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Abstract— A non-vector space control method based on
compressive feedback is presented in this paper. The non-vector
space means the control is not performed in traditional vector
space but in the space of sets. Consider an initial set and a
goal set, a stabilizing controller is designed to make the set
dynamics converge to the goal set. The compressive feedback
means the controller works even when only partial elements
of the feedback set are available; that is, the same controller
can still stabilize the set dynamics around the goal set with
the compressive feedback. The controller is applied to visual
servoing by considering images as sets. In this way, image
processing for feature extraction is not required, which is an
essential process in conventional servo methods. Moreover, the
compressive feedback can reduce the size of feedback image.
It is important when the sampling is time consuming such
as imaging using atomic force microscopy (AFM). The visual
servoing formulation of the controller is further applied to
the motion control in nanomanipulations. Simulation results
suggest good performance of the controller. The framework
proposed in this paper can be extended to other systems where
the signals can be represented as sets.

I. INTRODUCTION

The motivation of the research presented in this paper
comes from finding visual servoing methods that are free of
feature extraction. For traditional image based visual servo-
ing methods, prominent features are first extracted from the
image, and then a controller is designed to make the vector
of feature positions converge to a desired value [1]. Two
issues exist with this feature based vector control method.
On the one hand, robust feature extraction and tracking are
difficult in natural environment. In fact, most visual servoing
experiments are based on artificial fiducial markers. On the
other hand, feature extraction suffers from information loss
because only the feature information is used for control.

To address these issues, we present a set based method by
considering the images as sets. Since the addition and scalar
multiplication cannot be properly defined, the space of sets
does not have the linear structure of vector space. Therefore,
we call the approach non-vector space control method. This
method can be applied to the visual servoing problem if
the images are considered as sets with the image pixels
as the elements in the sets. Compared with the traditional
image based visual servoing approaches, the non-vector
space control method uses all the image information, and no
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feature extraction is needed. Initial results for the non-vector
space controller have been reported in [2].

The control method can be extended to the case when only
part of the set elements is known, i.e., incomplete feedback.
We call it compressive feedback in this paper because it
relies on the results from the recent compressive sensing
literature [3]. With the compressive feedback, the non-vector
space control can be applied to visual servoing problem when
the acquisition of a complete image is time consuming. A
typical example is AFM because it can only acquire images
pixel by pixel [4].
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Fig. 1. Non-vector space control schematic for visual servoing

The schematic for the compressive feedback based non-
vector space control method is illustrated in Fig. 1, where the
visual servoing is used as an example for better explanation.
First of all, a desired goal image is chosen. Based on the
compressive feedback image and the goal image, the non-
vector space controller will generate a signal to control the
plant so that the goal image can be achieved.

The non-vector space control comes from a general frame-
work called mutation analysis for set evolutions, which is
proposed by J. P. Aubin [5]. Mutation analysis provides a
natural way to describe the physical phenomenon because
some objects such as shapes and images are basically sets.
It has been applied to image segmentation [6], visual servo-
ing [7], and surveillance networks [8].

Since visual servoing is employed as an application for
the non-vector space control, we also provide a brief re-
view for servoing approaches directly based on the image
intensities instead of feature extraction. Recent approaches
include the kernel-based method [9], the sum-of-squared-
difference of intensities method [10], [11], and the entropy
based method [12]. Our approach is fundamentally different
from above methods because our model is formulated in non-
vector space.

The rest of paper is organized as follows. First of all, the
non-vector space controller is developed in section II when
all the elements in the feedback set are known. In section



III, the controller is extended to the compressive feedback
case when only part of the elements in the feedback set is
available. Finally, the controller is applied to visual servoing
for AFM based nanomanipulations, and simulation results
are presented to verify the controller in section IV.

II. NON-VECTOR SPACE CONTROL BASED
ON FULL FEEDBACK

In this section, the essentials of mutation analysis will be
reviewed and the controller to stabilize set dynamics around
a desired set will be presented. Note that the review in this
section is included for the sake of completeness, and the
details can be found in books such as [5] and [13] .

