
A Verification Platform for SDN-Enabled
Applications

Richard Skowyra Andrei Lapets Azer Bestavros Assaf Kfoury
rskowyra@bu.edu lapets@bu.edu best@bu.edu kfoury@bu.edu

Computer Science Department
Boston University

Abstract—Recent work on integration of SDNs with
application-layer systems like Hadoop has created a class of sys-
tem, SDN-Enabled Applications, which implement application-
specific functionality on the network layer by exposing network
monitoring and control semantics to application developers.
This requires domain-specific knowledge to correctly reason
about network behavior and properties, as the SDN is now
tightly coupled to the larger system. Existing tools for SDN
verification and analysis are insufficiently expressive to capture
this composition of network and domain models. Unfortunately,
it is exactly this kind of automated reasoning and verification
that is necessary to develop robust SDN-enabled applications for
real-world systems.

In this paper, we present ongoing work on Verificare, a
verification platform being built to enable formal verification
of SDNs as components of a larger domain-specific system. SLA,
safety, and security requirements can selected from a variety
of formal libraries and automatically verified using a variety of
off-the-shelf tools. This approach not only extends the flexibility
of existing SDN verification systems, but can actually provide
more fine-grained analysis of possible network states due to extra
information supplied by the domain model.

I. INTRODUCTION

The emerging field of Software-Defined Networking (SDN)
has enabled programmatic, adaptive networks to be deployed
across a variety of application domains. Google has de-
ployed inter-datacenter traffic shaping and engineering net-
works which use the OpenFlow SDN architecture, and ongoing
research efforts have contributed to its use in datacenter net-
working, Hadoop-based High-Performance Computing [17],
and high-availability MTCP networks [19].Despite this breadth
of applications that SDNs have serviced, they have largely
remained constrained to semi-automated management and
control of the network layer.

Yet many of these management functions are motivated
by optimizing the performance of application-layer services
such as high-performance computing or IaaS software stacks.
This optimization is largely indirect: many SDNs control
network conditions either based on a network-centric heuristic
about how those conditions impact the application layer (e.g.
latency or loss thresholds), or by inferring future application-
layer traffic based on current network conditions. Google’s
traffic shaping system, for example, is designed to rapidly

recover from link failures in order to support loss-intolerant
applications. MicroTE [3], an OpenFlow-based datacenter
networking architecture, attempts to minimize congestion by
predicting application layer traffic via statistical inference
over network traffic matrices. While this indirect optimization
has certainly proved useful, we posit that much more fine-
grained control is possible by exposing applications to network
monitoring and control semantics directly via an API-like
interface. Some APIs of this type have in fact recently been
developed [6]. These SDN-Enabled applications implement
application-specific functionality on the network layer (e.g.
in switch routing data structures), and can reconfigure the
network with full knowledge of their behavior, resource needs,
and performance constraints.

This tighter coupling of the application and network layers
does not come without cost. The rich suite of tools which
have developed to support SDN development and analysis,
which range from network debuggers [9] to programming
languages [7], [20], [13] and model checkers [4], are in-
sufficiently expressive to reason about the composition of
the SDN with an application. The ndb tool, for example, is
a debugging system for SDNs which implements standard
debugger semantics (breakpoints, backtrace, etc.) over SDN
controllers [9]. This is useful, but if the controller exports
an API to SDN-enabled programs then significant network
control state remains outside of its diagnostic view. Similarly,
the NICE model checker is designed to check for certain
common network errors arising from, among other problems,
concurrency issues [4]. NICE uses SDN controller source code
to construct a state space of ’interesting’ packets designed to
exercise all portions of controller code. It assumes that all
controller events occur as a result of packets received from the
network switches, and has no facility for encoding out-of-band
communications like RPCs from SDN-enabled applications.

Unfortunately, these kinds of tools are exactly what develop-
ers of SDN-enabled applications need. The composed system
is complex, and automated reasoning tools are required to ver-
ify that the application meets the designer’s requirements while
not violating any network-specific requirements. Evaluation of
each component in isolation of the other does not suffice: many
of these requirements may be defined over the application (e.g.

frames per second) but are impacted by network behaviors
(e.g. latency, jitter) in complex ways.

