute to
the key generation. 4) Owners delegate their secret shares
of times slot to an authorizer. This delegation allows an au-
thorizer to re-encrypt the header of protected files to avoid
owners staying on-line to limit token lifetimes.

With the modification and combination of OAuth, CP-
ABE, ElGamal-like masks, proxy re-encryption, and lazy
re-encryption, AAuth achieves a user-centric and end-to-end
cryptographic functions that support the following features:
1) Access grants are made with cooperation among own-
ers, an authorizer, and authority(s). 2) Access policies are
bundled into resources by owners and enforced at the desti-
nation. 3) Data is encrypted when resting with a resource
server then decrypted at the destination. 4) AAuth inte-
grates existing standards and available cloud entities for sim-
plicity and compatibility. 5) Moreover, AAuth is designed in
a distributed fashion to gain efficiency and scalability from
cloud servers.

The rest of this paper is organized of follows: Section 2
discusses our models and assumptions. Section 3 describes
definitions and notations for our scheme. Section 4 presents
our construction, procedures and protocols. Section 5 anal-
yses our scheme in terms of security from internal and exter-
nal adversaries. Section 6 evaluates the performance of our
scheme by using a simulation and compares our scheme to
existing standards. Finally, Section 8 concludes the paper.

2. SYSTEM AND ADVERSARY MODELS
2.1 System Model

There are five main parties in the system:
Data owners (O): (owners for short) entities, i.e., end-
users or software applications, who have resource ownerships
and the right to grant access to protected data.
Cloud servers (S): (servers for short) cloud-storage or
cloud-database providers that host protected data and pro-
vide basic data services, i.e., read ,write, and delete.
Consumers(C): web or traditional application providers
that use owners’ data to provide services to the owners.
Authority (A A): trusted organizations or agencies who le-
gitimately define descriptive attributes to eligible consumers.

The authorizer(AZ): the server who runs the AAuth pro-
tocol, then issues ABE-based tokens to eligible consumers.

To protect data from unauthorized access, an owner en-
crypts it with an access policy defined over public-key com-
ponents, then stores it in a server. When a consumer wants
to use data, it asks an owner and authorities jointly to issue
an ABE-token. Thus, only consumers who satisfy the policy
can decrypt the data file. We assume that without end-users’
certificates, the authentication systems, e.g., user-password
databases, Active Directory/LDAP, or OpenlD [9], are avail-
able for authorizers to verify owners. Meanwhile, all ser-
vice providers, i.e., authorizers, authorities, consumers, and
servers, register for public-key certificates from Certificate
Authorities (CA) in order to support SSL/TLS security chan-
nels. For simplicity, we also assume that only owners have
read and write privilege on their data, while consumers can
only read the authorized data.

2.2 Adversary Model

In this scenario, our semi-trusted environment means that
although no entity trusts the others, everyone trusts the pro-
tocol. That is, all entities will follow the proposed protocol
in general because protocol violation is easy to detect. How-
ever, each entity may exploit some threats to attack the sys-
tem as follows. 1) We assume servers are trusted to provide
data-services properly but may be curious about sensitive in-
formation and prone to reveal data to ineligible parties. 2)
The authorizer may disobey owners’ orders to issue tokens,
or issue arbitrary tokens to its conspirators. 3) Consumers
may try to get unauthorized files from honest servers by
fabricating tokens to obtain unauthorized access or resub-
mitting previous tokens (replay attacks). 4) Without user
public-key certificates, owners may propose tokens on behalf
of others. 5) Internet users may launch general network at-
tacks on encrypted data or tokens. However, we assume that
the communications among CSPs are secure and authentic
under SSL/TLS secure channels. Adversaries do not have
enough computing power to break cryptographic primitives.
Based on the above system model, adversary model, and
design goals, we next explain how to construct our scheme
and how the protocols are manipulated.

3. DEFINITIONS AND NOTATIONS

Constructing AAuth requires five main components: at-
tributes, access policies, access trees, meta-data, a modified
CP-ABE scheme and archive files as follows.

3.1 Attributes

AAuth divides the attribute universe into two disjoint
sets: confined and descriptive. To restrict the scope and
limit the lifetime of tokens, the confined attributes are manda-
tory and issued by an authorizer on behalf of owners. The
syntax and semantics of confined attributes are defined ac-
cording to token restrictions, and reserved to disjoin them
from descriptive attributes, defined below. Hence, an au-
thorizer publishes the syntax as (attribute) = (value), and
the semantics are as follows:

FILE-LOC = URI: a file identifier consisting of URL/
absolute path/ filename;
OWNER = ownerld: the identifier of a file owner;

PERMIS = (r|w): file permissions, where ‘r’ is read only
and ‘w’ is write;



SEC-CLASS = (1 — 5): a security class of a file, defined
in ascending order;

TIMESLOT = yyyy/mm/dd/hh/nn: the digits of year,
month, date, hour, and minute in the timeslot.

Since our ABE-tokens are a set of private keys, rather than
issue a token for each file, it is more flexible and efficient
to issue a token for multiple files or time slots when the
other attributes are shared in common. Furthermore, the
granularity of a time slot can be adjusted by masking the
fine-grained components with * in ascending order. How-
ever, every token of the same file must have the same gran-
ularity level. Note that for some cloud storage, FILE-LOC
attributes are not physical locations, for instance, objects in
a bucket of Amazon S3.

On the other hand, descriptive attributes, which describe
consumer characteristics, are defined by authority(s) who
monitor and control the consumer. We define the syntax of
descriptive attributes as (attribute)@(url) = (value), where
(url) is a URL of the authority issuing the attribute. How-
ever, authorities freely define the semantics of attributes un-
der their control, then publish in any public server.

