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Abstract

This paper introduces a new public key cryptosystem based on two
hard problems : the cube root extraction modulo a composite moduli
(which is equivalent to the factorisation of the moduli) and the discrete
logarithm problem. These two hard problems are combined during the
key generation, encryption and decryption phases. By combining the
IFP and the DLP we introduce a secure and efficient public key cryp-
tosystem. To break the scheme, an adversary may solve the IFP and
the DLP separately which is computationally infeasible. The key gen-
eration is a simple operation based on the discrete logarithm modulo
a composite moduli. The encryption phase is based both on the cube
root computation and the DLP. These operations are computationally
efficient.
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1 Introduction

Since the Diffie-Hellman seminal paper New Directions in Cryptography which
introduced the concept of public key cryptography, many asymmetric cryp-
tosystems were proposed. The new technics are based on hard mathematical
problems. Among these cryptosystems, we can cite the famous RSA [12] which
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security relies on the impossibility of factoring a large integer. By the same
way, Rabin in [11] proposed an RSA look alike cryptosystem based on the dif-
ficulty of extracting the square root modulo a large composite integer. Taking
square root modulo a composite prime is equivalent to the factorization of the
moduli. In another context, El Gamal introduces an efficient and simple cryp-
tosystem in [4]. The security of the new scheme is based on discrete logarithm
problem. The DLP is computationally very hard to solve when considering a
prime field or the group of rational points of an elliptic curve defined over a
finite field.

Note that all these schemes are based on single problems. Our aim is to
combine different cryptographic assumptions to design an efficient and strongly
secure cryptosystem. In other words, we introduce a new cryptosystem which
security is based both on the cube root extraction modulo a large integer and
the discrete logarithm problem modulo the same moduli.

In 1979, Rabin [11] introduced a public key cryptosystem which he showed
to be secure as factoring. To encrypt a message m ∈ Z

∗
n, where n = pq is

the product of two large primes, it suffices to compute c ≡ m2mod n. The
decryption of c is given by solving the equation x2 ≡ c mod n, which has four
roots, then for a complete decryption further information is needed to identify
m among these roots. The advantage of the Rabin cryptosystem is that the
encryption c ≡ m2mod n is easily computable and the fact that solving the
equation x2 ≡ c mod n is as hard as factoring the modulus n. In the same
paper, Rabin extends the encryption function to E(x) ≡ x3mod n, where n is
the product of two large primes p and q. In [2], D. Brown shows that if n is
an RSA modulus and if the RSA public key e is equal to 3, then recovering
m3mod n is equivalent to the factorization of n.

On the other hand, the composite discrete logarithm problem (CDLP) is
used to design public key schemes and certain protocols. It can be enounced
as follows : for well chosen n and g, solve gxmod n. In [6], Hastad et al.
show, under the assumed intractability of factoring a Blum integer n, that all
the bits of gxmod n are individually hard. They also show that the function
fg,n = gxmod n can be used for efficient pseudorandom bits generators and
multi-bit commitment schemes. Bach in [1], shows that solving the CDLP for
a composite moduli n is as hard as factoring n and solving it modulo primes.

In [9], McCurley proposed a variant of the Diffie-Hellman key distribution
protocol for which we can prove the decryption of a single key requires the
ability to factor a composite integer. He also proposed an El Gamal signature
scheme based on the CDLP in the same paper. At PKC’00, Pointcheval [10]
introduces an efficient authentication scheme based on the CDLP and more
secure than factorization.

Combining many hard cryptographic assumptions to design efficient schemes
is a good solution for offering a long term security. In [7], Ismail et al. in-
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troduce an efficient cryptosystem which security is based both on the square
root extraction and th CDLP. Their scheme is show secure against the three
common algebraic attacks using heuristic security technique.

In this paper, we present an efficient and strongly secure public key cryp-
tosystem based on the cube root extraction and the CDLP. The scheme is
quite simple and presents some advantages from some schemes based on the
square root problem since in our proposition we find only one solution for the
cubic equation.

The rest of the paper is organized as follows : in the next section, we
present the new scheme : the key generation algorithm, the encryption and
the decryption functions. In section 3, we provide a security analysis of the
new scheme. The efficiency of our cryptosystem will be given in section 4.

2 The new cryptosystem

Let us recall first the following lemma we will use before introducing the new
scheme.