A. Essentials of Mutation Analysis

To study the set dynamics, a proper metric based on
Hausdorff distance should be equipped with the space of
sets. The distance between a point x ∈Rn and a set K ⊂Rn

is defined as dK(x) = infy∈K ||y − x||2, where || · ||2 is the
Euclidian norm. The projection of x to K is defined as
PK(x) = {y ∈ K : ||y−x||2 = dK(x)}. The distance from a set
X ⊂Rn to another set Y ⊂Rn is d(X ,Y )= supx∈X dY (x); sim-
ilarly, d(Y,X)= supy∈Y dX (y). Note that in general, d(X ,Y ) ̸=
d(Y,X). The Hausdorff distance defined by

dh(X ,Y ) = max{d(X ,Y ), d(Y,X))} (1)

can be considered as a metric in the space of sets. Before
the dynamics of sets can be defined, a few extra definitions
should be introduced. Firstly, let φ : E 7→ Rn with E ⊂ Rn

be a bounded Lipschitz function. Denote the set of all such
functions as BL(E, Rn). Secondly, a tube K(t) ⊂ Rn is a
mapping: K : R+ 7→ 2R

n
, where 2R

n
is the powerset of Rn.

Thirdly, the transition for φ ∈ BL(E, Rn) is defined as

Tφ(t,K0) = {x(t) : ẋ = φ(x), x(0) ∈ K0} (2)

where K0 ⊂Rn can be considered as the set of initial points
of the ordinary differential equation ẋ = φ(x). Note that
Tφ(t,K0) is also a set of points at time t. Fourthly, the
derivative of a tube is the φ that satisfies the following
equation:

lim
∆t→0+

1
∆t

dh(K(t +∆t),Tφ(∆t,K(t))) = 0 (3)

Fifthly, the mutation of set is defined as follows:

K̊(t) = {φ(x) ∈ BL(E, Rn) : Eq. (3) is satisfied} (4)

Finally, the dynamics of sets can be described by the muta-
tion equation as:

φ(x) ∈ K̊(t) (5)

Similarly, the controlled mutation equation can be obtained
by considering the map φ : E ×U 7→ BL(E, Rn) where U is
the set of all possible controls u:

φ(x(t),u(t)) ∈ K̊(t) with u(t) = γ(K(t)) (6)

where γ : 2R
n 7→U is the feedback map from set K(t) to the

control input.

B. Stabilizing Controller based on Full Feedback

Based on mutation analysis, the stabilization problem can
be stated as: Given the goal set K̂ and an initial set K(0),
design a controller u(t) = γ(K(t)) based on current set K(t)
such that dh(K(t), K̂)→ 0 as t → ∞.

A controller can be designed if φ(x(t),u(t)) in the con-
trolled mutation Eq. (6) is linear in u. Without loss of
generality, let φ(x,u) = L(x)u with u ∈Rn and L(x) ∈Rm×n.
Note that the time t is omitted for clear presentation. To
obtain the stabilizing controller, the following Lyapunov
function candidate can be used:

V (K) =
∫

K
d2

K̂(x)dx+
∫

K̂
d2

K(x)dx (7)

Note that V (K) is different from traditional Lyapunov func-
tion in vector space because it is a function of sets, and its
derivative requires special techniques. Based on this function,
we have the following theorem:

Theorem 1: [2], [7] For system L(x)u ∈ K̊(t) with x ∈Rm,
L(x) ∈ Rm×n, u ∈ Rn, and K ⊂ Rm, the following controller
can locally exponentially stabilize it at K̂:

u(t) = γ(K) =−αD(K)+V (K) (8)

where α > 0 is a gain factor and D(K)+ is the Moore-Penrose
pseudoinverse of D(K) ∈ R1×n defined by:

D(K) =
∫

K
d2

K̂(x)(
m

∑
i=1

∂Li

∂xi
)dx+2

∫
K
(x−PK̂(x))

TL(x)dx

−2
∫

K̂
(x−PK(x))TL(PK(x))dx (9)

where Li (i = 1,2, . . . , m) is the i-th row vector in matrix L,
and ∂Li/∂xi is also a row vector with the same dimension.
Using the controller in Eq. (8), the stabilization problem at
the beginning of this subsection can be solved. The proof
of this theorem is given in [7] based on the extension of
Lyapunov theory to the space of sets.