3.2 Access Policies

To encrypt protected data with access policies, we first
define the policy in a boolean algebraic expression that com-
bines confined and descriptive attributes together at the root
node. Therefore the algebra is constructed by ANDing each
confined-attribute term and the whole set of descriptive-
attribute terms as follows:

Policy A =[FILE-LOC] AND [OWNER] AND
[SEC-CLASS] AND [PERMIS] AND
[TIMESLOT] AND
[(OWNERQAUTHOR) OR
(Descriptive Boolean Algebra)].

To ignore the descriptive term when an owner accesses her
own data, a special attribute ‘OWNERQAUTHOR’ will be
OR with the descriptive term. Hence, an owner must re-
quest ‘OWNER@QAUTHOR’ from an authorizer when the
owner wants a token that does not depend on descriptive
attributes.

3.3 Access Tree

From [10], any monotonic access policy can be represented
by an access tree, a conjunction between a linear secret-
sharing scheme and tree structure. In access trees, each
non-leaf node is a (t,n) threshold gate described by its n
child nodes and the threshold value t of a (t—1)-degree poly-
nomial. Thus, each non-leaf node can represent an ‘AND’
or ‘OR’ gate in an access policy by using an (n,n) or (1,n)
threshold gate respectively. Meanwhile, each leaf-node is as-
sociated with an attribute term in the access policy. Figure 1
shows the three primitive constructions of non-leaf nodes in
an access tree: a 1-of-3 threshold gate (an OR gate), a 2-
of-3 threshold gate, and a 3-of-3 threshold gate (an AND
gate). Basically, in a top-down manner, we can construct
an access tree according to a monotonic access policy as in
the following algorithm.

1. Staring with the root node, to create a tr-degree poly-
nomial gr(-), an algorithm sets the point at zero ¢r(0) =
s for a secret value s € Z, and randomly chooses other
(tr — 1) points.

(1,3) threshold gate (2,3) threshold gate
OR gate 2-of-3 gate

©) q(0)=s (©) a(0)=s

(3,3) threshold gate
AND gate

(@ q(O)=s
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Figure 1: (1,3),(2,3), and (3,3) Threshold gates

2. For other nodes z, the algorithm sets g, (0) =
dparent(w) (index(x)) and randomly chooses other (t, —
1) points to define t,-degree polynomial g (-).

3. At each leaf node z, an associated attribute att(zx) is
assigned to node .

Here parent(z) denotes the parent node of node z, att(z) de-
notes the attribute associated with node x if x is a leaf node,
index(z) denotes an index number associated with node x
and the index number is assigned uniquely and ascendantly
along the tree from the root node (index = 0) to the last
leaf nodes. As a result, the access policy A, consisting of
both confined and descriptive attributes, will convert to an
access tree 7 as shown in Figure 2.
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Figure 2: Top level of an AAuth access tree
3.4 Modified CP-ABE

Bethecour et al.[1] proposed a CP-ABE construction based
on a bilinear map e : G; Xx G1 — Go, a Linear Secret-Sharing
(LSS) scheme for access-tree construction, and a hash func-
tion H : {0,1}* — G1 that maps any attribute binary-string
to a random element in G;. For adopting their scheme in
our distributed scheme, we modify the original scheme in
the following five algorithms:

Setup(k). According to a security parameter k, the algo-
rithm chooses a bilinear map e : G1 X G; — Gg of prime
order p with generator g of group G; and a hash function
H :{0,1}* — G;. The authorizer chooses a random expo-
nent § for a Master Secret Key M SK = () and publishes
a Master Public Key MPK = (Gi,9,h = ¢°,f = ¢*/P).
Meanwhile, each owner chooses a random exponent « for an
Owner Secret Key OSK = (¢“) and publishes an Owner
Public Key OPK = (e(g,¢9)®) in the user-directory of the
authorizer.

Encrypt(MPK,OPK,m, ). This algorithm encrypts a mes-
sage m under the access tree 7. An owner first chooses a



random value s € Zjp, then constructs an access tree 7 ac-
cording to qr(0) = s and an access policy A. Let Y be the
set of leaf nodes in 7. Then a ciphertext CT is computed by

CT = (T,C’ =m-e(g,9)*,C = h°,
Vy ey :C, = g™, C, = Hatt(y))™"?).

KeyGen(MSK,OSK,w). The algorithm will take as input
a set w of attributes. The authorizer chooses a random value
r € Zy and random values r; € Z, for each confined attribute
¢ € w'; an authority chooses random values r; € Z, for
each descriptive attribute j € w”; and an owner chooses a
random value a. Let w = w’ Uw” denote the attribute set
and k € w denote each attribute. With an ElGamal-like
mask, the authority, the authority, and the owner jointly
compute a private key SK for a user without revealing their
own private keys to each other as follows:

SK = (D =g "/ vk ew : Dy =g  H(k)™, D} = g"™).

Delegate(SK,®). The algorithm takes as input a secret key
S K, which is for an attribute set w and another attribute
set @ O w. The algorithm first chooses a random valugj
and {f; |Vl € @}. Then it creates a new private key SK
for an attribute set @ as

SK=(D=D-fTVle®: D, =Dg"-H(I)™, D, = Dj-g").

Decrypt(CT, SK). This algorithm is a recursive algorithm
over the access tree 7 for a ciphertext CT. Let DecryptN ode
(CT, SK, x) denotes a node algorithm, which takes as input
a ciphertext C'T, a private key SK, and a node z in 7. From
the node algorithm, Decrypt(CT, SK) can be computed by
calling the node algorithm from the root node R of the access
tree 7. If the access tree 7 is satisfied by w, then we have

A = DecryptNode(CT,SK,R) = e(g,g)qu(O) =e(g,9)""°

by recursive computing and interpolation. Now the decryp-
tion can be computed by

Decrypt(CT, SK) = C/(e(C, D)/A)
= C/(e(h®, g /P) [e(g, 9)**) = m.