In this paper we present ongoing work on Verificare, a
verification platform for SDN-enabled applications. Verificare
addresses the lack of expressive power in existing SDN-
related tools by providing a general component-based mod-
eling environment in which domain- and application-specific
modules can be written by a developer and composed with
pre-defined network mechanisms like OpenFlow switches and
controllers, using an API-like syntax. A library of common
requirements and assumptions is available to the user, and can
be augmented by user-specified requirements. These properties
are formally verified by existing off-the-shelf verification tools,
and counter-examples are returned as traces leading up to the
violation.

The remainder of this paper is laid out as follows. §II
provides a motivating example for the problem. §III presents
the Verificare Modeling Language (VML), and §IV discusses
how high-level models can be compiled into formal structures.
Reusable requirements are described in §V, and §VI discusses
how off-the-shelf tools can be used to verify system proper-
ties.

II. MOTIVATION AND RELATED WORK

Among networked systems, those supporting interactive
sessions or communications-bound processing are particularly
impacted by changing network conditions. These include
streaming media services, VoIP and video conferencing ses-
sions, online gaming servers, and HPC and data analytics ap-
plications like Hadoop. This sensitivity to network conditions
motivates their development as SDN-Enabled applications
which utilize a network monitoring and control API, enabling
the application itself to optimize the network for its use.

This paradigm works well as long as the application in
question is the only process manipulating the network control
plane, or the network is dedicated to servicing that particular
application. In multi-tenant environments, however, this is
rarely the case.

As a motivating example, consider a network of online gam-
ing servers deployed in a cloud setting. The quality of service
(frame rate and responsiveness, for example) experienced by
users playing the hosted game is directly impacted by network
conditions like latency and congestion. If these server appli-
cations are SDN-Enabled, they can easily distribute incoming
connections amongst themselves depending on their current
application load. Rather than relying on an application-layer
solution like a proxy, dynamically updated load balancing
rules can be directly installed in network switches in order to
transparently redirect traffic to the least-utilized server [21].

Of course, servers which are reachable from the the outside
world (as gaming servers must be) have to consider issues
of software security. A recent SDN-based defense to worms,
port scanners, and other vulnerability detection systems is
OpenFlow Random Host Mutation (OF-RHM) [12]. This mov-
ing target defense uses OpenFlow’s packet header rewriting
facility and switch-based flow rules to maintain a rapidly

mutating set of IP addresses per host, ensuring that any
network reconnaissance against a particular IP are only valid
for a short time. As an OpenFlow controller it could be easily
deployed on the gaming server network in order to reinforce
security without requiring any modifications to end-hosts.

It is unclear how these two SDN applications compose,
however. Will OF-RHM impair application-level QoS? Are
the semantics of user connection and servicing compatible
with the assumptions OF-RHM makes about incoming con-
nections?

A. Existing Approaches

The authors are aware of two ways to address these ques-
tions using existing tools. First, the suite of existing SDN
analysis and verification tools can be employed.

NICE [4] is a model checker designed specifically for
OpenFlow controllers, and can perform rapid verification with
respect to network-centric properties like the presence of
forwarding loops. While a powerful tool for reasoning about
complex network states, NICE focuses solely OpenFlow-
based SDN controllers. This makes modeling of OF-RHM
straightforward, but there is no facility for including a model
of another process interacting with the controller. Furthermore,
the set of requirements that can be checked by NICE is limited
to those which can be expressed as Python code snippets
defined over controller state. If critical system state resides
in the application instead, it is not clear how this could be
checked.

The ndb [9] debugger is equally network-centric. It provides
a gdb-like facility for setting breakpoints in SDN controller
code and allowing manual inspection of network state leading
up to an exception (anomalous packet). While useful, it
cannot capture state which it outside of the controller on the
application layer.

