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Abstract

Wireless planar networks have been used to model wireless networks in a tradi-
tion that dates back to 1961 to the work of E. N. Gilbert. Indeed the study of con-
nected components in wireless networks was the motivation for his pioneering work that
spawned the modern field of continuum percolation theory. Given that node locations
in wireless networks are not known, random planar modelling can be used to provide
preliminary assessments of important quantities such as range, number of neighbors,
power consumption, and connectivity, and issues such as spatial reuse and capacity.

In this paper, the problem of connectivity based on nearest neighbors is addressed.
The exact threshold function for θ-coverage is found for wireless networks modelled as
n points uniformly distributed in a unit square, with every node connecting to its φn

nearest neighbors. A network is called θ-covered if every node, except those near the
boundary, can find one of its φn nearest neighbors in any sector of angle θ. For all
θ ∈ (0, 2π), if φn = (1+ δ) log 2π

2π−θ
n, it is shown that the probability of θ-coverage goes

to one as n goes to infinity, for any δ > 0; on the other hand, if φn = (1− δ) log 2π
2π−θ

n,

the probability of θ-coverage goes to zero. This sharp characterization of θ-coverage
is used to show, via further geometric arguments, that the network will be connected
with probability approaching one if φn = (1 + δ) log2 n. Connections between these
results and the performance analysis of wireless networks, especially for routing and
topology control algorithms, are discussed.
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1 Introduction

In wireless “ad hoc” networks, nodes can and do need to adjust their transmission powers

to connect to others, and thus carry out the network’s functionalities. The strategy for

each node to adjust its power, and the characteristics of the random graph structure thus

generated, especially when the number of nodes is large, has attracted much attention.

How many neighbors for each node is desirable is one of these questions that has been

studied extensively, and these studies have been conducted under many different optimization

objectives.

One of the objectives that has been studied is to maximize the expected one-hop progress

of a packet in the desired direction without too much power consumption. Assuming that

the node locations are generated according to a Poisson random process, Kleinrock and

Silvester [1] determined that each node should connect to six nearest neighbors on average—

a so called “magic number”—for different forwarding strategies. Later, the number was

revised to eight in [2], and for some further forwarding strategies they found five or seven

as the best numbers. Hou and Li [3] considered the scenario when each node is allowed to

adjust its transmission range individually. They found that six or eight neighbors is desirable

for different packet forwarding strategies. Mathar and Mattfeldt [4] analyzed the wireless

network generated on a line, and also obtained some magic numbers.

Another critical objective in wireless networks is to maintain the connectivity of the

overall network. To study this, networks have been modelled as n nodes uniformly distributed

in a unit square. This is a tradition that goes back to E. N. Gilbert1 [5] who may be regarded

as the father of continuum percolation theory [22], and who initiated the study of random

planar networks motivated precisely by study of connected components in wireless networks.

Penrose [6] and Gupta and Kumar [7] have independently determined the critical range for

establishing overall connectivity with probability approaching one as n goes to infinity, and

this range results in each node connecting to log n neighbors on average.

If every node instead connects to the same number of neighbors, as opposed to transmit-

ting at the same power and thus ideally covering the same distance, we showed in a previous

1Probably better known to information and coding theorists for the Gilbert-Varshamov bound.
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work [8] that the order of the critical number of neighbors each node should connect to

is Θ(log n). Specifically, if each node connects to less than 0.074 logn nearest neighbors,

then the network is asymptotically disconnected, while if each node connects to greater than

5.1774 logn nearest neighbors, then the network is asymptotically connected. In [9], Wan

and Yi improved the bound by showing that 2.718 log n neighbors for each node is enough

to ensure asymptotic connectivity. Recently, Balister, Bollobas, Sarkar and Walters [10]

showed that, for connectivity of networks where nodes are generated in a unit area accord-

ing to Poisson process with density n, 0.3043 log n is a lower bound and 0.5139 logn is an

upper bound.