3.5 Meta-data

AAuth maintains meta-data in a user-directory and file-
directory hosted by an authorizer. A user-directory con-
sists of the owner lists of which IDs and credentials can be
maintained by a local database or an external identity man-
agement center, e.g., LDAP, Active Directory, or OpenlD.
A file-directory is a repository that an authorizer uses to
maintain the last authorized time slot, last share ¢rs(0) of
TIMESLOT node, and granularity in each file, information
used for time slot synchronization (Subsection 4.7).

3.6 Archive file

Although we can directly use an ABE scheme to encrypt
protected data, AAuth separates encryption into two levels:
header and data. This separation can improve efficiency be-
cause 1) asymmetric-key encryption itself is not as efficient
as symmetric-key encryption, 2) our policy change and time
slot synchronization do not necessitate data re-encryption,
so it can be delayed until the data is changed. To this end,
we encapsulate protected data in an archive file consisting

of a header encrypted with an ABE key and the protected
data encrypted with a symmetric key encryption.

(Archive) = {(Header)}apr || {(Data)}kE ||
(A) || (IntegTag),

Next, we define the parameters in a header as follows:

(Header) =(FileDesc) || (EncryMeth) || (IntegMeth) ||
(KE) | (KV) | (A)

(FileDesc): the description of protected-file content.

(EncryMeth): a symmetric-key algorithm is used to en-
crypt protected data, such as AES-128, AES-192, RSA-
1024, RSA-2048, etc..

(IntegMeth): a set of algorithms is used to generate an
integrity tag, such as RSA-MD5, RSA-SHA1, DSA-
MD5, DSA-SHAL, etc..

KFE): a symmetric key is used to encrypt protected data.

KV): an asymmetric key is used to verify an integrity tag.

(

(

(A): an access policy in plaintext form.

(IntegTag): an integrity tag generated from clear (Header)
and encrypted data.

Note: the notation introduced in this section and shown in
Table 1 is used throughout the paper. In addition to all com-
ponents in this section, our scheme requires procedures and
protocols described in the next section to provide security
in untrusted clouds.

Table 1: Notation used in our scheme explanation

Notation Description
MPK,MSK  System Public and Private keys of an authorizer
OPK,OSK System Public and Private keys of owners
Atty, PK, Attribute z, User public key for PK,
SK User private key consisting of two parts: common
D and {partl Dy, part2 D; } for each Atty
D;, D; Partl and part2 key components for confined Att;
Dj, D; Partl and part2 key components for descriptive Attj
ﬁi, ﬁj The partial partl of confined and descriptive
key components D;, D;
{U}x The ciphertext of a string U encrypted with X'’s
public key
[U]x A string U attached with digital signature over a

string U generated with X'’s private key

4. ABE-BASED AUTHORIZATION (AAUTH)
SCHEME

A Auth mainly requires three off-line procedures (i.e., setup,
file encapsulation, and file decapsulation) and four on-line
protocols (i.e., service request, token request, file access, and
time slot synchronization). Optionally, AAuth can provide
key delegation, policy change, and data update. This section
explains these procedures and protocols.

4.1 Setup

Before AAuth starts to provide inter-operations, an au-
thorizer and owners must initialize the system parameters
in Procedure 1.

Procedure 1. Setup Phase
1. An authorizer chooses a security parameter k£ and runs
the CP-ABE algorithm Setup(k) that outputs a bilin-
ear group Gi,G2, a bilinear map e, a generator g of
G1, and a hash function H. All outputs in this step
are published in a public server.



2. The authorizer chooses a random value 8 € Z, and
keeps it secretly, then generates a master public-key
MPK = (G1,g,h = ¢°, f = ¢*/?) and publishes it in
a public server.

3. Each owner contributes to key generation by randomly
selecting a € Z,,, generates an owner public-key OPK =
e(g,9)® that is published in a user-directory of the au-
thorizer (not really published), then keeps an owner
private-key OSK = g“ secretly.

Our explanation for the scheme is based on the following
example from the OAuth standard:

Example 1. Jane (an owner) has recently uploaded some
private photos (protected resources) to her sharing site ‘pho-
tos.com’ (a server). She would like to use the ‘printer.com’
website (a consumer) that is certified by a trust authority
(authority.org), to print her photos. Jane does not have a
public-key certificate and does not wish to share her identity
and credentials with ‘print.com’. However, she has regis-
tered with a trusted mail provider (mail.net) that also pro-
vides OAuth services for its subscribers.

4.2 File Encapsulation

Before uploading files to a cloud server, an owner encrypts
and encapsulates data files into archives file by using Proce-
dure 2.

Procedure 2. File encapsulation phase

1. Define an access policy A from both confined and de-
scriptive attributes as follows:

# Confined attributes
[FILE-LOC=http://photos.com/2010/brunce/pic-1]
AND [OWNER=Jane@photos.net] AND
AND [TIMESLOT=2011/06/27/13/**] AND
AND # Descriptive attributes
[(OWNERe@mail .net=Jane@mail.net) OR
[ (NAME@authority.org=printer.com) AND
(SERVICE@authority.org = print) AND
(LOCAT@authority.org = canada) OR
(TRUST-LEV@authority.org = 3)1].

Then convert A to an access tree T by using the algo-
rithm in Subsection 3.3.