Mininet [16] is a network emulator which allows rapid
prototyping of SDNs. In this environment, end-hosts which
emulate realistic workloads can be deployed and measured.
SDN-Enabled applications can be translated with less difficulty
into a Mininet-like system, but Mininet suffers from the same
issue that any simulation or emulation based approach does: it
tends to capture average-case behavior and offers no guarantee
that edge-cases have been explored during its run.

A second approach is to use existing formal verification
tools like Spin [10], PRISM [15], SAL [5], or Alloy [11]. All
of these are general-purpose verification tools which perform
a form of statespace search in order to find reachable model
states that correspond to counterexamples of assertions or
requirements. They are quite expressive, in that almost any
system of communicating processes can be modeled. However,
each tool is limited to verifying requirements expressible in
specific logics (e.g. LTL, FOL, PCTL*, etc.). Since real world
systems rarely have requirements that fit nicely into a single
logical specification language, it is often necessary to write a
new version of the model for each tool needed to check system
requirements.

Component
Component

Component

VML Model

VML
Translator

Explicit-State
Model Checker

Symbolic Model
Checker

SMT Solver

…

…

Component
Library

Off-the-Shelf
Verification Engines

1

2

3

4
5

Feedback

Verification

Counterexample

Verificare

Requirement
Library

Fig. 1. Verificare Components and Workflow

B. Verificare

The Verificare system (depicted schematically in Figure
1) offers a third approach, designed to encapsulate domain-
specific knowledge and automatically compose individual
components into a complete model. Under this paradigm, an
application developer would write a model of their SDN-
enabled gaming server in VML (the tool’s modeling language)
which manipulates the network using an API exported by the
SDN controller component (Step 1 above). Concurrently, a
network administrator would create a model of the network
topology and of the modified OF-RHM OpenFlow controller.
Verificare can compose each component into a single model
of the resultant network. Important QoS and safety properties
that the application developer requires can then be either
selected from on-board, parameterized libraries of common
requirements, or defined by the developer (Step 2). Verificare
will formally verify these properties over the model (Step 3)
using a variety of existing tools (like Spin, PRISM, and Alloy),
and translate any counter-examples found by these tools back
into statements about the VML model (Step 4). These are then
output to the user (Step 5).

Verificare has three primary components, illustrated in Fig-
ure 1 and described in detail in the following sections: a simple
modeling language, VML; a library of parameterized, reusable
formal requirements which can be automatically checked over
any model built using its associated abstraction; and a series of
translators to and from off-the-shelf formal verification tools.

III. VERIFICARE MODELING LANGUAGE

The Verificare modeling language is a simple imperative
language designed to easily capture the behavior of event-
based systems composed of communicating processes. Models
written in VML have two parts: a list of component defini-
tions describing system dynamics, and a configuration which
describes the static structure of the system.

Component definitions introduce a new composable module
(which may have multiple instances) into the system. This

agent end_host:
...
loop:
select:
pkts_in_flight < 5:
pkt_out.payload=msg
q_out.put(pkt_out)
pkts_in_flight = pkts_in_flight + 1

not q_in.empty():
pkt_in = in.get()
if in.payload==’ack:
pkts_in_flight = pkts_in_flight-1

if in.payload == ’msg’:
pkt_out.payload=ack
q_out.put(pkt_out)

Fig. 2. Simple VML agent definition

module, once defined a single time, can be re-used in any
other model which includes the API methods (if any) that
the module uses. Verificare already includes definitions for
common networking primitives (e.g. queues, message-passing
networks) and SDN constructs (e.g. OpenFlow switches and
basic controllers).

Components in VML can be one of two types: agents,
active asynchronous processes which initiate component in-
teractions (e.g. clients and servers); and environments, passive
collections of state and methods which mediate interactions
between agents (e.g. queues and networks). Agents interact by
invoking API methods on a shared environment (e.g. writing
and reading a shared ‘memory’ environment). The binding
of agents to environments establishes the data- and control-
flow between system components, and is assigned during
system configuration. Note that since agents only communicate
over environments, changing the implementation of one agent
prompts no changes to other components as long as it uses
the same set of method invocations as before. Similarly,
environment implementations can be changed as long as they
export the same set of methods to agents.