Besides the above mentioned distance-based and number-of-neighbor-based connecting

strategies, an interesting sector-based strategy has been proposed by Wattenhofer, Li, Bahl

and Wang [11] for network topology control. In their algorithm, the transmission power of

each node is augmented from zero until it can find a neighboring node within every sector

of angle θ, a pre-specified parameter, or until it hits its maximum power. If the network

would be connected when every node transmits at its maximum power, and θ is 2π/3, they

showed the overall network is connected. Later, the critical sector angle that guarantees

overall connectivity was found to be 5π/6 by Li, Halpern, Bahl, Wang and Wattenhofer [12].

Similar ideas involving sector-based strategies are also found in the studies of topology

control using spanner graphs [13,14]. For a given positive integer k, a Yao Graph (also called

θ-graph) is constructed as follows [15]. First partition the 2π angle around each node into k

equal sectors of size 2π/k, and then let each node connect to the nearest node within every

sector. If k ≥ 6, then Li, Wan and Wang [16] showed that the Yao Graph has length stretch

factor µ = 1
1−2 sin(π/k)

, i.e., the Euclidean distance along the Yao Graph between any pair of

nodes is at most µ times the actual Euclidean distance.

Besides concerns such as the aforementioned forwarding strategy, overall connectivity,

and topology control, understanding the geometric properties of wireless networks has also

played a role in studying their communication capacity, especially in the establishment of

scaling laws. In [17], the upper bound for the transport capacity is based on the fact that

every successful transmission “consumes” a portion of the area of the domain. Also, in [18], in

an information theoretic study of transport capacity, the upper bound is again fundamentally

3



related to the geometric structure of the networks. In [19], geometric properties revealed by

percolation theory are applied to improve the bound on transport capacity for the random

physical model of [17].

The random structures formed on top of point processes have also been central subjects in

random geometric graph theory [20], percolation theory [21,22], and computational geometry

[23].

In this paper, inspired by the above mentioned sector-based topology control algorithm,

we begin with the study of the θ-coverage of wireless networks. A network Gn is modelled as n

nodes uniformly distributed within a unit square, with every node connecting bidirectionally

to its φn nearest neighbors, where φn is a deterministic function of n to be specified. For an

angle θ ∈ (0, 2π), a node is said to be θ-covered by its φn nearest neighbors if, among them,

it can find a node in every sector of angle θ. The graph Gn is then called θ-covered if every

node is so, except possibly for those nodes such that the disk centered at such a node, with

radius equal to the distance to its φn-th nearest neighbor, is not contained within the unit

square.

For all θ ∈ (0, 2π), we find the exact threshold function for θ-coverage when n goes to

infinity. Specifically, we show that for any δ > 0, if every node connects to its (1+δ) log 2π
2π−θ

n

nearest neighbors, then the probability that Gn is θ-covered goes to one as n goes to infinity.

On the other hand, if every node instead connects to less than (1 − δ) log 2π
2π−θ

n nearest

neighbors, then the probability that Gn is not θ-covered goes to one as n goes to infinity.

Furthermore, when θ = π, we show via a geometric argument that π-coverage leads to

overall connectivity of the graph. That is, if every node connects to its (1+ δ) log2 n nearest

neighbors, then both the following happen with probability going to one as n goes to infinity:

i) Every node is within the convex hull formed by its chosen neighbors; ii) the network is

connected. Moreover, the proof characterizes the detailed and interesting geometric structure

of the resulting graph, which may be of interest in its own right.

The rest of the paper is organized as follows. In Section 2, we provide the problem

formulation and the main results. In Sections 3 and 4, the proofs for the main results

are provided. In Section 5, a discussion is provided on how the results may be used for the

performance analysis of topology control and routing algorithms. Finally Section 6 concludes
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the paper.

2 Formulation and main results

Let S be the axis parallel unit square on the plane with the left lower corner at the origin.