2. Randomly choose an encryption key K F, and a gen-
erate signature key K.S and verification key KV, then
define all parameters in the header H according to the
format in Subsection 3.6.

3. Encrypt a data file with the key K E, and generate an
integrity tag from the encrypted data-file and the clear
header with the key KS.

4. Encrypt the header H by choosing a random value s
then using the CP-ABE algorithm Encrypt(MSK,m, 1)
to compute a ciphertext C'T.

5. Construct an archive file from the encrypted header
and encrypted data file, the access policy, and the in-
tegrity tag in the format described in Subsection 3.6.
Then the owner stores the archive file in the cloud
server using a regular API.

Note that we compute an integrity tag from an unencrypted
header to avoid the effect of time slot synchronization (see
Subsection 4.7). We have now described how to create and
store ciphertext; next we show how to obtain an ABE token
and how to retrieve and decrypt the ciphertext.

[SEC-CLASS=3]
[PERMIS=r]

4.3 Service Request

In this scenario, owners first ask consumers for services
that require the owners’ data. Before a consumer can access
data, it must ask an authorizer for ABE-tokens issued on
behalf of owners. Then the consumer uses a private key in a
token to prove the authorization by performing a challenge-
response protocol with a cloud server. If the verification
succeeds, the server will provide the archive file according to
the token. So our scheme starts from an owner requesting a
service from a consumer, e.g., to print photos, that require
the owner’s data files, as described in Protocol 1 and shown
in Figure 3. Note that owners registered with an authorizer
and consumers registered with an authority are beyond the
scope of this work.

Protocol 1. Service request phase

1. First an owner sends a commend REQ-P RT to request
a printing service from the consumer ‘printer.com’.

2. Since the service requires the owner’s data, the con-
sumer sends a server a file location with a command
REQ-POL(FileLoc) to request the required file’s ac-
cess policy from the server ‘photos.com’.

3. The server extracts the access policy ‘A’ from the archive
file and signs A. Then the signed access-policy [A]s is
replied to the consumer.

4. To initiate a token request, the consumer sends the
owner an HTTPS-redirect command RED to redirect
the owner’s user-agent to an authorization page (https://
authorizer.net/authorize) on an authorizer. To this
end, the consumer ID and a redirection URI (https://
printer.com/ready) signed by the consumer received
earlier are included in the command as RED([I D¢,
RED-URI|c, [A]s).

(@] O
T REQ.PRT
2. REQ-POL
3.[A]ls
4. RED

Figure 3: The message flow of protocol 1: service
request

4.4 Token Request

Once an owner’s user-agent is redirected to an authorizer,
the authorizer first verifies the owner’s ID and credentials.
If the authentication succeeds, the owner and authorizer co-
operate to issue an ABE-token for the consumer as pictured
in Figure 4 and shown in Protocol 2.

Protocol 2. Token request phase

1. From the redirect command, an owner’s browser will
pass [IDc, RED-URI|c, [A]s to an authorizer.

2. The authorizer thus uses an HTTP form page to au-
thenticate the owner and receive the owner’s decision.

3. The owner sends her ID and credentials to authen-
ticate herself to the authorize, then defines confined
attributes that she allows and sends these to the au-
thorizer.

4. If the authentication succeeds, the authorizer gener-
ates an authorization code Autz-code (a nonce) and
sends the authority a command REQ-DES1
(ID¢, RED-URI, Authz-Code) to request descriptive
components.



5. The authority retrieves the consumer’s attributes, then

generates and signs the partial part-1 [{D;} = {H(j)"7 }] aa

of descriptive components, and replies it to the autho-
rizer. The part-2 {D}} = {¢'7} is directly sent to
the consumer in the file access protocol (see Subsec-
tion 4.5).

6. The authorizer generates the partial part-1 {D;} =
{H(#)"} and part-2 {D;} = {g"} according to the
owner’s decision, and randomly selects r € Z,. Then
the part-1 and the part-2 signed by the authorizer, g",
and the descriptive part-1 {ﬁ]} received earlier are
sent to the owner.

7. The owner verifies whether the confined components
are associated with the attributes by computing bilin-
ear pairing e(H (i)™, g) L e(g", H(i)). If the verifi-
cation succeeds, the owner randomly chooses a, com-
putes ¢“T"* from a, ¢", and her OSK = g%, then
replies to the authorizer with the result g**" .

8. Now the authorizer is ready to generate the common
part D from the MSK 8 and g®*" received earlier. In
this cooperation, by an ElGamal-like mask, the autho-
rizer only knows ¢(**"*/# and the owner only knows

"®  The authorizer encrypts the common part D =
g(@t79)/8 and the authorization code Authz-code with
the consumer’s public key and signed with the autho-
rizer’s private key, before sending the owner a redirect

command RED([{g®*"/? Authz-Code}c]aa) to redi-

rect the user-agent back to the consumer at the redi-
rection URI endpoint.

9. The owner binds both the partial part-1 {D;}, {D;} of
confined and descriptive components by multiplying
them with ¢"* and sends all keys {D; = ¢g"*H (i)™},
{9} az, {D; =g¢"*H(j)"} to the consumer.

10. The consumer sends the authority a command
REQ-DES2(ID¢, RED-URI, Authz-Code) to authen-
ticate itself and to request the descriptive part-2 .

11. If the authentication succeeds, the authority will re-
ply to the consumer with the part-2 {D} = ¢"7} of
descriptive components.

Now the consumer occupies an ABE token and is ready to
access data files in the next protocol.

4.5 File Access

After a consumer obtains an ABE token, the consumer
must prove private-key possession by performing a challenge-
response with a cloud server, as shown in Figure 5 and de-
scribed in Protocol 3.

