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Abstract

Bayesian compressive sensing (CS) is considered for signals and images that are sparse in a wavelet

basis. The statistical structure of the wavelet coefficients is exploited explicitly in the proposed model,

and therefore this framework goes beyond simply assuming that the data are compressible in a wavelet

basis. The structure exploited within the wavelet coefficients is consistent with that used in wavelet-

based compression algorithms. A hierarchical Bayesian model is constituted, with efficient inference via

Markov chain Monte Carlo (MCMC) sampling. The algorithm is fully developed and demonstrated using

several natural images, with performance comparisons to many state-of-the-art compressive-sensing

inversion algorithms.

Index Terms
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I. INTRODUCTION

Over the last two decades there has been significant research directed toward development of

transform codes, with the discrete-cosine and wavelet transforms [1] constituting two important

examples. The discrete cosine transform (DCT) is employed in the JPEG standard [2], with

wavelets employed in the JPEG2000 standard [3]. Wavelet-based transform coding [4] explicitly

exploits the structure [5] manifested in the wavelet coefficients of typical data. Specifically,

for most natural data (signals and images) the wavelet coefficients are compressible, implying
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that a large fraction of the coefficients may be set to zero with minimal impact on the signal-

reconstruction accuracy.

A discrete wavelet transform may be implemented via a series of high- and low-pass filters,

with decimation performed after each such filtering [1]. This naturally yields a quadtree structure

of the wavelet coefficients for an image [1], with each wavelet coefficient generally serving as

a “parent” for four “children” coefficients. The wavelet coefficients at the coarsest scale serve

as “root nodes” for the quadtrees, with the finest scale of coefficients constituting the “leaf

nodes”. For most natural images the negligible wavelet coefficients tend to be clustered together;

specifically, if a wavelet coefficient at a particular scale is negligible, then its children are also

generally (but not always) negligible. This leads to the concept of “zero trees” [4] in which a

tree or subtree of wavelet coefficients are all collectively negligible. The structure of the wavelet

coefficients, and specifically zero trees, are at the heart of most wavelet-based compression

algorithms, and specifically JPEG2000.

Transform coding, particularly JPEG and JPEG2000, are now widely used in digital media.

One observes, however, that after the digital data are measured and then transform compressed,

one often “throws away” a large fraction of the transform coefficients, while still achieving

accurate data reconstruction. This seems wasteful, since there are many applications for which

data collection is expensive. For example, the collection of magnetic-resonance imagery (MRI)

is time consuming and often uncomfortable for the patient, and hyperspectral cameras require

measurement of images at a large number of spectral bands. Since collection of such data is

expensive, and because after transform encoding a large fraction of the data are ultimately

discarded in some sense, this suggests the following question: Is it possible to measure the

informative part of the data directly, thereby reducing measurement costs, while still retaining

all of the informative parts of the data? This goal has spawned the new field of compressive

sensing (or compressed sensing) [6], [7], [8], in which it has been demonstrated that if the

signal of interest is sparse in some basis, then with a relatively small number of appropriately

designed projection measurements the underlying signal may be recovered exactly. If the data

are compressible but not exactly sparse in a particular basis (many coefficients are negligibly

small, but not exactly zero), one may still employ compressive sensing (CS) to recover the data

up to an error proportional to the energy in the negligible coefficients [9]. Two of the early

important applications of CS are in MRI [10] and in development of new hyperspectral cameras
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[11].

Details on how to design the compressive-sensing projection vectors, and requirements on the

(typically relatively small) number of such projections, may be found in [6], [7], [8], [9]. Assume

that the set of N CS projection measurements are represented by the vector v, and that these

measurements may be represented as v = Φθ, where θ represents an M ×1 vector of transform

coefficients, and Φ is an N ×M matrix constituted via the compressive-sensing measurements;

in CS it is desired that N ¿ M . Given θ, one may recover the desired underlying signal via

an inverse transform (e.g., an inverse DCT or wavelet transform, depending on which basis is

employed, in which θ is sparse or compressible). Note that in CS we do not measure θ directly,

but rather projections on θ. One must infer θ from v, this generally an ill-posed inverse problem

because N < M . To address this problem, almost all practical CS inversion algorithms seek to

solve for θ with the following `1-regularized optimization problem:

θ = argmin
θ̃

‖θ̃‖`1 s.t. v = Φθ̃. (1)

If θ is sparse, with S non-zero coefficients (S ¿ M ), then CS theory indicates that if Φ

is constructed properly (more on such constructions in Section III) then with “overwhelming

probability” [6], [7], [8], [9] one may recover θ exactly if N > O(S · log(M/S)); similar

relationships hold when θ is compressible but not exactly sparse.

The aforementioned `1 inversion may be viewed as a maximum a posteriori estimate for θ

under the assumption that each component of θ is drawn i.i.d. from a Laplace prior [12]. This

i.i.d. assumption also implies that (1) assumes that the S non-zero or important coefficients may

exist among any of the M components in θ. While this leads to development of many algorithms

for CS inversion (see [12], [13], [14], [15], [16], among many others), such a formulation does

not exploit all of the prior information available about the transform coefficients θ. For example,

as discussed above with respect to the wavelet transform, there is anticipated structure in θ that

may be exploited to further constrain or regularize the inversion, ideally reducing the number of

required CS measurements N . This concept has been made rigorous recently for sparse θ [17],

as well as for compressible θ [18]; these papers demonstrate that one may achieve accurate CS

inversions with substantially fewer projection measurements (smaller N ) if known properties of

the structure of θ are exploited properly.

As indicated above, if a signal is compressible in a wavelet basis, typically θ will be charac-
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terized by structure within the quadtrees, that may be exploited when performing CS inversion.