Suppose that n nodes {X1, X2, · · · , Xn} are placed uniformly and independently in S. Denote

by G(n, φn) the graph formed by the vertex set consisting of the n nodes, and letting every

node connect to its φn nearest neighbors. More precisely, there exists an edge (i, j) if either

j is one of the φn nearest neighbors of i, or i is one of the φn nearest neighbors of j.

Denote G(n, φn) in short by Gn. Then the corresponding torus graph Gτ
n consists of points

{X +(i, j), ∀X ∈ V (Gn), (i, j) ∈ Z2} as vertex set, where V (Gn) denotes all the n nodes in

Gn, and the edge set of graph Gτ
n is generated by letting each vertex of Gτ

n connect to its φn

nearest neighbors in V (Gτ
n). We call a point X ′ an image of a point X in Gn if X ′ − X is

a point with integer coordinates. Notice that if an edge of Gτ
n is within S, then it is also an

edge of Gn.

We are interested in the following questions:

1. Given an angle θ ∈ (0, 2π), what is the value of φn so that every node can find a node

in any sector of angle θ from among its φn nearest neighbors, with high probability?

2. What is the value of φn such that the resulting graph G(n, φn) will be connected with

high probability?

To answer these questions, we need the following definition.

Definition 2.1. Consider graph Gτ
n on the plane. Let Disk(X, φn) denote the disk centered

at node X with radius equal to the distance between X and its φn-th nearest neighbor. For

angle θ ∈ (0, 2π), node X is called θ-covered by its φn nearest neighbors if there is a node

in every θ sector of Disk(X, φn). The graphs Gτ
n and G(n, φn) are called θ-covered if every

node is θ-covered in Gτ
n.

Remark 2.1. If G(n, φn) is θ-covered, then for every node X ∈ Gn, there is a node of

Gn in every θ sector of Disk(X, φn) that is contained in S. Furthermore, if Disk(X, φn) is
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contained within S, then node X being π-covered by its φn nearest neighbors is equivalent

to saying that node X is within the convex hull of its φn nearest neighbors in Gn.

The main results of the paper are as follows:

Theorem 1. For all δ > 0 and θ ∈ (0, 2π),

(i) lim
n→∞

Pr
{

G(n, (1 + δ) log 2π
2π−θ

n) is θ-covered
}

= 1;

(ii) lim
n→∞

Pr
{

G(n, (1 − δ) log 2π
2π−θ

n) is θ-covered
}

= 0.

Remark 2.2. For θ small, log 2π
2π−θ

n = log n

− log(1− θ
2π

)
≈ 2π

θ
log n. Note that even under optimal

arrangement a node needs at least 2π
θ

neighboring nodes for θ-coverage. So the factor log n

is the price caused by randomness in order to get θ-coverage for every node in the network

of n nodes.

Theorem 2. For all δ > 0,

(i) lim
n→∞

Pr{Gτ (n, (1 + δ) log2 n) is connected} = 1;

(ii) lim
n→∞

Pr{G(n, (1 + δ) log2 n) is connected} = 1.

3 log 2π

2π−θ

n is the threshold function for θ-coverage of

the network

In this section we prove Theorem 1, i.e., log 2π
2π−θ

n is the threshold function for θ-coverage of

the network. In the first subsection, for all δ > 0, we show that letting each node connect

to (1 + δ) log 2π
2π−θ

n nearest neighbors results in θ-coverage of the network with probability

approaching one as n goes to infinity. In the second subsection we show that the probability

that there exists a node which is not θ-covered approaches one, if each node only connects

to its (1 − δ) log 2π
2π−θ

n nearest neighbors.

3.1 (1 + δ) log 2π

2π−θ

n neighbors are sufficient for θ-coverage of the

network

We first examine the situation for node X1; then we will show that the union bound suffices

to prove the result. In this subsection we fix φn := (1 + δ) log 2π
2π−θ

n, and for brevity we

denote Disk(X1, φn) as Dφn .
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Let M be a positive integer, and let S := {S1, · · · , Sd 2π
θ
eM} be d2π

θ
eM sectors (of

Disk(X1, φn)) of angle (2π − θ) + θ
M

each. They are positioned in the following way. S1

begins from the left hand of the x-axis and spans counterclockwise. Si+1 begins an angle

of θ/M away from Si, counterclockwise, for i = 1, · · · , d 2π
θ
eM − 1; see Figure 1. Note that

any radius of Dφn can find counterclockwise (as well as clockwise) a starting radius of such

a sector that is no more than an angle of θ/M away.

