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Abstract—We recently proposed Nogood-Based Asynchronous
Forward Checking (AFC-ng), an efficient and robust algorithm
for solving Distributed Constraint Satisfaction Problems (DisC-
SPs). AFC-ng performs an asynchronous forward checking phase
during synchronous search. In this paper, we propose two new
algorithms based on the same mechanism as AFC-ng. However,
instead of using forward checking as a filtering property, we pro-
pose to maintain arc consistency asynchronously (MACA). The
first algorithm we propose, MACA-del, enforces arc consistency
thanks to an additional type of messages, deletion messages. The
second algorithm, MACA-not, achieves arc consistency without
any new type of message. We provide a theoretical analysis
and an experimental evaluation of the proposed approach. Our
experiments show the good performance of MACA algorithms,
particularly those of MACA-not.

Index Terms—constraint reasoning, distributed constraint solv-
ing, maintaining arc consistency

I. INTRODUCTION

Constraint satisfaction problems (CSPs) can formalize many
real world combinatorial problems such as resource allocation,
car sequencing, machine vision, etc. A constraint satisfaction
problem consists in looking for solutions to a constraint
network, that is, finding a set of assignments of values to
variables that satisfy the constraints of the problem. These
constraints specify admissible value combinations.

Many backtrack search algorithms were developed for
solving constraint satisfaction problems. Typical backtrack
search algorithms try to build a solution to a CSP by in-
terleaving variable instantiation with constraint propagation.
Forward Checking (FC) [10] and Maintaining Arc Consistency
(MAC) [18] are examples of such algorithms. In the 80’s, FC
was considered as the most efficient search algorithm. In the
middle 90’s, several works have empirically shown that MAC
is more efficient than FC on hard and large problems [4, 9].

Sensor networks [12, 1], distributed resource allocation
problems [16, 17] or distributed meeting scheduling [24, 14]
are real applications of a distributed nature, that is, knowledge
is distributed among several entities. These applications can
be naturally modeled and solved by a CSP process once the
knowledge about the problem is delivered to a centralized
solver. However, in such applications, gathering the whole
knowledge into a centralized solver is undesirable. In general,
this restriction is mainly due to privacy and/or security reasons.
The cost or the inability of translating all information to a

single format may be another reason. Thus, a distributed model
allowing a decentralized solving process is more adequate. The
distributed constraint satisfaction problem (DisCSP) has such
properties.

A DisCSP is composed of a group of autonomous agents,
where each agent has control of some elements of information
about the whole problem, that is, variables and constraints.
Each agent owns its local constraint network. Variables in
different agents are connected by constraints. Agents must
assign values to their variables so that all constraints are satis-
fied. Therefore, agents attempt to generate a locally consistent
assignment (assignment of values to their variables), that is
also consistent with constraints between agents [26, 25].

Many distributed algorithms for solving DisCSPs have been
designed in the last two decades. Synchronous Backtrack
(SBT) is the simplest DisCSP search algorithm. SBT performs
assignments sequentially and synchronously. In SBT, only the
agent holding a current partial assignment (CPA) performs
an assignment or backtracks [27]. Meisels and Zivan (2007)
extended SBT to Asynchronous Forward Checking (AFC),
an algorithm in which the FC algorithm [10] is performed
asynchronously [15]. In AFC, whenever an agent succeeds
to extend the current partial assignment, it sends the CPA to
its successor and it sends copies of this CPA to the other
unassigned agents in order to perform FC asynchronously.

In a recent work [8], we proposed the Nogood Based Asyn-
chronous Forward Checking algorithm (AFC-ng), which is an
improvement of AFC. Unlike AFC, AFC-ng uses nogoods as
justification of value removals and allows several simultaneous
backtracks coming from different agents and going to different
destinations. AFC-ng was shown to outperform AFC.

Although, many studies incorporated FC successfully in
distributed CSPs [5, 15, 8], MAC has not yet been well
investigated. The only tentatives to include arc consistency
maintenance in distributed algorithms were done on the Asyn-
chronous Backtracking (ABT) algorithm. Silaghi et al. (2001)
introduced the Distributed Maintaining Asynchronously Con-
sistency for ABT, (DMAC-ABT ), the first algorithm able to
maintain arc consistency in distributed CSPs [20]. DMAC-
ABT considers consistency maintenance as a hierarchical
nogood-based inference. Brito and Meseguer (2008) proposed
ABT-uac and ABT-dac, two algorithms that connect ABT
with arc consistency [6]. ABT-uac propagates unconditionally
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deleted values to enforce an amount of full arc consistency.
ABT-dac propagates conditionally and unconditionally deleted
values using directional arc consistency. ABT-uac shows minor
improvement in communication load and ABT-dac is harmful
in many instances.