In [18] the authors leveraged the structure of the wavelet transform to substantially improve

the quality of CS inversions, also providing important theoretical foundations for the required

number of measurements N . The work reported here is different from that in [18] in the following

respect. In [18] the authors “hard-code” a set of models for the wavelet coefficients, exploiting

the aforementioned properties of how negligible wavelet coefficients are typically distributed in

quadtrees; this yields a single deterministic estimate for the underlying transform coefficients

θ, and hence for the underlying signal. In this paper we address this problem from a statistical

setting, building upon the Bayesian CS framework introduced in [12]. The structure in the wavelet

coefficients is imposed within a Bayesian prior, and the analysis yields a full posterior density

function on the wavelet coefficients. Consequently, in addition to estimating the underlying θ,

we also provide “error bars” which provide a measure of confidence in the inversion. Such error

bars are useful for at least two reasons: (i) when inference is performed subsequently on θ, one

may be able to place that inference within the context of the confidence in the CS inversion;

and (ii) typically one may not know a priori how many transform coefficients are important in

a signal of interest, and therefore one will generally not know in advance the proper number of

CS measurements N – one may use the error bars on the inversion to infer when enough CS

measurements have been performed to achieve a desired accuracy.

The remainder of the paper is organized as follows. In Section II we review the structure

inherent to wavelet coefficients in natural images, and in Section III we describe how this

structure may be exploited in a Bayesian CS inversion framework. Example results are presented

in Section IV, with comparisons to many of the state-of-the-art CS algorithms, which are based

primarily on (1). Conclusions and discussions of future work are provided in Section V.

II. WAVELET TREE STRUCTURE

The discrete wavelet transform may be represented in matrix form as [1]

x = Ψθ (2)

where x is an M × 1 real vector of data, Ψ is an M ×M matrix with columns corresponding

to orthonormal scaling and wavelet basis vectors, and θ represents the M ×1 vector of wavelet-

transform coefficients. The wavelet coefficients that constitute θ may be represented in terms of
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a tree structure, as depicted in Figure 1 for an image. The coefficients at scale s = 1 correspond

to “root nodes”, and the coefficients at the largest scale s = L (L = 3 in Figure 1) correspond

to “leaf nodes”; the top-left block in Figure 1 corresponds to the scaling coefficients, denoted

as s = 0, which capture the coarse-scale representation of the image. Each wavelet coefficient

at scales 1 ≤ s ≤ L− 1 has four “children” coefficients at corresponding scale s + 1, and it is

the statistical relationships between the parent and children coefficients that is exploited in the

proposed CS inversion model.

s=1 s=2 s=3

s
=

1
s
=

2
s
=

3

s=0

s
=

0

Fig. 1. Wavelet decomposition of an image, with the tree structure depicted across scales. The wavelet transform is performed

with three wavelet decomposition levels, and two wavelet trees are shown in the figure. The top-left block (s = 0) represents

scaling coefficients, and other regions are wavelet coefficients.

The statistics of the wavelet coefficients may be represented via the hidden Markov tree (HMT),

in which the structure of the wavelet tree is exploited explicitly. In an HMT model [5] each

wavelet coefficient is assumed to be drawn from one of two zero-mean Gaussian distributions,

these distributions defining the observation statistics for two hidden states. One of the states is

a “low” state, defined by a small Gaussian variance, and the “high” state is defined by a large

variance. Intuitively, if a wavelet coefficient is relatively small it is more likely to reside in the

“low” state; by contrast, a large wavelet coefficient has a high probability of coming from the

“high” state. The probability of a given state is conditioned on the state of the parent coefficient,

yielding a Markov representation across scales. The Markov transition property is represented

by a 2 × 2 matrix P , with P (i, j) representing the probability that children coefficients are in

state j given that the associated parent coefficient is in state i; i = 1 and j = 1 (arbitrarily)
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correspond to the “low” state, and i = 2 and j = 2 correspond to the “high” state. Typically

P (1, 1) = 1− ε and P (1, 2) = ε, where ε > 0 satisfies ε ¿ 1. This form of P imposes the belief

that if a parent coefficient is small, its children are also likely to be small. We also note that

P generally varies between different scales and across different wavelet quadtrees. For the root

nodes, P is a 1× 2 vector, representing an initial-state distribution.

When modeling the statistics of wavelet coefficients for a given signal, the observation is the

wavelet coefficient, and for each of the two states the observation is drawn from a zero-mean

Gaussian with associated variance (small variance for the “low” state and a relatively large

variance for the “high” state). In compressive sensing we do not observe the wavelet coefficients

directly, but rather observe projections of these coefficients. The form of the HMT will be

employed within the compressive-sensing inversion, thereby explicitly imposing the belief that

if a given coefficient is negligible, then its children coefficients are likely to be so as well. This

imposes important structure into the form of the wavelet coefficients across scales, and it is

consistent with state-of-the-art wavelet-based compression algorithms that are based upon “zero

trees” (subtrees of wavelet coefficients that may all be set to zero with negligible effect on the

reconstruction accuracy) [4], [19]. The motivation for the HMT construct is discussed in detail

in [5].

III. TREE-STRUCTURED WAVELET COMPRESSIVE SENSING

A. Compressive Sensing with Wavelet-Transform Coefficients

Assume a discrete signal/image is represented by the M -dimensional vector x, and that it is

compressible in a wavelet basis represented by the M ×M matrix Ψ (defined as above). The

CS measurements v = ΦΨT x = Φθ, where Φ is an N × M dimensional matrix (N < M ),

and θ denotes an M -dimensional vector of wavelet-transform coefficients (θ = ΨT x). The rows

of Φ correspond to randomly defined projection vectors [7], [8]. For most natural signals θ is

compressible, meaning that a large fraction of the coefficients in θ may be set to zero with

minimal impact on the reconstruction of x; this compressibility property makes it possible to

infer θ based on a small number of projection measurements, assuming that Φ is designed

properly. The theoretical justification for compressive sensing, for design of Φ, and for defining

an appropriate N for a given M may be found in [7], [8].
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Assume only m transform coefficients in θ are significant, and the other M −m coefficients

are negligibly small. We rewrite θ = θm + θe, where θm represents the original θ with the

M −m smallest coefficients set to zero, and θe represents θ with the largest m coefficients set

to zero. We therefore have

v = Φθ = Φθm + Φθe = Φθm + ne, (3)

where ne = Φθe. According to Section II, each element of θe can be modeled by a zero-mean

Gaussian with small variance (as being drawn from a “low” state), and thus each element of

ne, which is a linear combination of elements in θe, can also be modeled by a zero-mean

Gaussian with appropriate variance. Further, if we also assume the CS measurements are noisy,

with zero-mean Gaussian noise n0, we have

v = Φθm + ne + n0 = Φθm + n, (4)

where the elements of n can be represented by a zero-mean Gaussian noise with unknown

variance σ2, or unknown precision αn = σ−2 (to be inferred in the CS inversion).