Protocol 3. File access phase

1. First a consumer sends a server a command REQ-FILE
(FileLoc) that includes a file location to request a chal-
lenge from the server.

2. The server generates a challenge value chall = Encrypt
(MPK,nonce, A\ Attrs) from a nonce encrypted us-
ing CP-ABE encryption with the access policy, exclud-
ing the time slot attribute, and sends it to the con-
sumer.

3. Now the consumer has a complete ABE private-key
that satisfies the access policy and so can generate a re-
sponse Resp = Decrypt(Chall, SK) by using the ABE
decryption algorithm and replies to the server with the
response Resp.

4. The server verifies the challenge-response by Resp <
nonce. If it succeeds, the server replies to the consumer
with the archive-file Arcvive.

Now the consumer has both the archive file and the ABE
private-key, so the next step is data verification and decryp-

tion of an archive file.

Server S Consumer C

1.REQ-FILE
2. Chall
3. Resp
4. Archive

Figure 5: The message flow of protocol 3: file access

4.6 File Decapsulation

Before file decryption, a consumer must verify the in-
tegrity of the archive file. Thus, a consumer performs de-
capsulation of an archive file as in Procedure 3.
Procedure 3. File decapsulation phase

1. To extract all parameters from the header, the con-
sumer decrypts the header by using the CP-ABE al-
gorithm Decrypt(CT, SK).

2. The data integrity of the decrypted header and en-
crypted data must be checked by the algorithm and
key, which are defined in IntegMeth and KV. Then
the consumer moves to the next step if the integrity is
valid.

3. The F' Desc and A parameters are used to check whether
the archive file is the correct one.

4. The encrypted data is decrypted by the algorithm and
key, which are defined in CrypMeth and KE.

Using all the above procedures, the consumer can access the
plaintext of a data file. In addition, the consumer can verify
the integrity and correctness of the data. In the remaining
subsection, we present other procedures that facilitate our
scheme.

4.7 Time slot Synchronization

In AAuth, the access permission in each time slot is granted
by matching the key component D;s = g" H(ts)™** in SK to
the ciphertext component H (ts)?7S() in the access tree (see
Subsection 3.3). Hence, AAuth controls token lifetime by
defining the key component(s) of the time-slot attribute in
a token, and automatically re-encrypting the header of a file
with the current time slot attribute. As a result, a consumer
can access a file only in the time slot(s) defined in the to-
ken. To this end, an owner (encrypter) must send the share
grs(0) of the time slot attribute to an authorizer when per-
forming file encapsulation. For each time slot, the authorizer
maintains the last time-slot share qrs(0) of each file in its
file directory in order to compute two ciphertext components
Cy,C,, and two update values h® e(g,g)*%. These compo-
nents and values are sent to a cloud server to update cipher-
text components and re-mask the header. Thus, the previ-
ous mask e(g, g)*° which other consumers (decrypters) have
already occupied will be disabled. Note that re-masking
header does not affect integrity tags because the tags are
computed from the unencrypted headers. Updating cipher-
text components and re-masking headers must be performed
by cooperation between an authorizer and a server in Pro-
tocol 4 in real-time.

Protocol 4. Time slot synchronization phase
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Figure 4: The message flow of protocol 2: token request

1. In each time slot ¢, an authorizer chooses a new random
value 5(t), computes a new share grs(0,t) = qrs(0,t—
1) 4+ 5(¢t) of a TIMESLOT node, then saves the new
share as the last share in the file directory.

2. New ciphertext components for a new time slot can be
computed by Crs(t) = g?TsOY Chg(t) =
H(Attrs(t))i7sOY  where Attrs(t) is the string of the
t-th time slot.

3. Two update values h*® and e(g, g)**® are computed
from MPK = ¢?, OPK = e(g,9)“.

4. Then the ciphertext components and update values are
sent to a server.

5. The server replaces two ciphertext components Crs, Chg

with the received components according to the current
time slot.

6. The server also updates the value C(t) = C(t — 1) -
RE®) = R3¢+ and re-masks the header C(t) =
Ct —1) - e(g,9)"* = m - e(g,9)* DT in a
ciphertext.

The above procedure obviously retains the consistency be-
tween the TIMESLOT share in the access tree and the se-
cret valve masking the header. That is, in each time slot
t, its share ¢rs(0,t) can be combined with the other shares
to construct the corresponding secret value s(t). This fact
arises because the root node in our access tree is an AND
gate, i.e., (n,n) threshold gate, which causes s = qrr(0) +
gow (0) +¢sc(0) +qrn (0) +¢rs(0) +gpa(0) (see Figure 2).
Then the protocol adds two sides of the equation with a new
random value §(t). Note that the TIMESLOT attribute in
a header and tail is a time stamp of when the protected
file was encapsulated, not the time slot that encrypted the
header.

Since an authorizer participates in token issues, it knows
which time slots are authorized for each file. With this
knowledge, the authorizer will not continue synchronization
if no other authorization occurs. For example, if
TIMESLOT=2011|06|27|13]** and TIMESLOT=
2011|06|27|14|** are authorized, then only the synchroniza-
tion data, i.e., ciphertext components and update values of
time slot 2011]06|27|13]**, 2011|06|27|14|**, and
2011]06|27|15/** can be sent out. The authorizer can also
deliver multiple time slots simultaneously by combining the
components and values of all time-slots into one message
sent to a cloud server. The cloud server can also reduce
computing cost by caching the synchronization data received

from the authorizer until file access occurs. From the syn-
chronization data in the cache, the server can aggregate up-
date values by multiplying all update values and select the
last received components for time slot synchronization. Con-
sequently, both the authorizer and a cloud server can opti-
mize both computation and communication cost by lever-
aging two cryptographic primitives: proxy re-encryption [2]
and lazy re-encryption [7].