The controller can be applied to visual servoing problem.
In fact, for servoing with grey scale images, x = [x1, x2, x3]

T

where x1 and x2 are the pixel indices, and x3 is the pixel
intensity. The control input u(t) has three translational com-
ponents and three rotational components; therefore, let u(t)=
[vx,vy,vz,ωx,ωy,ωz]

T. Based on the perspective projection
sensing model, we can obtain the following relation:

ẋ(t) = L(x(t))u(t) (10)

where

L =

−1 0 x1 x1x2 −(1+ x2
1) x2

0 −1 x2 1+ x2
2 −x1x2 −x1

0 0 0 0 0 0


Note that above matrix is obtained from the interaction
matrix in visual servoing by assuming the depth and focal
length to be one. From Eq. (10), φ(x(t),u(t))= L(x(t))u(t) is
linear in u; therefore, the controller in Eq. (8) can be applied.

The controller, however, only deals with the case when the
full current set K(t) is available. In some cases such as AFM
based nanomanipulations, it will be time consuming to obtain
the full image set K(t). In this case, only part of K(t) will be



sampled to increase the sampling rate. The reduced sampled
set will be termed as compressive feedback because the idea
comes from the recent compressive sensing literature.

III. NON-VECTOR SPACE CONTROL BASED ON
COMPRESSIVE FEEDBACK

If only a subset of the whole set is used for feedback, then
the stabilization problem can be restated as: Given the goal
reduced sampled set K̂c ⊂ K̂ and an initial reduced sampled
set Kc(0) ⊂ K(0), design a controller u(t) = γ(Kc(t)) based
on current reduced sampled set Kc(t) ⊂ K(t) (compressive
feedback) such that dh(K(t), K̂)→ 0 as t → ∞.

In this section, we will show that under certain condition-
s, the stabilization can be accomplished with compressive
feedback using the same controller in Eq. (8). The essentials
of compressive sensing will be reviewed and relevant results
will be presented for the stability analysis.

A. Compressive Sensing for Feedback

Compressive sensing is a general framework for acquiring
sparse or approximately sparse signals. It has been success-
fully applied to pattern recognition [14] and control [15],
[16]. One of the major results in compressive sensing is that
if a high dimensional signal is sparse or sparse in some
basis, then the signal can be recovered from certain low
dimensional linear observations. Therefore, with the reduced
sampled set Kc(t), if we can recover the original set K(t),
the controller in Eq. (8) can still be used, but the sampling
time can be reduced such as in the case of AFM sampling.
Note that additional time for recovery is still needed.

For an unknown sparse signal x ∈ Rn, the general com-
pressive sensing problem can be summarized as:

y = Ax (11)

where y ∈ Rm is the available linear measurements and
A ∈ Rm×n is the sensing matrix mapping the original high
dimension signal x to a low dimensional measurement y.

With m < n, Eq. (11) is underdetermined and infinite
many solutions exist. In compressive sensing, the problem
is formulated as an optimization problem to minimize the
number of nonzero elements in x. In this case, x can be
successfully recovered from y provided that the sensing
matrix A satisfies specific property to insure that the essential
information in x is retained in y. The most popular property
is the restricted isometry property.

Definition 1: [17] A matrix A ∈ Rm×n satisfies the re-
stricted isometry property (RIP) of order S if there exists a
constant δS ∈ (0,1) such that:

(1−δS)||x||22 ≤ ||Ax||22 ≤ (1+δS)||x||22 (12)

for all the S-sparse vectors x ∈ Rn where an S-sparse vector
means it has at most S nonzero elements.