For the wavelet-based CS reconstruction problem, given measurements v and the random

projection matrix Φ, the objective is to estimate the values and the locations of the nonzero

elements in the transform coefficients θm. For simplicity we henceforth use θ to replace θm

in (4), with the understanding that θ is now sparse (a large fraction of coefficients are exactly

zero).

B. Tree-Structured Wavelet CS Model

Baraniuk et al. [18] demonstrate that it is possible to improve compressive-sensing recon-

struction performance by leveraging signal models (structure within the transform coefficients),

by introducing dependencies between values and locations of the signal coefficients. Two greedy

CS algorithms, CoSaMP [20] and iterative hard thresholding (IHT) [21], are implemented in

[18], with the wavelet tree structure incorporated into the inversion models.

In this paper the proposed tree-structured wavelet compressive sensing (TSW-CS) model is

constructed in a hierarchical Bayesian learning framework. In this setting we infer a full posterior

density function on the wavelet coefficients, and therefore we may quantify our confidence in

the inversion (e.g., the variance about the mean inverted signal). Within the Bayesian framework
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we impose a prior belief for the model parameters, represented in terms of prior distributions on

the model parameters. The posterior distribution for all model parameters and for the wavelet

coefficients are inferred based on the observed data v. The structural information embodied by

the wavelet tree (the parent-children relationship and the propagation of small coefficients across

scales) is incorporated in the prior, and is therefore imposed statistically.

We utilize a spike-and-slab prior, which has been used recently in Bayesian regression and

factor models [22], [23], [24], [25], [26]. The prior for the ith element of θ (corresponding to

the ith transform coefficient) has the form

θi ∼ (1− πi)δ0 + πiN (0, α−1
i ), i = 1, 2, ...M, (5)

which is a mixture of two components. The first component δ0 is a point mass concentrated

at zero, and the second component is a zero-mean Gaussian distribution with (relatively small)

precision αi; the former represents the zero coefficients in θ and the latter the non-zero coef-

ficients. This is a two-component mixture model, and the two components are associated with

the two states in the HMT. Related models of this type have been employed previously for

wavelet-based clustering [27]. The form of this model is different from an HMT [5] in that the

coefficient associated with the “low” state is now explicitly set to zero, such that the inferred

wavelet coefficients are explicitly sparse (many coefficients exactly zero). However, like in the

HMT, we impose the belief that if a parent coefficient is zero, its children coefficients are likely

to also be zero. To achieve this goal, the key to the model is imposition of dependencies in the

πi across scales, in the form discussed above.

The mixing weight πi, the precision parameter αi, as well as the unknown noise precision αn,

are learned from the data. The proposed Bayesian tree-structured wavelet (TSW) CS model is
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summarized as follows:

v|θ, αn ∼ N (Φθ, α−1
n I), (6a)

θs,i ∼ (1− πs,i)δ0 + πs,iN (0, α−1
s ), with πs,i =





πr, if s = 1,

π0
s , if 2 ≤ s ≤ L, θpa(s,i) = 0,

π1
s , if 2 ≤ s ≤ L, θpa(s,i) 6= 0,

(6b)

αn ∼ Gamma(a0, b0), (6c)

αs ∼ Gamma(c0, d0), s = 1, ..., L, (6d)

πr ∼ Beta(er
0, f

r
0 ), (6e)

π0
s ∼ Beta(es0

0 , f s0
0 ), s = 2, ..., L, (6f)

π1
s ∼ Beta(es1

0 , f s1
0 ), s = 2, ..., L, (6g)

where θs,i denotes the ith wavelet coefficient (corresponding to the spatial location) at scale s,

for i = 1, ..., Ms (Ms is the total number of wavelet coefficients at scale s), πs,i is the associated

mixing weight, and θpa(s,i) denotes the parent coefficient of θs,i. In (6b) it is assumed that all the

nonzero coefficients at scale s share a common precision parameter αs. It is also assumed that

all the coefficients at scale s with a zero-valued parent share a common mixing weight π0
s , and

the coefficients at scale s with a nonzero parent share a mixing weight π1
s . We may also let each

coefficient maintain its own πs,i, but we found from the experiments that the performance is very

similar to that from the model presented in (6) (sharing common π0
s and π1

s for each scale), and

(6) is much simpler because there are less parameters in the model. Gamma priors are placed

on the noise precision parameter αn and the nonzero coefficient precision parameter αs, and

the posteriors of these precisions are inferred according to the data. The mixing weights πr, π
0
s

and π1
s are also inferred, by placing Beta priors on them. To impose the structural information,

depending on the scale and the parent value of the coefficients, different Beta priors are placed.

For the coefficients at the root node, a prior preferring a value close to one is set in (6e), because

at the low-resolution level many wavelet coefficients are nonzero; for the coefficients with a

zero-valued parent, a prior preferring zero is considered in (6f), to represent the propagation of

zero coefficients across scales; finally, (6g) is for the coefficients with a nonzero parent, and

hence no particular preference is considered since zero or nonzero values are both possible (the
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hyperparameters es1
0 and f s1

0 impose a uniform prior on π1
s ). Note that the model presented in

(6) does not include the scaling coefficients (coefficients at scale s = 0); in Section III-D we

extend the model to also estimate the scaling coefficients.

The prior imposed in (6f) implies that if a parent node is zero, with high (but not unity)

probability its children coefficients will also be zero. The form of the model reduces the degrees

of freedom statistically in the solution space RM , since we impose the belief that particular

forms of wavelet coefficients are more probable. As opposed to the work in [18], we do not

make an explicit (“hard”) imposition of the structure of the coefficients, but rather impose the

structure statistically.