In this work, we propose two new synchronous search
algorithms based on the same mechanism as AFC-ng. How-
ever, instead of maintaining forward checking asynchronously
on agents not yet instantiated, we propose to maintain arc
consistency asynchronously on these future agents. We call
this new scheme MACA, for maintaining arc consistency
asynchronously. As in AFC-ng, only the agent holding the
current partial assignment (CPA) can perform an assignment.
However, unlike AFC-ng, MACA attempts to maintain the arc
consistency instead of performing only FC. The first algorithm
we propose, MACA-del, enforces arc consistency thanks to an
additional type of messages, deletion messages (del). Hence,
whenever values are removed during a constraint propagation
step, MACA-del agents notify other agents that may be
affected by these removals, sending them a del message. del
messages contain all removed values and the nogood justifying
their removal.The second algorithm, MACA-not, achieves arc
consistency without any new type of message. We achieve this
by storing all deletions performed by an agent on domains of
its neighboring agents, and sending this information to these
neighbors within the CPA message.

This paper is organized as follows. Section II gives the
necessary background. Sections III describes the MACA-del
and MACA-not algorithms. Theoretical analysis and correct-
ness proofs are given in Section IV. Section V presents an
experimental evaluation of our proposed algorithms against
other algorithms. Finally, we will conclude the paper in
Section VI.

II. BACKGROUND

A. Basic Definitions and Notations

The distributed constraint satisfaction problem (DisCSP)
has been formalized in [26] as a tuple (A,X ,D, C), where
A is a set of a agents {A1, . . . , Aa}, X is a set of n variables
{x1, . . . , xn}, where each variable xi is controlled by one
agent in A. D0 = {D0(x1), . . . , D

0(xn)} is a set of n
domains, where D0(xi) is the initial set of possible values
to which variable xi may be assigned. During search, values
may be pruned from the domain. At any node, the set of
possible values for variable xi is denoted by D(xi) and is
called the current domain of xi. C is a set of constraints that
specify the combinations of values allowed for the variables
they involve. In this paper, we assume a binary distributed
constraint network where all constraints are binary constraints
(they involve two variables). A constraint cij ∈ C between
two variables xi and xj is a subset of the Cartesian product
of their domains, i.e., cij ⊆ D0(xi)×D0(xj).

For simplicity purposes, we consider a restricted version of
DisCSP where each agent controls exactly one variable(a =
n). Thus, we use the terms agent and variable interchangeably

and we identify the agent ID with its variable index. Further-
more, all agents store a unique total order ≺ on agents. Thus,
agents appearing before an agent Ai ∈ A in the total order
are the higher priority agents (predecessors) and conversely the
lower priority agents (successors) are those appearing after Ai.
For sake of clarity, we assume that the total order on agents
≺ is the lexicographic ordering [A1, A2, . . . , An].

Each agent maintains a counter, and increments it whenever
it changes its value. The current value of the counter tags each
generated assignment.

Definition 1: An assignment for an agent Ai ∈ A is a tuple
(xi, vi, ti), where vi is a value from the domain of xi and ti
is the tag value. When comparing two assignments, the most
up to date is the one with the greatest tag ti.

Definition 2: A Current Partial Assignment CPA is an
ordered set of assignments {[(x1, v1, t1), . . . , (xi, vi, ti)] |
x1 ≺ · · · ≺ xi}. Two CPAs are compatible if they do not
disagree on any variable value.

Definition 3: A timestamp, associated with a CPA, is an
ordered list of counters [t1, t2, . . . , ti] where tj is the tag of
the variable xj . When comparing two CPAs, the strongest one
is that associated with the lexicographically greater timestamp.
That is, the CPA with greatest value on the first counter on
which they differ, if any, otherwise the longest one.