4.8 Key Delegation

A consumer may ask another provider to process a data
file for which authorization already exists. For example, the
web site ‘printer.example.com’ has already obtained a token
with two time slots and two files, e.g.,

FILE-LOC=http://photos.com/2010/brunce/pic-1,
FILE-LOC=http://photos.com/2010/brunce/pic-2,
SEC-CLASS=3, PERMIS=r,
TIMESLOT=2011$1$06$|$278|$13$ | $xx*,
TIMESLOT=2011$|$06$|$27$|$14$ | $xx.

Using the key delegate algorithm of CP-ABE, the web site
‘printer.com’ can ask the website ‘poster.com’ to print a
poster for a file ‘pic-1’ in the time slot ‘2011]|06]|27|13|**’
by generating a new private-key set associated with

FILE-LOC=http://photos.com/2010/brunce/pic-1,
SEC-CLASS=3, PERMIS=r,
TIMESLOT=2011$1$06%|$278 | $13$ | $xx.

4.9 Policy Changing

Regardless of confined or descriptive attributes, an archive
file header must be re-encrypted to change the access pol-
icy. In a naive process, an owner rebuilds a new access pol-
icy, re-encrypts a header, recomputes an integrity tag, then
asks a server to replace both the header and the tail in the
archive file. As an advantage, protected data need not be
re-encrypted.

4.10 Data Updating

Updating data is straightforward. An owner re-encrypts
protected data with the encryption key KFE in the header
of an archive file, recomputes an integrity tag, then asks a
server to replace the encrypted data and the integrity tag.
If both the data and access policy are changed, an owner
repeats all steps to rebuilt a new archive file and stores it in a
server. However, we can obviously provide write permission
to consumers by separating headers into read and write. The



read part is built as usual, while the write part includes a
signing key and is encrypted by CP-ABE encryption with a
write policy.

S. SECURITY ANALYSIS

We analyze our scheme from the perspectives of internal
and external adversaries. For internal adversaries, all enti-
ties in the system are considered to be semi-trusted, in the
sense that they can exploit threats to subvert authorization
control and data security, but still honestly follow the proto-
col. External adversaries may not run the protocol but try
to launch general attacks to violate data security. To ana-
lyze the AAuth security from internal attacks, we consider
the following actions.

Action of Cloud Server: We consider that cloud servers
host sensitive information and are curious about the data or
may reveal information to unauthorized consumers. Because
the data is stored in ciphertext with an integrity tag, neither
cloud servers nor unauthorized consumers can decrypt the
data without decryption keys, and they cannot fabricate or
modify the data without signature keys. Thus, data confi-
dentiality and integrity are secure even if the cloud server is
compromised. Our authorization is performed in an end-to-
end manner, an access policy is bundled into a ciphertext by
an owner; a consumer must then use a key satisfied by the
access policy to decrypt. Hence, the access policy is enforced
in the decryption algorithm, not by cloud servers, thereby
achieving data confidentiality and integrity.

Action of an Authorizer: In the original Kerberos and
OAuth, as well as in cloud servers, an authorizer is another
dominating entity since it can issue tokens to anyone without
owners’ permission. This situation is rational if an autho-
rizer is on an owner’s premises, not in a public cloud. Our
scheme enables secure authorization in public clouds by al-
lowing owners to contribute to token generation and assign
confined attributes. Thus, an authorizer alone cannot gen-
erate the common part of SK (D = g(®*"®/8) for unautho-
rized consumers because the authorizer has no knowledge
about the owner’s SK (OSK = ¢%). In addition, an autho-
rizer cannot arbitrarily generate an ABE token because a
confined SK proposed by an owner can be verified by the
owner.

Action of Owners: Although an owner id is unlikely to
counterfeit the tokens she proposes, she may ask an author-
ity to generate a token with ‘OWNER’ attributed in other
people’s name to access files not belonging to him/her. In
other words, the owner pretends to be someone else. In this
case, an authorizer can easily detect this misbehavior since
the owner must be authenticated to an authorizer. Also an
owner may fabricate the part-1 of confined and descriptive
SK (H ()™, H(j)™) and combine it with her combining term
g"*. In our scheme, the part-2 of confined SK ¢ is signed
by an authorizer, and an authority directly sends the part-2
of confined SK ¢'7 to a consumer. Thus, the owner must
compute r;,7; from g™, g"7 respectively. This problem can
be reduced to a Discrete Logarithm Problem (DLP), and so
fabrication is unsuccessful.

Action of Consumers: Consumers may modify or fab-
ricate their own tokens, for example, they may change the
time slot components in their own tokens. Hence, consumers
must try to select the confined-SK component ¢"* H (i)™, g

for the time slot attribute that can satisfy the policy as the
original key component. This problem can be reduced to
a Decisional Bilinear Diffie-Hellman (BDH), thereby failing
on modification. Our scheme can also resist collusion at-
tacks as the original CP-ABE scheme can because in each
authorization, an authority and an owner randomly choose
new random values (r,a respectively) to combine confined
SKs and descriptive SKs. Therefore, one consumer cannot
combine her keys to create more powerful keys, and multi-
ple consumers cannot collude in combining difference keys
to create a new key.

Resistance to Other Attacks In addition, we consider
general attacks from external adversaries, such as eavesdrop-
ping, Man-In-The-Middle (MITM), and Denial-of-Service
(DoS), etc..

