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Abstract—Since its acceptance as the adopted authenticated
encryption algorithm, AES-GCM has been utilized in various
security-constrained applications. This paper describes the
benefits of adding key-synthesized property to AES-GCM using
FPGAs. Presented architectures can be used for applications
which require encryption and authentication with slow chang-
ing keys like Virtual Private Networks (VPNs). Three methods
are selected to implement the SubBytes of AES to increase the
flexibility of the presented work. Furthermore, we propose a
protocol to protect the bitstream of the proposed architectures.
Our architectures were evaluated using Virtex5 and Virtex4
FPGAs. It is shown that the performance of the presented
AES-GCM architectures outperforms the previously reported
ones.
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I. INTRODUCTION

GCM mode is well-suited for wireless, optical, and mag-
netic recording systems due to its multi-Gbps authenticated
encryption speed, outstanding performance, minimal compu-
tational latency as well as high intrinsic degree of pipelining
and parallelism. New communication standards like IEEE
802.1ae [1] and NIST 800-38D have considered employing
GCM to enhance their performance.

Virtual Private Networks (VPNs) are widely employed
to connect private local area networks to remote locations.
VPNs use AES-GCM for encryption and authentication. In
these kind of networks, the secret key used for encryption
and authentication is changed weekly, monthly or yearly.
Current commercial security appliances of VPNs allow a
throughput from 40 to 60 Gbit/s [2],[3]. Another example
of slow changing keys application is embedded system
memory protection [4]. This application requires infrequent
key changes over weeks or months.

Our contribution: In this work, we present efficient
FPGA based architectures for AES-GCM by taking the
advantage of slow changing key applications. The key used
for encryption and authentication is synthesized into the
module structure in order to reduce the consumed area. This
is achieved by combining the GF(2128) multiplier proposed
by [5] with our presented AES. Moreover, we present
a protocol to secure the reconfiguration of the proposed
architectures on FPGAs.

Section II presents an introduction and previous work of
AES-GCM. After that, our proposed architectures of AES-
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Figure 1. GCM mode of operation

GCM are presented in Section III. Then, we report our
implementation results in Section IV. Section V proposes
the protocol which is used for the key exchange and re-
configuration of FPGAs. Finally, Section VI concludes our
work.

II. AES-GCM

Recently, Galois Counter Mode (GCM)[6] was consid-
ered as a new mode of operation of Advanced Encryption
Standard (AES). GCM simultaneously provides confiden-
tiality, integrity and authenticity assurances on the data.
It supports not only high speed authenticated encryption
but also protection against bit-flipping attacks. It can be
implemented in hardware to achieve high speeds with low
cost and low latency. Software implementations can achieve
excellent performance by using table-driven field operations.
GCM was designed to meet the need for an authenticated
encryption mode that can efficiently achieve speeds of 10
Gbps and higher in hardware. It contains an AES engine
in CTR mode and a Galois Hash (GHASH) module as
presented in Fig. 1.

As shown in Fig. 1, the GHASH function (authenti-
cation part) is composed of chained GF(2128) multipliers
and bitwise exclusive-OR (XOR) operations. Algorithm 1
describes the GF(2128) multiplier. Serial implementation of
Algorithm 1 performs the multiplication process in 128
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Algorithm 1: GF(2128) multiplier
Input A, H ∈ GF(2128), F(x) Field Polynomial.
Output X
X=0
for i = 0 to 127 do
if Ai = 1 then
X ←− X ⊕H
end if
if H127 = 0 then
H ←− rightshift(H)
else
H ←− rightshift(H)⊕ F (x)
end if
end for
return X

clock cycles. Parallel method can be implemented like [7]
and it takes only one clock cycle.

In Algorithm 1, if H is fixed, the multiplier is called
fixed operand GF(2128) multiplier [5] which can be used
efficiently (smaller area) on FPGAs as the circuit is special-
ized for H and a new reconfiguration is uploaded into the
FPGA with the new specialization in case of changing the
key.