The desired structural information is naturally integrated into the proposed TSW-CS model. It

can be seen that the two components in the spike-and-slab prior are analogous to the two states in

the HMT model, and the zero-mean Gaussian distributions are analogous to the observation func-

tions of the HMT. The transition-probability matrix P at scale s (s > 1) in the HMT is now repre-

sented by the mixing weights π0
s and π1

s , with P (1, 1) = 1− π0
s , P (1, 2) = π0

s , P (2, 1) = 1− π1
s ,

and P (2, 2) = π1
s (the initial-state distribution is represented by [1− πr, πr]). Note that π0

s and

π1
s represent the summary of the overall (Markovian) statistical properties for all the wavelet

coefficients at scale s, while for each particular coefficient θs,i, an associated posterior of mixing

weight, π̃s,i, will be inferred (see Section III-C for the inference).

We also note that the HMT has recently been employed explicitly within CS inversion, for

wavelet-based CS [28]. In that previous work one must first train an HMT model on representative

example data, and then that model is used within the CS inversion. The difficulty of such an

approach is that one must have access to training data that is known a priori to be appropriate

for the CS data under test. By contrast, in the proposed inference engine, in addition to inferring

a posterior distribution on the wavelet coefficients, posterior distributions are jointly inferred on

the underlying model parameters as well. There is therefore no need for a priori training data. In

this sense the proposed method infers the wavelet coefficients and a statistical model for these

coefficients, with the model consistent with the expected statistical structure typically inherent

to the wavelet transform.
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C. MCMC Inference

We implement the posterior computation by an Markov chain Monte Carlo (MCMC) method

[29] based on Gibbs sampling, where the posterior distribution is approximated by a sufficient

number of samples. These samples are collected by iteratively drawing each random variable

(model parameters and intermediate variables) from its conditional posterior distribution given

the most recent values of all the other random variables. The priors of the random variables are

set independently as

p(αn, {αs}s=1:L, πr, {π0
s , π

1
s}s=2:L) =

Gamma(a0, b0)

{
L∏

s=1

Gamma(c0, d0)

}
Beta(er

0, f
r
0 )

{
L∏

s=2

Beta(es0
0 , f s0

0 )Beta(es1
0 , f s1

0 )

}
. (7)

Under this setting the priors are conjugate to the likelihoods, and the conditional posteriors used

to draw samples can be derived analytically. At each MCMC iteration, the samples are drawn

from the following conditional posterior distributions:

• p(θs,i|−) = (1− π̃s,i)δ0 + π̃s,iN (µ̃s,i, α̃
−1
s,i ).

Assume θs,i is the jth element in the M -dimensional vector θ, denoted by θ(j), then

α̃s,i = αs + αnΦT
(j)Φ(j),

µ̃s,i = α̃−1
s,i αnΦT

(j)ṽ(j), with ṽ(j) = v −
M∑

k=1
k 6=j

Φ(k)θ(k),

π̃s,i

1− π̃s,i

=
πs,i

1− πs,i

N (0|0, α−1
s )

N (0|µ̃s,i, α̃s,i)
,

where Φ(j) denotes the jth column of the N ×M random projection matrix Φ.

• p(αs|−) = Gamma(c0 + 1
2

∑Ms

i=1 1(θs,i 6= 0), d0 + 1
2

∑Ms

i=1 θ2
s,i).

where 1(y) denotes an indicator function such that 1(y) = 1 if y is true and 0 otherwise.

• p(πr|−) = Beta(er
0 +

∑Ms

i=1 1(θs,i 6= 0), f r
0 +

∑Ms

i=1 1(θs,i = 0)), for s = 1.

• p(π0
s |−) = Beta(es0

0 +
∑Ms

i=1 1(θs,i 6= 0, θpa(s,i) = 0), f s0
0 +

∑Ms

i=1 1(θs,i = 0, θpa(s,i) = 0)),

for 2 ≤ s ≤ L.

• p(π1
s |−) = Beta(es1

0 +
∑Ms

i=1 1(θs,i 6= 0, θpa(s,i) 6= 0), f s1
0 +

∑Ms

i=1 1(θs,i = 0, θpa(s,i) 6= 0)),

for 2 ≤ s ≤ L.

• p(αn|−) = Gamma(a0 + N
2
, b0 + 1

2
(v −Φθ)T (v −Φθ)).
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At each MCMC iteration, θ can be sampled in a block manner; alternatively, θs,i can also

be sampled sequentially for all s and i. We observed in our experiments that sequential sam-

pling typically achieves faster convergence, i.e., less iterations are required to achieve MCMC

convergence compared to block sampling. This is because in block sampling, computing the

conditional posterior of θ(j) uses all the other elements of θ (θ(k) for k 6= j) from the last

MCMC iteration; however, by sequential sampling, computing the conditional posterior of θ(j)

can use θ(k) for k < j from the current iteration (updated before θ(j) in the current iteration)

and θ(k) for k > j from the last iteration. We observed fast convergence of this model for the

problems considered; typically a burn-in period of 200 iterations is enough for an image of size

128 × 128, and the collection period corresponds to 100 samples. It is very unlikely that this

small number of MCMC iterations is sufficient to accurately represent the full posterior on all

model parameters; however, based on many experiments, the mean wavelet coefficients have been

found to provide a good practical CS inversion, and the collection samples also provide useful

“error bars” (discussed further below). Figure 2 shows the convergence curve for a 128 × 128

image cameraman with 5000 measurements (see Figure 3(a) for the image); we employed the

sequential sampling approach in this example, as well as in all results presented below. The use

of approximate (truncated) MCMC sampling is distinct from but related to particle filters, which

have recently seen significant utility in signal-processing applications [30].
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Fig. 2. Example of an MCMC convergence curve for the image cameraman of size 128× 128; see Figure 3(a) for the image.