Eavesdropping and active attacks. Data files are encrypted
and signed by owners, then verified and decrypted by con-
sumers thereby performing all cryptographic operations in
end-to-end fashion. Therefore, eavesdropping on data files
cannot disclose data confidentiality, and active attacks can-
not corrupt data integrity. Since the header parameters can
be verified from the tag, these parameters can be trusted to
check the properties, i.e., owner, location, and security class
of the data file to verify the correctness of data properties.

MITM attacks. All service providers and authorities in the
system must register with CA for public-key certificates.
Hence, the communication in our scheme can be protected
by SSL/TLS channels. Therefore, our scheme can resist
MITM attacks. Moreover, the part-2 of confined and de-
scriptive SK (Dj, D;) originates from an authorizer and au-
thority(s) respectively. These two parts are sent over differ-
ent SSL/TLS channels and combined by a consumer, so an
adversary must intercept two SSL/TLS sessions at the same
time to obtain a complete SK; this situation rarely happens
in practice.

Off-line attacks. Our authorization is divided into two levels:
token request and file access. In the token request, a con-
sumer must get permission from an owner and qualify with
respect to the policy in order to get a satisfactory ABE-
token. The consumer then uses the ABE-token to generate
a response value for file access. To obtain data files from a
cloud server, a consumer must prove the authorization by
sending a response value satisfying the challenge value. Ad-
versaries thus cannot obtain ciphertext if they have no au-
thorization, so our scheme can protect encrypted data from
off-line attacks.

Credential protection. As in OAuth, an owner can grant
assess permission to a consumer, even though the owner
does not expose her credentials, e.g., passwords, certificates,
information cards, etc., to the consumer.

Certified entities. An authority is a certifier who describes
consumers according to their characteristics by issuing de-
scriptive attributes for eligible consumers. Thus, consumers
cannot declare forged characteristics to obtain protected data.

PRE primitive. In time slot re-encryption, although a mas-
ter authority must send two ciphertext components Crg, Chg
and two update values h®, e(g,g)ag to a server, all of them
are new random values used to replace or multiply (mask)
the existing values, so the server cannot gain any advan-
tages to break cryptographic functions. Note that our model
is still based on the same assumption that a server can be



trusted to do data operations, i.e., storing and multiplica-
tion.

6. PERFORMANCE EVALUATION AND SIM-

ULATIONS

In this section, we evaluate the cost of three off-line pro-
cedures (i.e., setup, file encapsulation, and file decapusula-
tion) and four on-line protocols (i.e., service request, token
request, file access, and time slot synchronization) in terms
of communication and computation cost. Then we show the
performance by simulations.

6.1 Evaluation

Setup procedures. This procedure can be divided into two
parts: First an authorizer defines underlying bilinear groups
and a hash function, then computes MSK and MPK with
two exponentiations on G1. The second part is individually
performed by each owner who computes OSK and OPK with
one exponentiation on Gy.

File encapsulation. An owner performs this procedure
before uploading files to cloud servers. The computation
cost in this procedure results from a symmetric-key encryp-
tion for data files, a signature, and a CP-ABE encryption
for the header. The first encryption depends on the size of
data files, and the signature load is fixed by the signature
algorithm, while the CP-ABE encryption causes 2|L|+ 2 ex-
ponentiations on G1, where L denotes a set of leaf nodes in
an access tree.

File decapsulation. After obtaining an archive file, a con-
sumer decrypts the header with CP-ABE, verifies a signa-
ture, and decrypts the data file. The CP-ABE decryption
cost is dominated by 2|I () L| + 1 pairing operations, where
I denotes the number of attributes in the CP-ABE SK. The
verification load is also fixed by the verify algorithm. The
symmetric-key decryption load also depends on the size of
the data file.

Next we analyze on-line protocols in both cryptographic
cost and message rounds when compared to the OAtuh stan-
dard, as follows.

Service request. This protocol requires two more mes-
sages between consumers and servers, and one signing oper-
ation at a server.

Token request. The computation of CP-ABE key gener-
ation causes 2|I| + 1 exponentiations. In our scheme, this
computing cost is distributed to an authorizer and an au-
thority according to the number of confined and descriptive
SKs. Also there are three signings (two at an authorizer, one
at an authority) and three verifications (one at an owner, two
at a consumer). In addition, an owner computes six pairing
operations (based on our construction) to verify confined at-
tributes he/she proposes. For message rounds, this protocol
requires six more messages: two authorizer-authority mes-
sages, one owner-authorizer message, one consumer-owner
message, and two consumer-authority messages.

File access. Unlike OAuth, our protocol has no extended
message. However, for a challenge message, the crypto-
graphic cost at a server is CP-ABE encryption (2|L| + 2
exponentiations); and for a response message, the computa-
tion cost at a consumer is CP-ABE decryption (2|1 () L|+1
pairing operations).

Time slot synchronization. An authorizer updates the
time slot of each file until the last authorized time slot (on-
demand), and a server can delay re-encryption until the file
is requested (lazy re-encryption). Its computation and com-
munication cost are four exponentiations at an authorizer,
two writes and two multiplications at a server, and only one
message between them. In comparison with CP-ABE en-
cryption (2|L| 4+ 2 exponentiations), the cost of time slot
re-encryption is much lighter.

6.2 Simulations

Based on the number of attributes, leaf nodes, and our
construction (six confined attributes), We summarize the
computation cost of on-line protocols of each entity for an
ABE-token in Table 2.

Table 2: On-line cryptographic cost

Signing | Verify | Exponent Paring
Owner 1 1 5
Consumer 2 2(0INL)+1
Authorizer 2 11
Authority 1 2|1 — 5]
Server 1 2|L|+2

Table 2 shows that the number of users and attribute uni-
verse size do not affect computation cost per token. Most
computation cost is expended by a consumer (web-application);
some cost is expended by a cloud server and an authority.
An owner and a authorizer pay a fixed cost; other entities’
costs depend on the number of attributes in a token or pol-
icy.