The verification of a matrix satisfying RIP has combi-
natorial computation complexity. But random matrices such
as Gaussian matrix, binary matrix, or randomly sampled
Fourier matrix have shown to satisfy the RIP with very
high probability [17]. Therefore, a sparse signal in the time

domain can be reconstructed from a small set of random
Fourier coefficients [18]. Similarly, a sparse signal in the
frequency domain can be reconstructed with a small set of
random samples in the time domain.

For our problem where only a subset of the full set is
sampled, sensing matrix can be designed to satisfy the RIP.
Take the image set for example, let the signal x ∈ Rn be
obtained from the image by stacking the intensity values
row by row. Moreover, assume it is sparse in the frequency
domain, i.e., the coefficient vector x′ ∈ Rn after the discrete
Fourier transform (DFT) is sparse. Let the DFT matrix be
Ψ∈Rn×n, then x′ =Ψx. Moreover, let Φ∈Rm×n be a matrix
formed by uniformly selecting m rows at random from the n-
dimensional standard basis. Then if y = Φx = ΦΨ−1x′ where
y is the measurements, this corresponds to uniformly sample
the pixel intensities at random. The recoverability of x′ from
y is guaranteed by the following lemma:

Lemma 1: [19] Let Φ and Ψ be as defined before, then
matrix A = ΦΨ−1 satisfy the RIP of order S with very high
probability if

m ≥C ·S · (logn)4 (13)

where C is a constant independent of m and n.
The matrix A in the above lemma can be considered as

the sensing matrix for sparse vector x′. Therefore, if x′ is
S-sparse, it can be recovered from y, and the original signal
can be obtained from x = Ψ−1x′.

Once the original signal can be recovered, the stabilization
problem is the same as discussed in previous section. The
signal recovery, however, still needs extra time especially
when the signal’s dimension is high. Therefore, it is better
to directly use the compressive feedback without the recovery
process, which is discussed in the beginning of this section.
In this case, further investigations should be performed.

B. Stabilizing Controller based on Compressive Feedback

With compressive feedback, the mutation equation is still
the same. Since both Kc(t)⊂ K(t) and K̂c ⊂ K̂ are still sets,
the same controller can be used to locally exponentially
stabilize Kc at K̂c:

u(t) = γ(Kc) =−αD(Kc)
+V (Kc) (14)

where α > 0 is a gain factor, D(Kc)
+ is the pseudoinverse

of D(Kc)∈R1×n defined by replacing K with Kc and K̂ with
K̂c in Eq. (9), and V (Kc) is obtained similarly.

With the above controller, we have dh(Kc(t), K̂c)→ 0 as
t →∞. But our goal of dh(K(t), K̂)→ 0 may not be achieved.
It is possible that there exists another set K̃ with K̂c ⊂ K̃. This
can happen if the cardinality of K̂c is much less than that of
K̂. In this case, Kc(t) may actually converge to K̃ instead
of K̂. To avoid such circumstances, we need to show that if
dh(Kc, K̂c)→ 0, then dh(K, K̂)→ 0 under certain conditions.

In fact, with the conditions from compressive sensing, we
can show that dh(Kc, K̂c)→ 0 ⇒ dh(K, K̂)→ 0. Still take the
image as example. Let xk be the vector of all the intensities
of image set K. Moreover, let any element in K be a three
dimensional vector with the first two as the pixel indices



and the third as the intensity. Without loss of generality, let
the elements of set K be obtained in the same order as the
intensity vector xk is formed. Similarly, let x̂k, xkc , and x̂kc be
the vector of all the intensities of image sets K̂, Kc, and K̂c,
respectively. Then the following lemma can be established.