As an ongoing example, Figure III presents the VML
agent definition for a simple end-host that sends packets as
long as fewer than five packets are un-acknowledged, and
acknowledges packets that it receives. Packets are sent and
received over separate queue environments, the q_in and
q_out objects. Each queue has a put and get method
that the end-host agents use to send and receive packets,
respectively. For brevity, variable declarations are omitted.

Once all components have been defined, the system config-
uration is used to specify how they compose. A configuration
consists of one cardinality constraint on components, and
zero or more formulas of first-order logic which constrain
the binding of agents to environments. Figure III is the
configuration for a simple system in which two of the end-
hosts defined above communicate with one another via shared
queue environments. In this case, the queue components used
by each end-host are constrained such that the in queue
instance of one end host will be the same queue as the out
queue of the other.

Verificare uses a SAT solver to find an static system

configuration:
for 2 end_host, 2 queue
end_host[0].q_in == end_host[1].q_out
end_host[0].q_.out == end_host[1].q_in

Fig. 3. Simple VML configuration

agent foo:
int x = [0..2]
loop:

select:
x < 2: x = x+1
x == 2:x = 0
x > 0: x = x-1

Fig. 4. Sample VML model for conversion to an LTS

state which meets all of the constraints. This allows under-
specification in cases where a single initial state isn’t important
or must only be from some class of configurations (e.g.
cycle-free single-homed networks of any topology). If no
satisfying initial state can be found, (e.g. due to error or
over-specification) Verificare informs the user and aborts the
verification run.

IV. AUTOMATIC MODEL COMPOSITION

Once all components have been defined and an initial state
has been found, Verificare compiles the system model to a
Labeled Transition System (LTS) M = (S,A, T, I), where:

• S is a set of states;
• A is a set of actions;
• T ⊆ S ×A× S is a ternary transition relation;
• I is a set of initial states.
Labeled Transition Systems are a well-supported formalism

for verification of concurrent systems and communicating
processes [8], [15], [10] with a variety of well-developed tech-
niques for composition and exploration [2]. Verificare creates a
distinct LTS for every component in the model. The state space
per component represents all possible states of local variables
and the instruction pointer for a component. Transitions denote
control flow branching or method invocation, and are labeled
with one of four composition types, discussed below.

As brief an example of translation from VML to an LTS,
consider the extremely simple VML model depicted in Figure
4. In this model, a bounded integer, x, is initialized to 0 and
then nondeterministically modified. The associated LTS, which
is generated automatically from the model code, is shown in
Figure 5. Edge labels correspond to control flow statements
and to modifications to local variable state. States correspond
to unique configurations of the component with respect to
the value of its local variables and its position in its control
flow. Once constructed, the LTS can be formally verified
with respect to a variety of logical properties, as described
in Section VI.

Once every component has been compiled to a Labeled
Transition System, it is necessary to compose these into a
single LTS which captures all valid system states, and which
can be verified with respect to a set of requirements. Recall
that VML distinguishes between active agents and passive

��
�

��� ��
�

���

���	�

��
�

���

��
�

���	���
�

����

���

�

�

�����

���
�

Fig. 5. Sample Model LTS

environments, however. Any sound composition operation
must enforce these semantics (e.g. a queue should not have
a packet unless an agent invoked put). To enforce this
constraint, Verificare computes the asymmetric product of the
asynchronous product of the environment and agents LTS, as
shown in 1.

n∏
0

(A0, ...An)�
m∏
0

(E0, ...Em) (1)

The asynchronous product M =
∏
(N0, ..Nn) of a set of

LTS is a well-known, generic (e.g. label-agnostic) composition
operator which computes the full interleaving of all possible
orderings of the component LTS transitions. It is defined as the
LTS M such that S = N0.S×...×Nn.S, I = N0.I×...×Nn.I ,
A = N0.A× ...×Nn.A, and M.T = {(xi, a, yi)|a ∈M.A ∧
∃i(0 ≤ i ≤ n),∀j(0 ≤ j ≤ n), j 6= i ⇒ xj ≡ yj}. That is,
the LTS in which each state transition represents a single state
transition in one of the component LTS.