Definition 4: The AgentView of an agent Ai ∈ A stores
the most up to date assignments received from higher priority
agents in the agent ordering. It has a form similar to a CPA and
is initialized to the set of empty assignments {(xj , empty, 0) |
xj ≺ xi}.

Based on the constraints of the problem, agents can infer
inconsistent sets of assignments called nogoods.

Definition 5: A nogood ruling out value vk from the initial
domain of variable xk is a clause of the form xi = vi ∧ . . .∧
xj = vj → xk 6= vk, meaning that the assignment xk = vk is
inconsistent with the assignments xi = vi, . . . , xj = vj . The
left hand side (lhs) and the right hand side (rhs) are defined
from the position of →.

The current domain D(xi) of a variable xi contains all
values from the initial domain D0(xi) that are not ruled out
by a nogood. When all values of a variable xk are ruled out by
some nogoods (i.e., D(xi) = ∅), these nogoods are resolved,
producing a new nogood (ng). Let xj be the lowest variable in
the left-hand side of all these nogoods and xj = vj . lhs(ng)
is the conjunction of the left-hand sides of all nogoods except
xj = vj and rhs(ng) is xj 6= vj .

B. Maintaining Arc Consistency

Constraint propagation is a central feature of efficiency
for solving CSPs [2]. The oldest and most commonly used
technique for propagating constraints is arc consistency (AC).

Definition 6: A constraint cij is arc consistent iff ∀ vi ∈
D(xi),∃ vj ∈ D(xj) such that (vi, vj) is allowed by cij and
∀ vj ∈ D(xj),∃ vi ∈ D(xi) such that (vi, vj) is allowed by
cij . A constraint network is arc consistent iff all its constraints
are arc consistent.
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The Maintaining Arc Consistency (MAC) algorithm [18]
alternates exploration steps and constraint propagation steps.
That is, at each step of the search, a variable assignment is
followed by a filtering process that corresponds to enforcing
arc consistency.

For implementing MAC in a distributed CSP, each agent
Ai is assumed to know all constraints in which it is involved
and the agents with whom it shares a constraint (aka its
neighboring agents). These agents and the constraints linking
them to Ai form the local constraint network of Ai, denoted
by CSP (i).

Definition 7: The Local Constraint Network CSP (i) of an
agent Ai ∈ A consists of all constraints involving xi and all
variables of these constraints.

In order to allow agents to maintain arc consistency in
distributed CSPs, our proposed approach consists in enforcing
arc consistency on the local constraint network of each agent.
Basically, each agent Ai stores locally copies of all variables
in CSP (i). We also assume that each agent knows the neigh-
borhood it has in common with its own neighbors, without
knowing the constraints relating them. That is, for each of its
neighbors Ak, an agent Ai knows the list of agents Aj such
that there is a constraint between xi and xj and a constraint
between xk and xj .

III. MAINTAINING ARC CONSISTENCY
ASYNCHRONOUSLY

In the nogood-based Asynchronous Forward Checking
(AFC-ng), the forward checking phase aims at anticipating the
backtrack. Nevertheless, we do not take advantage of the value
removals caused by FC if it does not completely wipe out the
domain of the variable. One can investigate these removals by
enforcing arc consistency. This is motivated by the fact that the
propagation of a value removal, for an agent Ai, may generate
an empty domain for a variable in its local constraint network.
Thus, we can detect an earlier dead-end and then anticipate as
soon as possible the backtrack operation.

In synchronous search algorithms for solving DisCSPs,
agents sequentially assign their variables. Thus, agents perform
the assignment of their variable only when they hold the
current partial assignment, CPA. We propose an algorithm in
which agents assign their variable one by one following a
total ordering on agents. Hence, whenever an agent succeeds
in extending the CPA by assigning its variable on it, it sends
the CPA to its successor to extend it. Copies of this CPA are
also sent to the other agents whose assignments are not yet on
the CPA in order to maintain arc consistency asynchronously.
Therefore, when an agent receives a copy of the CPA, it
maintains arc consistency in its local constraint network. To
enforce arc consistency on all variables of the problem, agents
communicate information about value removals produced lo-
cally with other agents. We propose two methods to achieve
this. The first method, namely MACA-del, uses a new type of
messages (del messages) to share this information. The second
method, namely MACA-not, includes the information about
deletions generated locally within cpa messages.