Karatsuba Ofman Algorithm (KOA) was used by [8] to
reduce the complexity (consumed area) of GF(2128) multi-
plier. In order to reduce the data path of KOA multiplier,
pipelining concept was accomplished by [9]. However the
use of pipelining concept for KOA decreases the data path
and increases the operating frequency, the number of clock
cycles to process a number of 128-bits is increased. This is
because the output is fed back and XORed to the next input
as shown in Fig. 2 and there is a latency resulting from
pipelining. An example of this problem is shown in [9],
their GF multiplier achieves the multiplication of 8 frames
of 128-bits in 19 clock cycles because of using the pipelining
concept. Their throughput is as follow:

Throughput(Mbps) = Fmax(MHz) × 128× (8/19) (1)

Satoh et al. [7] implemented pipelined AES based
on composite field approach for SubBytes stage and
parallel method for implementing GF(2128) multiplier. Two
methods of pipelined AES (composite field and BRAMs)
were accomplished with KOA multiplier by [8] using
virtex4 FPGA. Zhou et al. [9] used three methods for
pipelined AES implementation (composite field, BRAMs,
and LUT) with pipelined KOA to increase the operating
frequency of the overall architecture. Henzen et al. [10]
presented four parallel AES-GCM to support high speed
Ethernet applications with using pipelined KOA for
GF(2128) and three methods for AES like [9].
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Figure 2. (a) KOA based GHAH; (b) Pipelined KOA based GHASH

III. EFFICIENT AES-GCM FOR SLOW CHANGING KEY
APPLICATIONS USING FPGAS

Applications like VPNs and embedded memory protection
are considered slow key changing applications. Therefore,
implementing the key expansion is particularly expensive in
terms of hardware cost. Also, the GF multiplier used for
authentication is a challenge because its data path is longer
than AES and pipelining method does not solve this problem
as described before.

AES has a key expansion or key schedule operation,
which takes the main key and derives from it subkeys
Kr (10, 12, and 14 for AES-128, AES-192, and AES-
256, respectively), where r denotes the corresponding round
number. For our case, we concentrate on AES-128.

In our hardware implementation, constant key special-
ization on the FPGA is used. The precomputed keys are
generated using a C code as shown in Table I. After,
these keys are synthesized into the architecture of AES.
As a result, the key expansion scheme is reduced from the
architecture of AES.

Table I
PRECOMPUTED ROUND KEYS

Main Key 000102030405060708090a0b0c0d0e0f
Precomputed k0 000102030405060708090a0b0c0d0e0f
Precomputed k1 d6aa74fdd2af72fadaa678f1d6ab76fe
Precomputed k2 b692cf0b643dbdf1be9bc5006830b3fe
Precomputed k3 b6ff744ed2c2c9bf6c590cbf0469bf41
Precomputed k4 47f7f7bc95353e03f96c32bcfd058dfd
Precomputed k5 3caaa3e8a99f9deb50f3af57adf622aa
Precomputed k6 5e390f7df7a69296a7553dc10aa31f6b
Precomputed k7 14f9701ae35fe28c440adf4d4ea9c026
Precomputed k8 47438735a41c65b9e016baf4aebf7ad2
Precomputed k9 549932d1f08557681093ed9cbe2c974e
Precomputed k10 13111d7fe3944a17f307a78b4d2b30c5
Precomputed H c6a13b37878f5b826f4f8162a1c8d879
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Figure 3. SubBytes implementation with BlockRAMs (a), with LUTs (b),
with composite field approach (c)

The SubBytes transformation can be implemented either
by BRAMs, composite field approach or direct LUT ap-
proach as shown in Fig. 3. Modern FPGAs contain BRAMs.
Therefore, implementing SubBytes using BRAMs decreases
the consumed slices of the FPGA. The LUT approach is
especially interesting on Virtex5 devices because 6-input
Look-Up-Tables (LUT) combined with multiplexors allow
an efficient implementation of the AES SubBytes stage.
Composite field approach uses the multiplicative inverse of
GF(28) and it is efficient for memoryless platforms.

As we look for high speed architectures, subpipelining is
used to obtain high throughput. Fig. 4 shows synthesized
key AES, where all keys are precomputed and synthesized
into the architecture.

As a result of using key-synthesized AES, the operand H
of the GHASH function is also fixed because it is generated
by applying the block cipher to the zero block. Therefore,
the proposed multiplier by [5] is suitable because it is based
on fixed operand multiplier. Fig. 5 shows the proposed
multiplier by [5]. Algorithm 1 is divided into Algorithm
2 and Algorithm 3. Algorithm 2 is used to precompute the
lookup table based on a fixed H. The lookup table generated
by Algorithm 2 contains 128 vectors of 128 bits. This
table is synthesized into the architecture of the multiplier
by Algorithm 3 to compute the GF(2128) multiplication.
Synthesizing binary 1 values of table T directly perform
logic and binary 0 values do not perform logic because of
XOR operation as shown in Algorithm 3. Therefore, the
consumed area is reduced. The overall architecture of AES-
GCM is presented in Fig. 6. The proposed architecture limits
the logic utilization by specializing the core of AES-GCM
on a per key.
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Figure 4. key-synthesized based AES
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Table II
HARDWARE COMPARISON