Lemma 2: dh(K, K̂)→ 0 if and only if ||xk − x̂k||2 → 0
Proof: (1) First of all, let’s show dh(K, K̂) → 0 ⇒

||xk − x̂k||2 → 0. By the definition of Hausdorff distance,
if dh(K, K̂) → 0, then for any p = [p1, p2, p3]

T in set K,
we have minq∈K̂ ||p − q||2 → 0. Let q = [q1, q2, q3]

T be
the element in K̂ when the minimum is achieved, then
(p1 − q1)

2 +(p2 − q2)
2 +(p3 − q3)

2 → 0. Because the first
two coordinates in p and q are the pixel indices, (p1 −
q1)

2 + (p2 − q2)
2 cannot approach zero if the indices are

different. Therefore, p1 = q1 and p2 = q2, which means p
and q are at the same location of K and K̂. Moreover, we
have (p3 −q3)

2 → 0. Consequently, we have ||xk − x̂k||2 → 0
since ||xk − x̂k||22 is the sum of all the square of intensity
differences for the same pixel indices such as (p3 −q3)

2.
(2) Second, let’s show ||xk − x̂k||2 → 0 ⇒ dh(K, K̂)→ 0.

Let p = [p1, p2, p3]
T ∈ K and q = [q1, q2, q3]

T ∈ K̂ be two
arbitrary elements with the same pixel indices, i.e., p1 = q1
and p2 = q2. Since ||xk − x̂k||2 → 0, we have (p3−q3)

2 → 0.
Then for p ∈ K, we have minq′∈K̂ ||p− q′||2 ≤ ||p− q||2 →
0. For any other elements in K, we also have similar
arguments. Therefore, maxp′∈K minq′∈K̂ ||p′−q′||2 → 0. Sim-
ilarly, we have maxq′∈K̂ minp′∈K ||q′− p′||2 → 0. Therefore,
dh(K, K̂)→ 0 by the definition of Hausdorff distance.

Although the above arguments are based on images, they
can be applied to other signals. In fact, any signal can be
considered as a set with each element a two dimensional
vector, where the two numbers in the vector represent a
signal value and its corresponding location in the signal.
Based on previous two lemmas, we have the following
proposition:

Propsition 1: Assume xk ∈Rn and x̂k ∈Rn be S-sparse in
the frequency domain, xkc ∈ Rm and x̂kc ∈ Rm be obtained
uniformly at random from xk and x̂k, respectively. If

m ≥ 2 ·C ·S · (logn)4

where C is a constant. Then with high probability, we have
dh(K, K̂)→ 0 if dh(Kc, K̂c)→ 0.

Proof: With random sampling, we have xkc = Φxk =
ΦΨ−1x′k = Ax′k where Φ, Ψ, and A are defined as in lemma
1, x′k is the DFT coefficients for xk. Similarly, we have x̂kc =
Φx̂k =Ax̂′k. Since m≥ 2 ·C ·S ·(logn)4, A∈Rm×n satisfies the
RIP with order 2S from lemma 1. Let the RIP constant be
δ2S. Since xk ∈Rn and x̂k ∈Rn are S-sparse in the frequency
domain, x′k and x̂′k are S-sparse signals; therefore, x′k − x̂′k is
2S-sparse.

Using lemma 2, we have ||xkc − x̂kc ||2 → 0 from
dh(Kc, K̂c) → 0. Form the RIP property, we have ||xkc −
x̂kc ||22 = ||Ax′k−Ax̂′k||22 = ||A(x′k− x̂′k)||22 ≥ (1−δ2S)||x′k− x̂′k||22.
Since 1−δ2S > 0, we have ||x′k − x̂′k||2 → 0. Since the DFT
matrix Ψ is orthonormal,

||x′k − x̂′k||2 = ||Ψ−1(x′k − x̂′k)||2 = ||xk − x̂k||2

Therefore, ||xk− x̂k||2 → 0. Based on lemma 2 again, we have
dh(K, K̂)→ 0.

This proposition suggests that, under certain conditions,
the controller in Eq. (14) can be employed for the stabiliza-
tion problem proposed at the beginning of this section.