A. Enforcing AC using del messages

In MACA-del, each agent Ai maintains arc consistency on
its local constraint network, CSP (i), whenever a domain of
a variable in CSP (i) is changed. Changes can occur either
on the domain of Ai or on another domain in CSP (i). In
MACA-del on Ai, only removals on D(xi) are externally
shared with other agents. The propagation of the removals
on D(xi) is achieved by communicating to other agents the
nogoods justifying these removals. These removals and their
associated nogoods are sent to neighbors via del messages.

Agent Ai stores nogoods for its removed values. They
are stored in NogoodStore[xi]. But in addition to nogoods
stored for its own values, Ai needs to store nogoods for
values removed from variables xj in CSP (i). Nogoods jus-
tifying the removals of values from D(xj) are stored in
NogoodStore[xj ]. Hence, the NogoodStore of an agent Ai

is a vector of several NogoodStores, one for each variable in
CSP (i).

The pseudo code of MACA-del, executed by each agent
Ai, is shown in Fig. 1. Agent Ai starts the search by calling
procedure MACA-del(). In procedure MACA-del(), Ai calls
Propagate() to enforce arc consistency (line 1) in its local
constraint network, i.e., CSP (i). Next, if Ai is the initializing
agent IA (the first agent in the agent ordering), it initiates
the search by calling procedure Assign() (line 2). Then, a
loop considers the reception and the processing of the possible
message types.

When calling procedure Assign(), Ai tries to find an as-
signment which is consistent with its AgentView. If Ai fails to
find a consistent assignment, it calls procedure Backtrack()
(line 14). If Ai succeeds, it increments its counter ti and
generates a CPA from its AgentView augmented by its as-
signment (lines 11 and 12). Afterwards, Ai calls procedure
SendCPA(CPA) (line 13). If the CPA includes all agents
assignments (Ai is the lowest agent in the order, line 15),
Ai reports the CPA as a solution of the problem and marks
the end flag true to stop the main loop (line 16). Otherwise,
Ai sends forward the CPA to all agents whose assignments are
not yet on the CPA (line 17). So, the next agent on the ordering
(successor) will try to extend this CPA by assigning its
variable on it while other agents will maintain arc consistency
asynchronously.

Whenever Ai receives a cpa message, procedure
ProcessCPA() is called (line 6). The received message
will be processed only when it holds a CPA stronger than the
AgentView of Ai. If it is the case, Ai updates its AgentView
(line 19) and then updates the NogoodStore of each variable
in CSP (i) to be compatible with the received CPA (line 20).
Afterwards, Ai calls function Propagate() to enforce arc
consistency on CSP (i) (line 21). If arc consistency wiped
out a domain in CSP (i) (i.e., CSP (i) is not arc consistent),
Ai calls procedure Backtrack() (line 21). Otherwise, Ai

checks if it has to assign its variable (line 22). Ai tries to
assign its variable by calling procedure Assign() only if it
received the cpa from its predecessor.
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procedure MACA-del()
1. end← false; Propagate() ;
2. if ( Ai = IA ) then Assign() ;
3. while ( ¬end ) do
4. msg ← getMsg();
5. switch ( msg.type ) do
6. cpa : ProcessCPA(msg);
7. ngd : ProcessNogood(msg);
8. del : ProcessDel(msg);
9. stp : end← true;

procedure Assign()
10. if ( D(xi) 6= ∅ ) then
11. vi ← ChooseValue() ; ti ← ti+1 ;
12. CPA ← {AgentV iew ∪ (xi, vi, ti)} ;
13. SendCPA(CPA) ;
14. else Backtrack() ;

procedure SendCPA(CPA)
15. if ( size(CPA) = n ) then
16. broadcastMsg : stp 〈CPA〉 ; end← true ;
17. else foreach ( xk � xi ) do sendMsg : cpa 〈CPA 〉 to Ak ;

procedure ProcessCPA(msg)
18. if ( msg.CPA is stronger than the AgentV iew ) then
19. AgentV iew ← msg.CPA ;
20. Remove all nogoods incompatible with AgentV iew ;
21. if ( ¬Propagate() ) then Backtrack() ;
22. else if ( msg.sender = Ai−1 ) then Assign() ;

function Propagate()
23. if ( ¬AC(CSP (i)) ) then return false ;
24. else if ( D(xi) was changed ) then
25. foreach ( xj ∈ CSP (i) ) do
26. nogoods← get nogoods from NogoodStore[xi] that