The vertical axis is evaluated as ‖θ − θ̂‖2/‖θ‖2, where θ̂ denotes the reconstructed wavelet coefficients.
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The variational Bayesian (VB) method [31] is often considered for fast but approximate

Bayesian inference. However, the VB approach is not appropriate in our model because of the

speciality of our mixing components. In the VB inference, when updating variational posterior

q(θ), similar to a Gaussian mixture model (GMM), we have difficulty dealing with the logarithm

of a summation, log[πs,iδ0 + (1 − πs,i)N (0, α−1
s )]. The VB GMM solves this problem by

introducing an indicator variable to denote which component the current datum comes from,

so that the summation is removed. But the indicator variable cannot be used here because in

our model an indicator variable is redundant with regard to θs,i. Specifically, assuming zs,i = 0

indicates θs,i = 0, we then have p(zs,i = 0|θs,i = 0) = 1, and p(θs,i = 0|zs,i = 0) = 1.

Consequently, zs,i will never be updated for those θs,i = 0, and similarly, θs,i will never be

updated for those zs,i = 0.

Given the fast MCMC convergence for the problems considered, with non-optimized program-

ming in MatlabTM , we feel that this may be a practical inference engine for the applications

of interest. Specifically, as indicated below, the computational requirements of the TSW-CS

model are competitive with many of the existing compressive-sensing inversion algorithms in

the literature.

D. Extension with Scaling Coefficients

The TSW-CS model presented in (6) only performs inversion for the wavelet coefficients,

assuming that the scaling-function coefficients are measured separately (this has been assumed

in many previous compressive-sensing studies [15]). However, it is also of interest in many

applications to also infer the scaling coefficients. We may readily extend our TSW-CS model to

include reconstruction of the scaling coefficients as follows. Specifically, the model is the same

as (6), except with

θs,i ∼ (1− πs,i)δ0 + πs,iN (0, α−1
s ), with πs,i =





πsc, if s = 0,

πr, if s = 1,

π0
s , if 2 ≤ s ≤ L, θpa(s,i) = 0,

π1
s , if 2 ≤ s ≤ L, θpa(s,i) 6= 0,

(8a)

πsc ∼ Beta(esc
0 , f sc

0 ). (8b)

Compared to (6), the extended model in (8) includes the scale s = 0 for the scaling coefficients,

with an associated mixing weight πsc, which is drawn from a prior distribution Beta(esc
0 , f sc

0 ).
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Considering that the scaling coefficients are usually nonzero, the hyperparameters esc
0 and f sc

0

are specified such that πsc = 1 is almost always true (since πsc is only one more parameter, we

perform inference on it, but our experience is that it may be set πsc = 1 with minimal change

on the results, for the examples considered). All scaling coefficients share a common precision

parameter α0, which is learned from the inference.

IV. EXPERIMENTAL RESULTS

We test the performance of the TSW-CS framework on three example images: cameraman,

peppers and pirate. The original sizes of the three images are 256×256, 256×256, and 512×512,

respectively; these images are available online at http://decsai.ugr.es/cvg/dbimagenes/.

We compare the performance of TSW-CS to six recently developed CS reconstruction algorithms:

basis pursuit (BP) [13], Bayesian compressive sensing (BCS) [12], fast-BCS [12], orthogonal

matching pursuit (OMP) [14], stagewise orthogonal matching pursuit (StOMP) [15], and Lasso-

modified least angle regression (LARS/Lasso) [16]. For the BP implementation, we use the

l1_eq solver from the `1-Magic toolbox available at http://www.acm.caltech.edu/l1magic/;

the fast-BCS solver is available at http://www.ece.duke.edu/∼shji/BCS.html; for the OMP,

StOMP and LARS/Lasso algorithms, we use the solvers SolveOMP, SolveStOMP, and SolveLasso,

respectively, from the SparseLab toolbox available at http://sparselab.stanford.edu/. The

BCS algorithm can be implemented via the relevance vector machines (RVM) [12]; we imple-

mented it using a variational RVM [32]. All software are written in MATLABTM , and run on

PCs with 3.6GHz CPU and 4GB memory.

Because of limitations of computation time and memory, it is difficult to reconstruct an image

of size 256×256 or larger. To make the performance comparisons practical, we use three formats

to reduce the number of the wavelet coefficients to be estimated. (Later, we show the performance

comparisons for larger images, with the projection matrix Φ expressed implicitly and not stored

in the memory; also, the comparisons are only among selected – relatively fast – methods and

for a limited number of compressive sensing measurements.) The three formats are:

1) cut a patch of size 128 × 128 from the original image, and reconstruct all the wavelet

coefficients (Format 1);

2) resize the original image to 128× 128 using MATLABTM function imresize, and recon-

struct all the wavelet coefficients (Format 2);
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3) using the hybrid CS scheme [33], only estimate wavelet coefficients at relatively lower-

resolution scales, and assume the wavelet coefficients at other scales are zero. For the

images cameraman and peppers, which are of size 256 × 256, we assume the wavelet

coefficients at the highest scale, s = 5, are zero and not estimated; for the image pirate,

which is of size 512 × 512, the wavelet coefficients at the highest two scales, s = 5 and

s = 6, are assumed zero and not estimated (Format 3).

For all three formats, we estimate around 16K wavelet coefficients using the TSW-CS model

presented in (6); the scaling coefficients constitute a block of size 8 × 8, and we here assume

the scaling coefficients are measured directly (later we will show the example that the scaling

coefficients are also inferred based on the extended model in (8)). Our objective is to estimate the

wavelet coefficients of size 1282 − 82 = 16320, based on a given number of CS measurements.

We use the Haar wavelet for cameraman, since the wavelet coefficients are sparser for the Haar

basis than for other wavelet bases, and choose the Daubechies-8 wavelet as our orthonormal

basis for peppers and pirate.