FPGA type Design Key SubBytes Slices BRAM Max-Freq Thr. Thr./Slice
MHz Gbit/s Mbps/Slice

Virtex4 AES/GCM ◦ BRAM 4652 80 216.3 27.7 5.95
o Virtex4 AES/GCM ◦ Comp. 10316 0 239 30.6 2.96
u Virtex5 AES/GCM ◦ BRAM 2478 40 242 30.9 12.5
r Virtex5 AES/GCM ◦ Comp. 5512 0 232 29.7 5.38
s Virtex5 AES/GCM ◦ LUT 3211 0 216.3 27.7 8.62

[9] Virtex4 AES/GCM • BRAM 7712 82 285 15.4 1.99
[9] Virtex4 AES/GCM • Comp. 14349 0 277 14.9 1.04
[9] Virtex5 AES/GCM • BRAM 3533 41 314 16.9 4.78
[9] Virtex5 AES/GCM • Comp 6492 0 314 16.9 2.60
[9] Virtex5 AES/GCM • LUT 4628 0 324 17.5 3.77
[8] Virtex4 AES/GCM • Comp. 16378 0 161 20.61 1.26

[11] Virtex4 AES/GCM • BRAM 13200 114 110 14 1.07
[11] Virtex4 AES/GCM • Comp. 21600 0 90 11.52 0.53
[11] Virtex4 AES/GCM • LUT 27800 0 120 15.4 0.55
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Figure 7. Hardware comparison on Virtex4

IV. HARDWARE COMPARISON

We coded our proposed architectures in VHDL and
targeted to Virtex4 (V4LX60ff668-11) and Virtex5
(XC5VLX220). ModelSim 6.5c was used for simulation.
Xilinx Synthesize Technology (XST) is used to perform the
synthesize and ISE9.2 was adopted to run the Place And
Route (PAR).

Table II shows the hardware comparison between our
results and previous work. Note the filled dots in the
”Key” column. Key is synthesized into the architecture when
denoted by ◦, otherwise, the key schedule is implemented
when denoted by •.

On Virtex4 platform, our key-synthesized based AES-

GCM core reaches the throughput of 27.7 Gbps with the area
consumption of 4652 slices and 80 BRAMs. In case of using
composite field SubBytes, it consumes twice more slices,
however no BRAMs are required. Our implementations are
technology independent and can be implemented to other
FPGA devices. On Virtex5, the most efficient implementa-
tion reaches the throughput 30.9 Gbps with 2478 slices and
40 BRAMs.

By comparing our results of AES-GCM to the previous
work, the comparison shows that our performance (Thr.
/Slice) is better than [8],[9],[11]. The operating frequency
presented by [9] is better than ours because they used
pipelined KOA but the overall throughput is lower than
ours because their GHASH achieves the multiplication of
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8 frames of 128-bits in 19 clock cycles. Therefore, their
throughput is calculated shown in Eq. 1.

Fig. 7 presents the comparison between our proposed
architectures and previous work on Virtex4. It is clear
that our work outperforms the previously reported ones.
Therefore, proposed architectures can be used efficiently for
slow changing key applications like VPNs and embedded
memory protection.

V. BITSTREAM SECURITY OF THE PROPOSED
ARCHITECTURES

As a result of synthesizing the key into the architecture,
the generated bitstream is key dependent. Therefore, the
bitstream must be sent in a secure way to the FPGA. Our
analysis focuses on securing the key exchange and the im-
plementation of the dependent-key bitstream on the FPGA.
Fig. 8 shows the proposed protocol which is used to perform
the key exchange and reconfiguration process between two
FPGAs in a secure way. Our scheme assumes that two
FPGAs in two different networks are in a communication.

First, the two servers are communicating in order to
initialize the key (k1) of AES-GCM. This initialization is
performed using public key cryptography. Second, the two
servers generate the bitstream file which contains synthe-
sized k1 AES-GCM. Third, the bitstream is encrypted and
sent to the FPGA. Thanks to Xilinx because Virtex5 and
Virtex4 contain AES engine for supporting secure reconfig-
uration. Fourth, the two FPGAs decrypt the encrypted bit-
stream. Fifth, the synthesized k1 AES-GCM is implemented

on the user logic. Finally, the communication between the
two FPGAs is achieved.

VI. CONCLUSION

In this paper, we presented the performance improvement
of AES-GCM by key-synthesized method. We integrated this
concept using three methods of SubBytes implementation.
The bitstream of the proposed architectures contains infor-
mation related to the used key. Hence, we presented a pro-
tocol to protect the bitstream of the proposed architectures.
Our presented architectures of AES-GCM can be used for
slow changing key applications like VPNs and embedded
memory protection.
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