are relevant to xj ;
27. sendMsg : del 〈nogoods〉 to Aj ;
28. return true ;

procedure ProcessDel(msg)
29. Let Ak be the agent that sent msg;
30. foreach ( ng ∈ msg.nogoods ) do
31. if ( Compatible(ng, AgentV iew) ) then
32. add(ng, NogoodStore[xk]) ;
33. if ( D(xk) = ∅ ∧ xi ∈ NogoodStore[xk] ) then
34. newNogood← solve(NogoodStore[xk]) ;
35. add(newNogood, NogoodStore[xi]) ;
36. Assign() ;
37. else if ( D(xk) = ∅ ∨ ¬Propagate() ) then
38. Backtrack();

procedure Backtrack()
39. Let xk be the variable within the empty domain;
40. ng ← solve(NogoodStore[xk]) ; /* D(xk) = ∅ */
41. if ( ng = empty ) then
42. broadcastMsg : stp 〈∅〉 ;
43. end← true ;
44. else /* Let xj be the variable on the rhs(ng) */
45. sendMsg : ngd 〈ng 〉 to Aj ;
46. from ( l = j to i-1 ) do
47. AgentV iew[l].value← empty ;
48. Remove all nogoods incompatible with AgentV iew ;

procedure ProcessNogood(msg)
49. if ( Compatible(lhs(msg.nogood ), AgentV iew) ) then
50. add(msg.nogood, NogoodStore[xi]) ;
51. if ( rhs(msg.nogood).value = vi ) then Assign();
52. else if ( ¬Propagate() ) then Backtrack() ;

Fig. 1. MACA-del algorithm running by agent Ai.

When calling function Propagate(), Ai restores arc con-
sistency on its local constraint network according to the
assignments on its AgentView (line 23). In our implementation
we used AC-2001 [3] to enforce arc consistency but any
generic AC algorithm can be used. MACA-del requires from
the algorithm enforcing arc consistency to store a nogood
for each removed value. When two nogoods are possible for
the same value, we select the best with the Highest Possible
Lowest Variable heuristic [11]. If enforcing arc consistency
on CSP (i) has failed, i.e., a domain was wiped out, the
function returns false (line 23). Otherwise, if the domain of xi

was changed (i.e., there are some deletions to propagate), Ai

informs its constrained agents by sending them del messages
that contain nogoods justifying these removals (lines 26-27).
Finally, the function returns true (line 28). When sending a del
message to a neighboring agent Aj , only nogoods such that all
variables in their left hand sides have a higher priority than Aj

will be communicated to Aj . Furthermore, all nogoods having
the same left hand side are factorized in one single nogood
whose right hand side is the set of all values removed by this
left hand side.

Whenever Ai receives a del message, it adds to the No-
goodStore of the sender, say Ak, (i.e., NogoodStore[xk])
all nogoods compatible with the AgentView of Ai (lines 30-
32). Afterward, Ai checks if the domain of xk is wiped out
(i.e., the remaining values in D(xk) are removed by nogoods
that have just been received from Ak) and xi belongs to the
NogoodStore of xk (i.e., xi is already assigned and its current
assignment is included in at least one nogood removing a value
from D(xk)) (line 33). If it is the case, Ai removes its current
value by storing the resolved nogood from the NogoodStore of
xk (i.e., newNogood) as justification of this removal (line 34-
35), and then calls procedure Assign() to try an other value
(line 36). Otherwise, when D(xk) is wiped-out (xi is not
assigned) or if a dead-end occurs when trying to enforce arc
consistency, Ai has to backtrack and thus it calls procedure
Backtrack() (line 38).

Each time a dead-end occurs on a domain of a variable
xk in CSP (i) (including xi), the procedure Backtrack is
called. The nogoods that generated the dead-end are resolved
by computing a new nogood ng (line 40). ng is the conjunction
of the left hand sides of all these nogoods stored by Ai in
NogoodStore[xk]. If the generated nogood ng is empty, Ai

terminates execution after sending a stp message to all agents
in the system meaning that the problem is unsolvable (lines 41-
43). Otherwise, Ai backtracks by sending a ngd message to
agent Aj , the owner of the variable on the right hand side of
ng (line 45). Next, Ai updates its AgentView in order to keep
only assignments of agents that are placed before Aj in the
total ordering (lines 46-47). Ai also updates the NogoodStore
of all variables in CSP (i) by removing nogoods incompatible
with its new AgentView (line 48).