Lemma 2.1 Let p be a prime number such that p ≡ 2 mod 3. Then, the
function

Zp −→ Zp

x �−→ x3 mod p

is a bijection with inverse function

Zp −→ Zp

x �−→ x1/3 mod p ≡ x(2p−1)/3 mod p

2.1 Key generation

1. Choose two random safe primes p and q such that p ≡ q ≡ 2 mod 3 and
compute n = pq.

2. Take α an element in Z
∗
n = {z, gcd(z, n) = 1} of high order o(α).

3. Pick a random k < o(α) and compute A = αk mod n

Thus, the public key is given by (n, α, A) and the private key by (n, α, k).
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2.2 Encryption

To encrypt a message M , the sender proceed as follows

1. He transform the message into m ∈ Zn,

2. He chooses an integer s < n at random such that |s| ≤ |n|/8

3. And compute c1 ≡ (mAs)3 mod n and c2 ≡ αs mod n and send them
to the receiver.

2.3 Decryption

To recover the message m from the couple (c1, c2), the receiver computes

m′ = c
1/3
1 × (c2)

−k mod n

Proof :

m′ = c
1/3
1 × (c2)

−k mod n = mαsk × α−sk mod n = m mod n.

Note that the equation x3 ≡ c1 mod n has only one solution since it has
a unique solution modulo p and a unique solution modulo q by Lemma 2.1.
Using the Chinese Remainder Theorem, we recover the unique solution of
the equation modulo n. The fact we have here a single solution of the cubic
equation is a great advantage from the Rabbin scheme where the we get four
solution of the square equation.

Numerical example. Suppose we want to cipher a message m = 52 with our
scheme. Let’s consider p = 17 and q = 23 and n = pq = 493. Remark that
p ≡ q ≡ 2 mod 3. Let α = 13 and choose k = 7. Then, the public key is given
by α, A = αkmod = 463, n and the private key by p, q and k.

To encrypt the message m = 52, let’s select s = 19. We then compute

c1 ≡ (mAs)3 mod n = 361 and c2 ≡ αkmod n = 412.

For the decryption, we solve first the equations x3 ≡ 361mod 17 and x3 ≡
361mod 23. The solutions of these equations are respectively x = 13 and
x = 9. By the Chinese Remainder Theorem, we find c

1/3
1 mod n = 64. We

compute next c−k
2 ≡ 463 and find m = 64 × 463mod 493 = 52.

3 Security analysis

In this section, we show that our scheme is heuristically secure under the
following three most common attacks.
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3.1 Direct attack

Suppose an adversary Adv wishes to recover all secret keys, ie p, q and k,
using all informations available from the system. Then Adv needs to solve
the factorization problem to find the primes p and q and solve the discrete
logarithm problem to find the secrete k.

The best known technique to solve the FAC is by using the Number Field
Sieve (NFS) [8]. Nevertheless, this method depends on the size of the modulus
n. In other words, the complexity of the NFS method increases with the size of
n. When the |n| = 1024, the NFS technique is computationally infeasible. For
a better security we use strong safe primes [5] p and q such that |p| = |q| = 1024
to maintain the same security level for the DLP over primes.

3.2 Factoring attack

Assume that our adversary Adv successfully factor n. Then, he can use p and
q to compute the value

m′′ ≡ (c1)
1/3 mod n ≡ mAs mod n,

by solving the cube root mod p and mod q and using the Chinese Remainder
Theorem to find (c1)

1/3 mod n. However, another problem occurs : to recover
the message m from mAs, he needs to find s which is the Computational Diffie-
Hellman assumption. Of course, A knows the values of p and q. But he has to
solve the DLP modulo primes to find s. Since p and q are two safe primes of
size 1024, the DLP modulo primes infeasible and Adv would fail.

3.3 Discrete logarithm attack

Suppose Adv solves the DLP and recovers the private key. Then, he can
compute αsk which is a part of the decryption but it does not suffice to recover
m. To find m, Adv needs to compute (c1)

1/3mod n. Since the factorization of
n is not known, it’s computationally infeasible to compute the cube root of c1

modulo n. Here again, Adv fails.

4 Efficiency

Designing strong and secure cryptosystem is a good thing but it is essential
to take in consideration the efficiency of the proposed system. Our scheme
is as efficient as the El Gamal one’s. One can remark that we use the same
operations as the El Gamal cryptosystem plus a computation of a cube modulo
n which is an easy operation to achieve. Thus, we can claim that our new
scheme is very efficient.
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5 Conclusion

We successfully introduce a new efficient and secure cryptosystem by combin-
ing two cryptographic assumptions namely the cube root extraction and the
discrete logarithm problem modulo a composite integer. It’s well known that
most of the existing schemes are based on single problems and if an adversary
could find an algorithm to solve the related problem the scheme is broken. Our
scheme is prevented from this problem since it’s based on two hard problems.
An adversary may break it if he is able to solve simultaneously the two related
problem which is very unlikely to happen. On the other hand, the new scheme
is as efficient as the El Gamal one and should be an alternative to the other
cryptosystems
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