The asymmetric product is an operator unique to Verificare.
It computes the LTS created by composing the single asyn-
chronous agent LTS A with the single asynchronous environ-
ment LTS E, such that either some agent transitions internally
(i.e control flow branching) or an agent and an environment
bound to it transition simultaneously (i.e. method invocation).
The operator makes use of composition type labels written
during compilation from VML to an LTS, which are one of
four types: L0 : φ, which denotes a logical formula acting as
a pre-condition to that transition; L1 : (id, c0, ...cn), which
denotes invocation of the method id with constant values
c0...cn; L2 : (id, φ(v0, ..., vn)), which denotes an invokable
method id with pre-condition φ that has free variables v0, ...vn;
and L3 : [v0 ⇒ c0, ..., vn ⇒ cn]φ, which denotes substitution
of the free variables v0, ..vn in φ with the constant values
c0, ...cn.

Using these composition types, the asymmetric product
M = A� E is defined as:

• M.S = A.S × E.S
• M.I = A.I × E.I
• M.A = A.A ∪ E.A ∪ sig(A.A,E.A)
• M.T = {(ahei, l, ajek)|ei ≡ ek ∧ l : L0 ∨

(∃m : L1(ah,m, aj) ∈ A.T ∧
∃n : L2(ei, n, ek) ∈ E.T ∧
match(m,n) ∧ l = sig(m,n))}

where match(L1, L2) → {true, false} compares the id
fields of the two arguments and sig(L1, L2)→ L3 consumes
an invoker and invokable type label, and returns the substitu-
tion label with all constants from the first argument substituted
into the free variables of the second. This operation constrains
environments to transition only when an agent invokes a
method in that environment, which can significantly reduce
the number of edges in the composed LTS.

V. SPECIFYING REQUIREMENTS

Once all components of a system have been defined, require-
ments to be checked can be selected. To check a requirement,
in this case, is defined as verifying that all requirements hold
(or not) over all reachable, valid system states. In order to
perform this verification automatically, requirements must be
translated to one or more formulas in an appropriate formal
logic.

Unfortunately, in most formal settings the resultant re-
quirement formula is inextricably coupled to model syntax
(e.g., local state == 3 ∧ some array[5] == true). This
is especially unfortunate for high-level properties which are
broadly applicable to a domain, such as a statement about
network forwarding loops or packet losses. Furthermore, small
changes to the same model often necessitate re-writing of
requirements (consider the above example, if the array is re-
ordered or resized). In fact we have observed certain properties
in real-world models, generally based on statements about
combinations of model elements (e.g., (p1 ∧ p2)∨ (p1 ∧ p3)∨
(p2∧p3), which require quadratic amounts of re-writing when
key model parameters change [18], [14]. This re-writing is
mechanical, but quite tedious to do manually. Needing to
re-define the same high-level property repeatedly, both over
different related models and over different versions of the same
model, also creates the possibility of errors in requirement
specification.

Ideally, the model of a system and the requirements to be
checked should be completely independent, i.e. definable in
isolation, in any order, with no knowledge of one another.
This would eliminate the troubling coupling of model and
requirement seen above and enable the re-use of requirements
across models and over different versions of the same model.

Verificare provides this independence by defining reusable
requirements over agents and environments. Since components
communicate only method invocations, component source
code can be written once and used in many other system
models. Requirements specified over this source code are
similarly portable, as models should by definition be agnostic
to the internal implementation of a component. This enables
researchers to define and check new requirements over old
models, import properties defined by others, and cleanly
partition modeling a system from verifying its requirements.

In order to maximize the utility of reusable requirements,
we are compiling libraries of pre-defined requirements and
properties for common components used in SDNs that are
already provided by Verificare, such as queues and OpenFlow
switches. Each entry in these libraries consists of a logical

formula and an English-language version of the requirement.
Users need only to select requirements of interest to have them
verified against their model. Existing requirements include
reachability, packet dropping and duplication, network black-
holes, structural and logical forwarding loops. These libraries
are in active development, however, and are being updated
regularly.