Whenever a ngd message is received, Ai checks the validity
of the received nogood (line 49). If the received nogood
is compatible with its AgentView, Ai adds this nogood to
its NogoodStore (i.e. NogoodStore[xi], line 50). Then, Ai
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checks if the value on the right hand side of the received
nogood equals its current value. If it is the case, Ai calls
the procedure Assign() to try another value for its variable
(line 51). Otherwise, Ai calls function Propagate() to
restore arc consistency. When a dead-end was generated in
its local constraint network, Ai calls procedure Backtrack()
(line 52).

B. Enforcing AC without an additional kind of message

In the following, we show how to enforce arc consistency
without an additional kind of messages. In MACA-del, global
consistency maintenance is achieved by communicating to
constrained agents (agents in CSP (i)) all values pruned from
D0(xi). This may generate many del messages in the network,
and then result in a communication bottleneck. In addition,
many del messages may lead agents to perform more effort
to process them. In MACA-not, communicating the removals
produced in CSP (i) is delayed until the agent Ai wants to
send a cpa message. When sending the cpa message to a
lower priority agent Ak, Ai attaches nogoods justifying value
removals from CSP (i) to the cpa message. But it does not
attach all of them because some variables are irrelevant to
Ak (not connected to xk by a constraint). MACA-not shares
with Ak all nogoods justifying deletions on variables not yet
instantiated that share a constraint with both Ai and Ak (i.e.,

procedure MACA-not()
1. end← false; Propagate() ;
2. if ( Ai = IA ) then Assign() ;
3. while ( ¬end ) do
4. msg ← getMsg();
5. switch ( msg.type ) do
6. cpa : ProcessCPA(msg);
7. ngd : ProcessNogood(msg);
8. stp : end← true;

procedure SendCPA(CPA)
9. if ( size(CPA ) = n ) then

10. broadcastMsg : stp 〈CPA 〉 ;
11. end← true ;
12. else
13. foreach ( xk � xi ) do
14. nogoods← ∅;
15. foreach ( xj ∈ {CSP (i) ∩ CSP (k)} | xj � xi ) do
16. nogoods← nogoods ∪ getNogoods(xj) ;
17. sendMsg : cpa 〈CPA, nogoods〉 to Ak ;

procedure ProcessCPA(msg)
18. if ( msg.CPA is stronger than the AgentV iew ) then
19. AgentV iew ← CPA ;
20. Remove all nogoods incompatible with AgentV iew ;
21. foreach ( ng ∈ msg.nogoods ) do
22. let xk be the variable in the rhs(ng);
23. add(ng, NogoodStore[xk]) ;
24. if ( ¬Propagate() ) then Backtrack() ;
25. else if ( msg.sender = Ai−1 ) then Assign();

function Propagate()
26. return AC(CSP (i)) ;

Fig. 2. New lines/procedures for MACA-not with respect to MACA-
del.

variables in {CSP (i)∩CSP (k)}\vars(CPA)). Thus, when
Ak receives the cpa it receives also deletions performed in
CSP (i) that can lead him to more arc consistency propaga-
tion.

We present in Fig. 2 the pseudo-code of the MACA-
not algorithm. Only procedures that are new or different
from those of MACA-del in Fig. 1 are presented. Function
Propagate() no longer sends del messages, it just maintains
arc consistency on CSP (i) and returns true iff no domain was
wiped out.

In procedure SendCPA(CPA), when sending a cpa message
to an agent Ak, Ai attaches to the CPA the nogoods justify-
ing the removals from the domains of variables in CSP (i)
constrained with Ak (lines 13-17, Fig. 2).

Whenever agent Ai receives a cpa message, procedure
ProcessCPA() is called (line 6). The received message will
be processed only when it holds a CPA stronger that the
AgentView of Ai. If it is the case, Ai updates its AgentView
(line 19) and then updates the NogoodStores to be compatible
with the received CPA (line 20). Next, all nogoods contained in
the received message are added to the NogoodStore (lines 21-
23). Obviously, nogoods are added to the NogoodStore re-
ferring to the variable in their right hand side (i.e., ng is
added to NogoodStore[xk] if xk is the variable in rhs(ng)).
Afterwards, Ai calls function Propagate() to restore arc
consistency in CSP (i) (line 24). If a domain of a variable
in CSP (i) wiped out, Ai calls procedure Backtrack()
(line 24). Otherwise, Ai checks if it has to assign its variable
(line 25). Ai tries to assign its variable by calling procedure
Assign() only if it received the cpa from its predecessor,
i.e., Ai−1.