For each CS algorithm, image, and image format, we produce a curve of relative reconstruction

error as a function of number of measurements N (the 64 scaling coefficients are not included

in N ). The relative reconstruction error is defined as ‖x − x̂‖2/‖x‖2, where x is the original

image, and x̂ is the recovered image based on the wavelet coefficients reconstructed by a

particular CS algorithm. The scaling coefficients are assumed measured accurately, and are

used during image recovery. Figure 3, 4 and 5 show the performance comparisons for the

three images, with three formats for each image, and Figure 6 shows the time comparison for

the image cameraman with Format 1 (see above). Time comparison for other images/formats

are similar to Figure 6. All results for TSW-CS are based on MCMC inference with 200

burn-in iterations followed by 100 MCMC collection samples (we show results for the mean

coefficients, but also have access to “error bars”, as discussed further below). More burn-in

iterations and more samples collected may be considered, but we have found the mean results to

be similar to results shown here. The hyperparameters for the priors in the TSW-CS model are as

follows: a0 = b0 = c0 = d0 = 10−6, [er
0, f r

0 ] = [0.9, 0.1]×M1, [es0
0 , f s0

0 ] = [ 1
M

, 1− 1
M

]×Ms,

and [es1
0 , f s1

0 ] = [0.5, 0.5]×Ms. Note that the form [u, 1 − u] × V is used to represent the

hyperparameters e0 and f0 in the Beta priors, where u represents the prior mean of the mixing

weight π, and V represents the confidence of the prior (larger V means more confidence). We
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set as 1
M

the prior probability of the rare event that a child is not zero given that its parent is

zero (recall that M is the total number of estimated wavelet coefficients), and use Ms (number

of coefficients at scale s) for the confidence so that the strength of the prior is comparable to

the likelihood. For the other CS algorithms, default parameters (if required as input arguments)

are used. The StOMP algorithm with CFDR thresholding is not stable; consequently, we use the

StOMP algorithm with CFAR thresholding, with the false-alarm rate specified as 0.01.
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(b) Format 1: cutting
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(c) Format 2: resizing
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(d) Format 3: hybrid CS

Fig. 3. Performance comparisons for the image cameraman. (a) Original image; the square in the image denotes the small

patch of size 128 × 128 used by Format 1. (b) Performance for Format 1. (c) Performance for Format 2. (d) Performance for

Format 3. The dashed line denotes the best performance that could be achieved since we assume the wavelet coefficients at

scale s = L are zero and not estimated.

Each evaluated point in the curves in Figure 3, 4, 5 and 6 is computed based on the average

of five trials. For each trial, a random projection matrix Φ is generated, with each entry sampled
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(a) Original image
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(b) Format 1: cutting
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(c) Format 2: resizing
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(d) Format 3: hybrid CS

Fig. 4. Performance comparisons for the image peppers. (a) Original image; the square in the image denotes the small patch

of size 128× 128 used by Format 1. (b) Performance for Format 1. (c) Performance for Format 2. (d) Performance for Format

3. The dashed line denotes the best performance that could be achieved since we assume the wavelet coefficients at scale s = L

are zero and not estimated.

i.i.d. from N (0, 1), and normalized along the column to have unit energy. This Φ is then shared

by all the CS algorithms compared at the current evaluation point. The absence of an evaluated

point in a curve (particularly, for BP and BCS) means that the memory requirement at that point

exceeds the computer capability.

From these figures, our TSW-CS model consistently outperforms the other algorithms, with

a relatively small computational time. Especially, when the number of measurements is very

limited, the relative reconstruction error for TSW-CS is consistently much less than that for

the other algorithms. In addition, for a given reconstruction error, the TSW-CS model requires
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(a) Original image
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(b) Format 1: cutting
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(c) Format 2: resizing
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(d) Format 3: hybrid CS

Fig. 5. Performance comparisons for the image pirate. (a) Original image; the square in the image denotes the small patch of

size 128 × 128 used by Format 1. (b) Performance for Format 1. (c) Performance for Format 2. (d) Performance for Format

3. The dashed line denotes the best performance that could be achieved since we assume the wavelet coefficients at scales

s = L− 1, L are zero and not estimated.

much less CS measurements than the other algorithms (e.g., in Figure 3(b), to achieve a relative

reconstruction error of 0.05, LARS/Lasso requires around 8000 measurements, while TSW-CS

requires only around 6000 measurements). Figure 7 presents an example of the reconstructed

wavelet coefficients θ̂ for all CS algorithms under comparison, for cameraman with Format 1

and 1000 measurements. We see that when the number of measurements is relatively small,

the TSW-CS model concentrates more energy on the low-resolution scales, and so estimates

the coefficients in the low-resolution bands better. To make this point clearer, Figure 7(b) shows

zoom-in plots of the first 960 coefficients at the low-resolution scales s = 1 and s = 2. When the
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Fig. 6. Comparison of CPU time for the CS algorithms. The results are based on the image cameraman of size 128 × 128

with Format 1.

number of measurements increases, details of an image are then revealed. With the δ0 component

and the parent-child relationships in the prior setting, the TSW-CS model provides a much

sparser solution, in the sense of less high frequency noise in the reconstruction compared to the

other algorithms, and so estimates large coefficients at higher-resolution scales more accurately.

Figure 8 shows the comparisons of the reconstructed θ̂ for the situation of more measurements,

for cameraman with Format 1 and 5000 measurements. It can be seen that in the regions of

zero or small coefficients in the “truth” (usually at high-resolution scales), the TSW-CS model

infers exact zero values, while the other algorithms often give noisy estimations (small non-zero

values). These noisy values impair the accurate estimation of large coefficients at high-resolution

scales.

To show the quality of the reconstruction further, Figure 9 also presents examples of the

recovered images for the CS algorithms. We see that for a given number of measurements,

TSW-CS achieves a better image quality. A careful examination of the TSW-CS relative to

the other approaches reveals that the former more accurately renders details, particularly at a

relatively small number of measurements (see, for example, results at 4000 measurements, and

the ability of TSW-CS to recover details in the “cameraman’s” face as well as in the buildings

at the lower right portion of the image).