IV. APPLICATIONS AND TESTING

To validate the proposed method, we choose the applica-
tions of AFM based nanomanipulations. Originally designed
as an imaging tool at the nano-scale, AFM has widely been
applied to manipulate various nano-objects by using a sharp
tip as a nano-scale robotic manipulator [4]. Examples include
cell analysis [20], nanosensor fabrication [21], fast imaging
on dynamic change samples [22], etc.

Despite the wide applications of AFM based nanomanipu-
lations, many problems still exist. One of the major problems
is the inaccurate position control. Since nanomanipulation is
achieved by moving the AFM tip from one position to a
desired position, it relies on accurate point-to-point position
control. Currently, piezoelectric tubes are widely used to
actuate AFM’s probe movement. Nevertheless, the inherent
nonlinearities of piezoelectric actuators such as hysteresis,
creep, vibration, and thermal drift make high precision
position control extremely difficult [23].

Two methods are frequently used to obtain accurate po-
sition control. The first one relies on position sensors to
perform feedback control. The sensors, however, can only be
added to the piezo tube instead of AFM’s tip. Moreover, sen-
sor noise in the nanoscale makes them incapable to provide
accurate feedbacks. This is why for high performance AFM,
the open loop scanner is still used to achieve atom level
resolution (such as the Multimode AFM, Bruker Inc.). The
second method tries to eliminate all the adverse effects by
a feedforward compensation based on model inversion [24];
however, this method requires model identification process
and the model may also be time varying.

The non-vector space control method provides another
approach for precise position control. The underlying idea
is to use AFM image as feedback to realize closed-loop
control. In fact, the AFM tip can be considered as a single
pixel camera with two degree of freedoms. By moving the
AFM tip locally in an area, a current local scan image can be
obtained [25]. If a desired local scan image around a desired
tip position is given, then the non-vector space controller can
be used to steer the current local scan image to the desired
image. Consequently, the tip position can also be steered to
the desired position.

A. Application to Visual Servoing for Nanomanipulation

The two cases with full and compressive feedback can be
implemented using the controllers in Eq. (8) and Eq. (14),
respectively. AFM tip movement is a special case with only
two translational velocity components vx and vy as the inputs.
Therefore, φ(x,u) is obtained from Eq. (10) as:

φ(x,u) = Lu



where

L =

−1 0
0 −1
0 0


is a constant matrix. Therefore, D(K) in the controller given
by Eq. (9) is simplified to:

D(K) = 2{
∫

K
[x−PK̂(x)]

Tdx−
∫

K̂
[x−PK(x)]Tdx}L

The controller based on compressive feedback can be derived
similarly by replacing K with Kc and K̂ with K̂c.

The basic validation strategy for full feedback case is
described as follows [2]. First of all, a large area of interest
is scanned and an image I is obtained. Within image I, a
small patch is chosen as the desired image K̂. Then the
AFM tip performs a local scan around its current tip position
to obtain the current image K(t). Based on the two image
sets, a control input u is calculated to drive the AFM tip
to an updated position. Repeat this process by updating the
current image once the AFM tip reaches a new position.
Eventually, the desired image can be achieved, and the
AFM tip can be steered to the desired position. Note that
although u = [vx, vy]

T is the velocity, it can be considered
as displacement if the time interval for each iteration is the
same.

The compressive feedback case is similar. Instead of
obtaining a full local scan image around the tip’s position,
random samples are obtained based on a random sampling
matrix. Note that random sampling for AFM may be difficult
because of the special working principle of AFM, which uses
a sharp tip to scan line by line on top of sample surface. But a
continuous trajectory can be generated to pass all the random
points and only visit each point once. With this trajectory,
the sampling time can be significantly less than the full local
scan if the number of random samples is small.