IV. THEORETICAL ANALYSIS

We demonstrate that MACA is sound, complete and termi-
nates, with a polynomial space complexity.

Lemma 1: MACA is guaranteed to terminate.
Proof: (Sketch) The proof is close to the one given in

[23]. It can easily be obtained by induction on the agent
ordering that there will be a finite number of new generated
CPAs (at most nd, where n the number of variables and d is
the maximum domain size), and that agents can never fall into
an infinite loop for a given CPA.

Lemma 2: MACA cannot infer inconsistency if a solution
exists.

Proof: Whenever a stronger CPA or a ngd message is
received, MACA agents update their NogoodStore. In MACA-
del, the nogoods contained in del are accepted only if they are
compatible with AgentView (lines 30-32, Fig. 1). In MACA-
not, the nogoods included in the cpa messages are compatible
with the received CPA and they are accepted only when the
CPA is stronger than AgentView (line 18, Fig. 2). Hence, for
every CPA that may potentially lead to a solution, agents only
store valid nogoods. Since all additional nogoods are generated
by logical inference when a domain wipe-out occurs, the
empty nogood cannot be inferred if the network is satisfiable.
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Theorem 1: MACA is correct.
Proof: The argument for soundness is close to the one

given in [23]. The fact that agents only forward consistent
partial solution on the cpa messages at only one place in
procedure Assign() (line 13, Fig. 1), implies that the agents
receive only consistent assignments. A solution is found by the
last agent only in procedure SendCPA(CPA) at (line 16, Fig. 1
and line 10, Fig. 2). At this point, all agents have assigned their
variables, and their assignments are consistent. Thus, MACA is
sound. Completeness comes from the fact that MACA is able
to terminate and does not report inconsistency if a solution
exists (Lemmas 1 and 2).

Theorem 2: MACA is polynomial in space.
Proof: On each agent, MACA stores one nogood of size at

most n per removed value in its local constraint network. The
local constraint network contains at most n variables. Thus,
the space complexity of MACA is in O(n2d) on each agent
where d is the maximal initial domain size.

Theorem 3: MACA messages are polynomially bounded.
Proof: The largest messages for MACA-del are del mes-

sages. In the worst-case, a del message contains a nogood
for each value. Thus, the size of del messages is in O(nd). In
MACA-not, the largest messages are cpa messages. The worst-
case is a cpa message containing a CPA and one nogood for
each value of each variable in the local constraint network.
Thus, the size of a cpa message is in O(n+ n2d) = O(n2d).

V. EXPERIMENTAL RESULTS

In this section we experimentally compare MACA algo-
rithms to ABT-uac, ABT-dac [6] and AFC-ng [8]. These
algorithms are evaluated on uniform random binary DisCSPs.
All experiments were performed on the DisChoco 2.0 plat-
form1 [22], in which agents are simulated by Java threads that
communicate only through message passing. All algorithms
are tested on the same static agents ordering (lexicographic
ordering) and the same nogood selection heuristic (HPLV)
[11]. For ABT-dac and ABT-uac we implemented an improved
version of Silaghi’s solution detection [19] and counters for
tagging assignments.

We evaluate the performance of the algorithms by com-
munication load [13] and computation effort. Communication
load is measured by the total number of exchanged messages
among agents during algorithm execution (#msg), including
those of termination detection (system messages). Compu-
tation effort is measured by the number of non-concurrent
constraint checks (#ncccs) [28]. #ncccs is the metric used
in distributed constraint solving to simulate the computation
time.