As mentioned above, with the Bayesian learning framework, the TSW-CS infers a posterior
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(b) Wavelet coefficients at scales s = 1, 2

Fig. 7. Comparison of the reconstructed wavelet coefficients by the CS algorithms, for the image cameraman with Format

1 and 1000 measurements. (a) All the wavelet coefficients, M = 16320. (b) A zoom-in version of (a), showing the first 960

wavelet coefficients (i.e., coefficients at scales s = 1, 2).
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Fig. 8. Comparison of the reconstructed wavelet coefficients by the CS algorithms, for the image cameraman with Format 1

and 5000 measurements.

distribution for the wavelet coefficients (and other model parameters), so it yields “error bars”

for the estimated wavelet coefficients, indicating the confidence for the current estimation. This

level of confidence may be of interest for placing confidences on inferences made from particular

portions of the image. Further, if the TSW-CS may be constituted in fast software or (better) in

hardware, it may be fast enough to adaptively infer when a sufficient number of CS measurements

have been performed. As an example, Figure 10 plots the error bars of the first 192 estimated

wavelet coefficients (corresponding to the coefficients at scale s = 1) for the image cameraman

with Format 1; this subset of coefficients are selected to make the figure easy to read, with

error bars inferred for all coefficients. From Figure 10 one observes that the error bars on the

reconstructed wavelet coefficients become tighter (and the reconstructed coefficients approach to

the “truth”) as the number of measurements N increases.

In addition to the reconstructed wavelet coefficients, TSW-CS also infers other parameters of

the underlying statistical model. For example, the posterior mean of the transition-probability

matrix Ps for scale s (equivalent to π0
s and π1

s , see Section III-B), for the image cameraman

with Format 1, is inferred as
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Fig. 9. Comparison of the recovered images by the CS algorithms, for the image cameraman with Format 1.

P1 =
h

0.1737 0.8263
i
, P2 =

24 0.9783 0.0217

0.4771 0.5229

35 , P3 =

24 0.9886 0.0114

0.4755 0.5245

35 , P4 =

24 0.9902 0.0098

0.4940 0.5060

35 ,

with Ps(i, j) defined in Section II. We see that Ps(1, 1) = p(θs, i = 0|θpa(s,i) = 0) is close to

one and slightly increases with the increase of s.

We note that all results presented above are based on images of size 128 × 128, or an

estimation of only about 128 × 128 coefficients (in Format 3, hybrid CS). For an image of

size 256× 256 or larger, because of memory limitations, storing and applying Φ matrix is often

intractable. Fortunately, it has been proven [6] that as an alternative to drawing elements of

Φ randomly from a zero-mean Gaussian or from Bernoulli distribution, one may consider an

arbitrary orthogonal basis and randomly select basis vectors to constitute rows of Φ. Furthermore,
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Fig. 10. Error bars of the first 192 estimated wavelet coefficients (corresponding to the coefficients at scale s = 1) for the image

cameraman with Format 1. The error bars are computed as the standard deviation of the posterior distribution approximated by

the MCMC samples for each estimated coefficient.

a complex “noiselet” basis set [34] is perfectly incoherent with the Haar wavelet representation

(i.e., motivating the random selection of noiselet basis vectors as rows of Φ). The advantages of

constructing Φ using orthogonal bases are (i) Φ is not stored in the memory explicitly, so it is

possible to handle large images, and (ii) all matrix products Φθ can be replaced by fast transform

algorithms (e.g., Fourier transform, wavelet transform, etc.), depending on the orthogonal basis

set used for constructing Φ.

We now test our TSW-CS algorithm on larger images. Assuming the CS measurements are

real numbers, we choose discrete cosine transform (DCT) as the orthogonal basis set to construct

Φ (we may also use noiselets). For an experiment with N measurements, the N rows of Φ are

selected at random from an M ×M matrix of DCT bases, with the entry in row i and column
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j expressed as C(i) cos[π(i− 1)(2j− 1)/2M ], where C(i) is a normalization constant such that

C(i) = 1/
√

M for i = 1 and C(i) =
√

2/M for 2 ≤ i ≤ M . After choosing N rows randomly

from the DCT bases, Φ is constructed by random permutation of columns and rows selected.

Note that the indexes of the row selection and the random permutation are stored, but the Φ

matrix itself is not stored.

The reconstruction of larger images is performed on the three images employed above with

the original sizes (cameraman and peppers are of size 256 × 256 and pirate is 512 × 512).

Using the same wavelet as above, a wavelet decomposition is performed for all three images

such that the scaling coefficients are a 8 × 8 block (assuming they are measured accurately),

and we estimate all the wavelet coefficients (65472 coefficients for cameraman and peppers;

262080 coefficients for pirate). The hyperparameters a0, b0, c0, d0, e0, f0 are specified as above.

We compare the performances with LARS/Lasso and StOMP-CFAR algorithms, because based

on the precious results on smaller images of size 128×128, LARS/Lasso has good performance

among all the other algorithms under comparison, and StOMP-CFAR is the fastest algorithm with

relatively good performance. BCS also performs well, but estimating and storing the covariance

matrix of θ (an M ×M matrix) in the algorithm makes the reconstruction intractable for large

images. The solvers for LARS/Lasso and StOMP-CFAR are modified based on SolveStOMP and

SolveLasso, respectively, with randomly selected DCT bases as rows of Φ. The false alarm rate

for StOMP-CFAR is specified as 0.01.