As our first step, we test our controller using simulations
on AFM images. An entire image is used as the image I
discussed above. Then, K and K̂, sufficiently close to each
other, are chosen from I. Based on K̂ and K, u is calculated
to update the position. With the updated position, a new K
can be obtained, and a new u can be derived. This process
will repeat until dh(K, K̂) = 0. The simulation procedure for
compressive feedback is similar to the full feedback case
except that only a uniformly randomly sampled subset of
both goal and current images are used.

The simulation is performed based on a DNA image with
a scan size of 6.8 µm and image size 256× 256 pixels as
shown in Fig. 2. The initial and goal images, with image
size 30× 30 pixels, are labeled and enlarged on the right
side of the entire AFM image. The pixel distance between
two images is eight in both horizontal and vertical directions
(corresponding to 212.5 nm in real environment).

B. Testing Results based on Full Feedback

The simulation results for full feedback case are shown
in Fig. 3, where the Lyapunov function values and the
Hausdorff distances with respect to the iterations are plotted.

Initial Image

Goal Image

Fig. 2. Simulation images for the non-vector space control

From the figure, both the Lyapunov function value and
Hausdorff distance converge to zero after five iterations,
which means the control goal is achieved.

Note that the Hausdorff distance increases at the fourth
iteration. This is because the decrease of Lyapunov function
cannot guarantee the decrease of Hausdorff distance. But
once the Lyapunov function value goes to zero, the Hausdorff
distance must also approach zero [2].

The results for the full feedback case have been reported
in [2], but we still include the results here for comparison
with the compressive feedback case. In addition, a different
simulation image is used in our previous paper.
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Fig. 3. Simulation results of non-vector space control with full feedback

C. Testing Results based on Compressive Feedback

For this simulation, the uniformly randomly sampled com-
pressive feedback contains 500 pixels, which is almost half of
the full feedback case with 900 pixels. Note that the number
of random samples depends on the sparsity level as shown in
Eq. (13), but in real applications, we cannot get the sparsity
without obtaining the entire local image and performing a
DFT. Therefore, we choose the number 500 empirically.

In order to make a comparison with the full feedback
case, we use the same initial and goal positions in previous
simulation shown in Fig. 2. Since the random samples are
different for each time, there can be many different results.
One of the results is shown in Fig. 4, where the number of
iterations is only four. Furthermore, the computation time for
the controller per iteration using the compressive feedback
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Fig. 4. Simulation results of non-vector space control with compressive
feedback

(0.88 s) is much smaller than the full feedback one (2.86 s).
This result shows that the non-vector space controller based
on compressive feedback can achieve the same objective as
the full feedback with reduced computation time. In real
implementations, more time reduction can be expected since
only a subset of the entire local image is needed to be
sampled.

Proposition 1 suggests that the controller only works with
high probability. To investigate this problem, 50 simulations
are conducted to examine the convergence. Among the 50
simulations, only three of them cannot converge to the
desired image. After changing the gain value α in the
controller, however, these three exceptions can also converge.
Therefore, the performance for the compressive feedback
based controller is promising.

With this controller, the accuracy can also be quite high. In
fact, the accuracy depends on the scan size of AFM image.
Consider a 512×512 pixels AFM image with the scan size of
1 µm, the accuracy of this non-vector space control method
will reach at least 2 nm according to the simulation.

V. CONCLUSIONS

This paper presents a non-vector space control method
based on the dynamics of sets. It is shown that a controller
can be designed when the full set is available for feedback.
Based on ideas from compressive sensing, the controller is
extended to the case when only part of the full set is available
for feedback. This case, called compressive feedback in this
paper, can be useful when the feedback samples are difficult
to obtain or when it takes a long time to obtain the samples.
The non-vector space controller is applied to visual servoing
problem by considering images as sets. With this approach,
there is no need to extract features in the image, and all
the information in the image can be used. The controller
is validated using simulations on AFM images. The results
show that the compressive feedback can have the same
performance as the full feedback case with almost only half
of the feedback samples. The approach presented in this
paper can be applied to AFM based nanomanipulations to
achieve real time high precision motion control.
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