The algorithms are tested on uniform random binary DisC-
SPs which are characterized by 〈n, d, p1, p2〉, where n is
the number of agents/variables, d is the number of values
in each of the domains, p1 is the network connectivity
defined as the ratio of existing binary constraints, and p2

1http://www.lirmm.fr/coconut/dischoco/

is the constraint tightness defined as the ratio of forbidden
value pairs. We solved instances of two classes of constraint
networks: sparse networks 〈20, 10, 0.25, p2〉 and dense ones
〈20, 10, 0.7, p2〉. We vary the constraint tightness (i.e., p2)
from 0.1 to 0.9 by steps of 0.1. When we vary the constraint
tightness, problems go through a phase transition [7, 21].
Before the phase transition, problems are relatively easy to
solve. After the phase transition, it is very easy to prove that
problems are unsolvable. At the phase transition, problems
are in general difficult to solve or to prove unsolvable. By
comparing algorithms at the phase transition we highlight their
differences on difficult problems. For each pair of fixed density
and tightness (p1, p2) we generated 100 instances. The average
over the 100 instances is reported.
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Fig. 3. The #ncccs performed and total number of messages sent for solving
sparse uniform binary random DisCSPs problems where 〈n = 20, d =
10, p1 = 0.25〉.

In Fig. 3, we present the performance of the algorithms
on the sparse instances (p1 = 0.25). Concerning the com-
putational effort (Fig. 3(a)), algorithms enforcing an amount
of arc consistency are better than AFC-ng, which only en-
forces forward checking. Among these algorithms MACA-
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del is the fastest one. MACA-not behaves like ABT-dac,
which is better than ABT-uac. Concerning the communication
load (Fig. 3(b)), algorithms performing an amount of arc
consistency improve on AFC-ng by an even larger scale
than for computational effort. ABT-uac and ABT-dac require
almost the same number of exchanged messages. Among
the algorithms maintaining an amount of arc consistency, the
algorithms with a synchronous behavior (MACA algorithms)
outperform those with an asynchronous behavior (ABT-dac
and ABT-uac) by a factor of 6. It thus seems that on sparse
problems, maintaining arc consistency in synchronous search
algorithms provides more benefit than in asynchronous ones.
MACA-not exchanges slightly fewer messages than MACA-
del at the complexity peak.
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Fig. 4. The #ncccs performed and total number of messages sent for
solving dense uniform binary random DisCSPs problems where 〈n = 20, d =
10, p1 = 0.70〉.

In Fig. 4, we present the performance of the algorithms on
the dense instances (p1 = 0.7). Concerning the computational
effort (Fig. 4(a)), the first observation is that asynchronous
algorithms are less efficient than those performing assignments
sequentially. Among all compared algorithms, AFC-ng is
the fastest one on these dense problems. This is consistent
with results on centralized CSPs where FC had a better
behavior on dense problems than on sparse ones [4, 9]. As

on sparse problems, ABT-dac outperforms ABT-uac. Con-
versely to sparse problems, MACA-not outperforms MACA-
del. Concerning the communication load (Fig. 4(b)), on dense
problems, asynchronous algorithms (ABT-uac and ABT-dac)
require a large number of exchanged messages. MACA-del
does not improve on AFC-ng because of a too large number
of exchanged del messages. On these problems, MACA-not is
the algorithm that requires the smallest number of messages.
MACA-not improves on synchronous algorithms (AFC-ng and
MACA-del) by a factor of 11 and on asynchronous algorithms
(ABT-uac and ABT-dac) by a factor of 40.

From these experiments we can conclude that in syn-
chronous algorithms, maintaining arc consistency is better than
maintaining forward checking in terms of computational effort
when the network is sparse, and is always better in terms of
communication load. We can also conclude that maintaning arc
consistency in synchronous algorithms produces much larger
benefits than maintaining arc consistency in asynchronous
algorithms like ABT.

VI. CONCLUSION

We have proposed two new synchronous search algorithms
for solving DisCSPs. These are the first attempts to maintain
arc consistency during synchronous search in DisCSPs. The
first algorithm, MACA-del, enforces arc consistency thanks
to an additional type of messages, deletion messages. The
second algorithm, MACA-not, achieves arc consistency with-
out any new type of message. Despite the synchronicity of
search, these two algorithms perform the arc consistency phase
asynchronously. Our experiments show that maintaining arc
consistency during synchronous search produces much larger
benefits than maintaining arc consistency in asynchronous
algorithms like ABT. The communication load of MACA-
del can be significantly lower than that of AFC-ng, the
best synchronous algorithm to date. MACA-not shows even
larger improvements thanks to its more parsimonious use of
messages.
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