Our protocol trades eight additional-messages for security
advantages: user-centric property, 2-level authorization, and
end-to-end encryption. To evaluate this trade off, we com-
pare our scheme’s communication cost to the original stan-
dard (OAuth)’s, without the cryptographic cost. To this
end, we built the prototype of AAuth and OAuth protocols
on the framework of OMNet++ network simulation 4.1. The
simulation conditions are defined as follows: the cloud net-
work has 400 packets/second bandwidth; each owner con-
tinuously requests services in exponential distribution; each
service request transfers three 256 KB-files as a dummy load;
the number of owners (users) ranges between 100 to 700.
Figure 6 shows the latency time from the protocol and the
dummy load.

Figure 6 shows the latency time of both OAuth and A Auth
and the latency time differences between both. Both la-
tency time and difference increase as the number of owners
increases from 100 to 700 nodes. The former observation
is a general behavior of a limited-bandwidth network. The
latter exhibits that the difference has no significance if the
number of owners is less than 300 nodes, and the differ-
ence increases from 5 to 12 seconds after 300 nodes. The
increase occurs because we limit the network bandwidth to
400 packets/second in our simulation model. Compared to
OAuth, AAuth strikes an acceptable balance between in-
creased network cost and improved security. Moreover, in
real situations, the network among cloud servers should have
no limitations.

7. RELATED WORK

The taxonomy of cloud computing services goes by the

acronym ‘SPI’, which stands for Software-as-a-Service, Platform-

as-a-Service, and Infrastructure-as-a-service. Recently, many
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Figure 6: Latency time of OAuth and AAuth

new cloud services have emerged; the most primitive and
significant one is Storage-as-a Service. Many researcher are
exploring this research area, starting from cryptographic
storage, access control, to cloud storage. In 2003, Kalla-
halla et al. proposed Plutus, a cryptographic storage sys-
tem. This secure file system exploits cryptographic and
key management in a decentralized manner in which all op-
erations are performed by clients; the server incurs very
little cryptographic overhead. This approach contradicts
cloud-computing behavior in which servers have unlimited
resources but clients may be restricted devices. Thus, clients
may not have enough power for the high complexity of key
management in fine-grained access control. In 2009, Bow-
ers et al. [3] proposed a framework for a Proof of Retriev-
ability (POR) system that focuses on archival or backup
files in cloud storage. Later, they also proposed another
POR work [4] that was implemented by a distributed cryp-
tographic scheme and launched on the multi-server of a dis-
tributed file system. Wang et al. [11] proposed cryptographic-
based access control for owner-write-users-read applications,
which encrypts every data block of cloud storage and adopts
a key derivation method to reduce the number of keys. Yun
et al. [13] proposed a cryptographic network file system based
on MAC tree construction and universal-hash-based-state-
full MAC that can guarantee the data confidentiality and
integrity of files. In 2010, Yu et al. [12] proposed fine-
grained and scalable access control in cloud computing that
exploits KP-ABE to reduce complexity in key management
and distribution. They also use proxy re-encryption to off-
load cryptographic operations to cloud servers, and lazy
re-encryption to reduce cryptographic cost on servers. In
2011, Zarandioon et al. [14] proposed K2C, a scalable ABE-
based access hierarchy that can couple access control with
the folder structure of file systems. By combining KP-ABC
and a key-updating scheme, K2C users can use new keys
to decrypt data encrypted with old keys and so reduce re-
encrypting cost on servers when access hierarchies update
keys. The combination of KP-ABE and a signature scheme
allows users to prove that others own keys that satisfy the
policy in order to provide signing and verification in K2C.
The researchers first focused on secure and authentic dis-
tributed file systems for outsourcing storage. Next, they pro-
posed key management systems to deploy in public clouds,
while data is encrypted and signed with keys distributed in
the systems, then stored in cloud storage. All works achieve
their goals with the assumption that users have public-key
certificates. In contrast, we extend the OAuth standard by
using ABE-tokens to establish an abstract layer that sep-
arates authentication from authorization for no restriction
to any user credentials and delegates both authentication
and authorization from owners to consumers for end-to-end
approaches. AAuth puts no key management systems in

Latency (Second)

CSPs, rather it constructs ABE-tokens from the cooperation
of existing cloud entities and owners for a user-centric ap-
proach and distribution of key knowledge to minimize risks
in semi-trusted cloud environments. Thus, our scheme is
more abstract and generic than others.

8. CONCLUSIONS

This paper proposes a new authorization scheme that com-
bats untrusted cloud servers by adopting CA-ABE, ElGamal-
like masks, proxy re-encryption, and lazy re-encryption to
achieve user-centric and end-to-end security. The main ben-
efit is that it allows users to securely share resources across
providers in semi-trusted cloud environments. To achieve
this end, our scheme provides 1) an ABE-token for each au-
thorization grant, 2) a user-centric system in which an owner
controls the authorization system to protect her resources, 3)
an end-to-end cryptographic function and an authorization
from an owner to a consumer, 4) a light-weight encryption
for time slot synchronization. Performance evaluation re-
sults show that our scheme has no significant computation
cost for users, and AAuth’s cost is independent of the sys-
tem’s number of users. Simulation results show an accept-
able cost increase compensated for by better security than
the current OAuth. Security analysis shows that our mod-
ified CP-ABE is as secure as the original scheme, and our
protocols can resist both internal and external adversaries.
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