The performance comparisons for the three images are plotted in Figure 11. We also plot the

time comparison for cameraman in Figure 12. The results from TSW-CS are, as above, based on

the MCMC inference with 200 burn-in iterations and then 100 samples collected. For the cases

with the number of measurements N ≥ 15000, the LARS/Lasso algorithm fails to yield a solution

within 72 hours when using the default setting for the maximum iteration number, so the results

presented in Figure 11(a), (b) and Figure 12 for LARS/Lasso with N ≥ 15000 are generated by

setting the maximum iteration number to 10000. It is possible that by using the default setting and

waiting longer, the performance for LARS/Lasso will be better. The corresponding LARS/Lasso

curves are disconnected in Figure 11(a), (b) and Figure 12 to indicate that the two parts are

generated using different settings. Figure 11(c) does not show the performance of LARS/Lasso

since the maximum iteration number 10000 for the larger image pirate is clearly not enough,

resulting in reconstruction errors larger than StOMP. Examples of the recovered images are also
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plotted in Figure 11(c). Similar to the small-image cases, we see that the TSW-CS algorithm

achieves a low construction error compared to the other algorithms (this is because it is using

more information; specifically, not just that the wavelet decomposition is compressible, but also

concerning the structure of these compressible coefficients).
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(a) Performance comparison for cameraman

0.5 1 1.5 2 2.5 3

x 10
4

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Number of Measurements
R

el
at

iv
e 

R
ec

on
st

ru
ct

io
n 

E
rr

or

TSW−CS
StOMP−CFAR
LARS/Lasso

(b) Performance comparison for peppers
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Fig. 11. Performance comparisons for three large images. The LARS/Lasso curves are disconnected in (a) and (b) to indicate

that the two parts are generated using different settings. For the number of measurements N ≤ 10000, the maximum iteration

number is specified by default, while for N ≥ 15000, the maximum iteration number is specified as 10000. Examples of the

recovered images are plotted in (c), located at the corresponding evaluated points in the curves.
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Fig. 12. Time comparison for cameraman. The LARS/Lasso curve is disconnected to indicate that the two parts are generated

using different settings. For the number of measurements N ≤ 10000, the maximum iteration number is specified by default,

while for N ≥ 15000, the maximum iteration number is specified as 10000.

Finally we examine the performance of the TSW-CS model with the estimation of the scaling

coefficients and wavelet coefficients simultaneous (not assuming that the scaling coefficients are

measured separately). Using the model presented in (8), we reconstruct M = 16384 transform

coefficients in total, including both scaling and wavelet coefficients, for the image cameraman

with Format 1 (this is one example, presented for brevity, with similar results realized for all

cases studied to date). The hyperparameters [esc
0 , f sc

0 ] = [1, 0]×M0 (M0 = 64 is the number of

the scaling coefficients), and the other hyperparameters are specified as above. For comparison,

we also perform the experiment using the other CS algorithms, with the same settings and input

arguments as above.

Figure 13 plots in solid lines the performance of the CS algorithms when reconstructing all

transform coefficients. As reference, we also re-plot the curves of Figure 3(b) with dashed lines,

in which the scaling coefficients were assumed known. We see that for TSW-CS there is only a

slight degradation in reconstruction accuracy when all transform coefficients are estimate, relative

to assuming that the scaling coefficients are known. For some other CS inversion algorithms,

such as BP, BCS and LARS/Lasso, estimating scaling coefficients introduces relatively large

increased reconstruction errors, particularly when the number of measurements is limited. In

Figure 14 we show the recovered images by TSW-CS and by LARS/Lasso (the best among

all the other algorithms) when all transform coefficients are estimated. TSW-CS captures the
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coarse information of the image successfully with very limited measurements, and the recovered

images are less blurry than the images recovered by LARS/Lasso with the same number of

measurements. Note that for all images presented in Figure 14, LARS/Lasso has more high-

frequency noise than TSW-CS.
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Fig. 13. Performance comparison for the image cameraman with Format 1, with and without the estimation of the scaling

coefficients. The solid lines represent the performance when scaling and wavelet coefficients are both reconstructed; the dashed

line with the same color/marker as a solid line represents the performance of the corresponding algorithm when only wavelet

coefficients are reconstructed, assuming scaling coefficients are measured directly and accurately (the measurements of the

scaling coefficients are included in the total number of measurements N ). The solid curve for BP is beyond the vertical scale

of the figure, with relative reconstruction error of 2.98 when N = 1064 and 0.71 when N = 6064.

V. CONCLUSIONS AND FUTURE WORK

A new statistical model has been developed for Bayesian inverse compressive sensing (CS),

for situations in which the signal of interest is compressible in a wavelet basis. The formulation

explicitly exploits the structure in the wavelet coefficients of typical/natural signals [5], and

related structure is exploited in conventional wavelet-based compression algorithms [4]. The

advantage of CS, relative to conventional measure-and-then-compress approaches [4], is that

the number of (projection) measurements may be significantly smaller than the number of

measurements in traditional sampling methods.

Conventional CS research has assumed that the signal of interest is sparse or compressible in a

particular basis (e.g., wavelets), but it assumes no further structure in the transform coefficients.
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TSW−CS

LARS/Lasso

N=1064 N=2064 N=3064 N=4064 N=5064

Number of Measurements

Fig. 14. Comparison of the recovered images by TSW-CS and by LARS/Lasso for the image cameraman with Format 1, when

both scaling and wavelet coefficients are reconstructed.

Recent research has demonstrated that if one exploits the structure in the transform coefficients

characteristic of typical data or imagery, one often may significantly reduce the number of

required CS measurements [17], [18]. In this paper we have assumed the signals of interest are

compressible in a wavelet basis. The structure associated with typical wavelet coefficients has

been utilized in a statistical setting, building on recent research on Bayesian CS [12].

The proposed method utilizes ideas related to the hidden Markov tree statistical representation

of wavelet coefficients [5], and an efficient MCMC inference engine has been constituted. On all

examples considered to date, considering real imagery, we have observed very fast convergence

of the MCMC algorithm; the inference yields an estimate of the wavelet-transform coefficients

as well as “error bars” on the coefficients, reflecting a level of confidence in the inference based

on the available CS measurements. In this paper, using a set of canonical images that are widely

used in the literature, the proposed method has demonstrated competitive computational cost,

while consistently providing superior performance, as compared to traditional CS algorithms that

do not exploit the structure inherent to the wavelet coefficients.

Concerning future research, there has recently been interest in the simultaneous inversion of

multiple distinct CS measurements [35], [36] (by sharing information between these different

measurements, the total number of CS measurements may be reduced). The Bayesian setting

proposed here is particularly amenable to the joint processing of data from multiple images [37],

and this will be investigated in future research. It is also of interest to examine the statistical
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leveraging of structure in other popular transforms, such as the DCT.
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