VI. VERIFICATION

Once a VML model has been compiled to a LTS and a set
of requirements has been chosen, formal verification can be
used to search for counter-examples: model states in which
requirements are not met or some failure scenario is possible.
The precise mechanism used to perform this search varies
somewhat depending on the underlying formalism used (e.g.,
automata, binary decision diagrams, or logical resolution),
but in general formal verification amounts to an algorithmic
search through a finite, bounded state space of reachable model
configurations.

This approach is lightweight compared to other formal
methods like theorem-proving and proof assistants, in that it
requires little initial work and verification is accomplished
quickly, but it sacrifices completeness due to its bounded
nature. While incomplete verification is problematic when
used to prove that a property holds in all cases, it is quite
useful at the design phase of a system in order to quickly
discard designs where a requirement demonstrably does not
hold.1

The majority of existing formal verification systems utilize
a single underlying formalism optimized for a particular
verification technique, and generally support a requirement
specification logic that is compatible with that formalism.
SPIN, for example, utilizes composed Buchi automata and
supports Linear Temporal Logic (LTL). Formulas in LTL can
be directly translated to a Buchi automaton, which can be
automatically composed with the user’s model to create a
state space for verification. Unfortunately, real-world systems
have requirements that span many domains of interest (e.g.,
safety, performance, security), and can rarely be fully specified
using a single formal language. This often requires developers
to re-implement the same model multiple times in different
modeling languages, drastically increasing the effort of using
such tools.

Verificare overcomes this limitation by the model LTS and
a subset of its requirements to check into multiple formalisms
and uses different off-the-shelf verification tools to check sys-
tem requirements over the model. In general, any verification
tool whose underlying formalism is at least as expressive as an
LTS can host a translator. New tools can be added simply by
writing a translation plugin, making Verificare an extensible
interface to a variety of formal tools. We have currently

1The small-scope hypothesis [1] posits that this incompleteness is less
problematic than it would first appear. Significant empirical evidence indicates
that most real-world bugs (as opposed to maliciously designed flaws) which
are detected in large-scale, time-intensive verification, are also present at much
smaller, more easily verified scales.

implemented translators to SPIN, PRISM, and Alloy, and are
developing translators for NICE and Mininet. If any of these
tools find a requirement violation, their output is automatically
translated back to statements about the high-level VML model.

Translation to multiple formalisms is clearly necessary
because no one verifier can handle all formal logics. This in-
troduces complexities, however, as the subset of requirements
that any one tool can check together define a less restricted
state space than the complete set of requirements does. If at
least one violation of requirements is reachable in one verifier
(that is, there is at least one actual bug), then false positives
may manifest in other verifiers due to exploration of state
space coordinates reachable only due to the (undetected in
that verifier) bug.

VII. CONCLUSION

In this paper, we argued that SDN-Enabled applications,
which have access to network monitoring and control seman-
tics through an API-like interface, require new methods to
assure their safety, security, and performance. The Verificare
tool is designed to provide this assurance via formal verifica-
tion of composed application designs and SDN system models.
Unlike SDN-verification tools which focus on the network in
isolation, Verificare enables compositional modeling of both
the SDN and the applications which depend on it. Require-
ments spanning dimensions of safety, security, and reliability
(among others) can selected from a variety of formal libraries,
and are automatically verified using a variety of off-the-shelf
tools.

Acknowledgment: This work was supported by NSF CISE
CNS Award #1239021 and #1012798

REFERENCES

[1] A. Andoni, D. Daniliuc, S. Khurshid, and D. Marinov. Evaluating the
“small scope hypothesis”. Unpublished, 2003.

[2] C. Baier, J.-P. Katoen, et al. Principles of model checking, volume
26202649. MIT press Cambridge, 2008.

[3] T. Benson, A. Anand, A. Akella, and M. Zhang. Microte: fine grained
traffic engineering for data centers. In Proceedings of the Seventh
COnference on emerging Networking EXperiments and Technologies,
page 8. ACM, 2011.

[4] M. Canini, D. Venzano, P. Peresini, D. Kostic, and J. Rexford. A NICE
way to test OpenFlow applications. In NSDI, 2012.

[5] L. De Moura, S. Owre, H. Rueß, J. Rushby, N. Shankar, M. Sorea,
and A. Tiwari. Sal 2. In Computer Aided Verification, pages 496–500.
Springer, 2004.

[6] A. Ferguson, A. Guha, C. Liang, R. Fonseca, and S. Krishnamurthi.
Participatory Networking: An API for Application Control of SDNs. In
Proc. ACM SIGCOMM ’13, Hong Kong, China, August 2013.

[7] N. Foster, R. Harrison, and M. Freedman. Frenetic: A network
programming language. ACM SIGPLAN Notices, 46(9):279–291, 2011.

[8] H. Garavel, F. Lang, R. Mateescu, and W. Serwe. Cadp 2010: a toolbox
for the construction and analysis of distributed processes. Tools and
Algorithms for the Construction and Analysis of Systems, pages 372–
387, 2011.

[9] N. Handigol, B. Heller, V. Jeyakumar, D. Mazières, and N. McKeown.
Where is the debugger for my software-defined network? In Proceedings
of the first workshop on Hot topics in software defined networks, pages
55–60. ACM, 2012.

[10] G. Holzmann. The SPIN Model Checker: Primer and Reference Manual.
Addison-Wesley, Boston, 2005.

[11] D. Jackson. Alloy: a lightweight object modelling notation. ACM
Transactions on Software Engineering and Methodology, 11(2):256–290,
Apr. 2002.

[12] J. H. Jafarian, E. Al-Shaer, and Q. Duan. Openflow random host
mutation: transparent moving target defense using software defined
networking. In Proceedings of the first workshop on Hot topics in
software defined networks, pages 127–132. ACM, 2012.

[13] N. P. Katta, J. Rexford, and D. Walker. Logic Programming for Software-
Defined Networks. In XLDI, 2012.

[14] M. Kwiatkowska, G. Norman, and D. Parker. Analysis of a gossip
protocol in prism. ACM SIGMETRICS Performance Evaluation Review,
36(3):17–22, 2008.

[15] M. Kwiatkowska, G. Norman, and D. Parker. PRISM 4.0: Verification
of Probabilistic Real-time Systems. In 23rd International Conference
on Computer Aided Verification, pages 585–591. Springer, 2011.

[16] B. Lantz, B. Heller, and N. McKeown. A network in a laptop: rapid
prototyping for software-defined networks. In Proceedings of the Ninth
ACM SIGCOMM Workshop on Hot Topics in Networks, page 19. ACM,
2010.

[17] S. Narayan, S. Bailey, A. Daga, M. Greenway, R. Grossman, A. Heath,
and R. Powell. Openflow enabled hadoop over local and wide area
clusters. In High Performance Computing, Networking, Storage and
Analysis (SCC), 2012 SC Companion:, pages 1625–1628. IEEE, 2012.

[18] PRISM. Randomised mutual exclusion: Pnueli and zuck.
[19] R. van der Pol, S. Boele, F. Dijkstra, A. Barczyk, G. van Malenstein,

J. H. Chen, and J. Mambretti. Multipathing with mptcp and openflow. In
High Performance Computing, Networking, Storage and Analysis (SCC),
2012 SC Companion:, pages 1617–1624. IEEE, 2012.

[20] A. Voellmy, H. Kim, and N. Feamster. Procera: a language for high-
level reactive network control. In Proceedings of the first workshop on
Hot topics in software defined networks, pages 43–48. ACM, 2012.

[21] R. Wang, D. Butnariu, and J. Rexford. Openflow-based server load
balancing gone wild. In Proceedings of the 11th USENIX conference on
Hot topics in management of internet, cloud, and enterprise networks
and services, pages 12–12. USENIX Association, 2011.