F

PSfrag replacements

S1

S2 Sk

Figure 1: Left: The sectors of S for node 1 when θ = π and M = 6. The shaded area is S1.
Right: Figure used in the proof of Lemma 3.1.

With a little abuse of notation between a disk and its area, we have the following lemma.

Lemma 3.1. If node X1 is not θ-covered by its φn nearest neighbors, then there exists a

sector S ∈ S such that it contains all of node X1’s φn nearest neighbors.

Proof. Node X1 not being θ-covered by its φn nearest neighbors means there exists a sector

F of angle θ such that no node is in F , and F is contained in Dφn. F ’s ending side (suppose

a sector always spans counterclockwise) can find clockwise a starting side of a sector in S,

Sk say, such that Sk’s ending side is within F ; see Figure 1.

Lemma 3.2. Define event Ak, 1 ≤ k ≤ n, as follows:

Ak := {Node Xk is NOT θ-covered by its φn nearest neighbors in Gτ
n}.

Then for all θ and all n, we have

Pr{Ak} ≤ d
2π

θ
eM

(

(

2π − θ + θ/M

2π

)φn

+ c1e
−c2n

)

,

for some fixed positive constants c1 and c2.
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Proof. By symmetry, we only need to consider Pr(A1). By Lemma 3.1, we have

Pr{A1} ≤ Pr{All of X1’s φn nearest neighbors are within some sector S ∈ S}

≤

d 2π
θ
eM

∑

i=1

Pr{All of X1’s φn nearest neighbors are within sector Si ∈ S}

:=

d 2π
θ
eM

∑

i=1

Pr{Bi}.

Once given Dφn, if its diameter is less than 1, then the (φn − 1) nearest neighbors of

X1 are uniformly and independently distributed in Dφn, and the φn-th nearest neighbor is

uniformly distributed along the boundary of Dφn. So for i ≤ d2π
θ
eM , we have

Pr{Bi} = Pr{Bi; Diameter(Dφn) < 1} + Pr{Bi; Diameter(Dφn) ≥ 1}

≤ Pr{Bi |Diameter(Dφn) < 1} + Pr{Diameter(Dφn) ≥ 1}

=

(

2π − θ + θ/M

2π

)φn

+ Pr{Diameter(Dφn) ≥ 1}.

Now we upper bound Pr{Diameter(Dφn) ≥ 1}. Draw a unit square, S′, centered at

node X1, and parallel to S. Because of the construction of the torus graph Gτ
n, there are

exactly n vertices in S′, and the n−1 vertices other than X1 are uniformly and independently

distributed in S′. Denote them by {Y2, · · · , Yn}, and the distance between X1 and Yk by

d(X1, Yk). Then {I[d(X1,Yk)≤1/2], k = 2, · · · , n} are (n−1) iid random variables with Bernoulli

distribution, and so Pr(I[d(X1,Yk)≤1/2] = 1) = π(1/2)2 = π/4. Since φn − 1 < (n − 1)π/8 for

n large, by the Chernoff bound (see page 12 of [24]), we have

Pr(Diameter(Dφn) ≥ 1) = Pr

(

n
∑

k=2

I[d(X1,Yk)≤1/2] ≤ φn − 1

)

≤ Pr

(

n
∑

k=2

I[d(X1,Yk)≤1/2] ≤ (n − 1) ·
π

8

)

≤ exp

{

−(n − 1) · (−
π

8
log 2 −

7π

8
log

6

7
)

}

.

So letting c2 := −π
8

log 2 − 7π
8

log 6
7
, which is positive, and c1 := ec2 , we have

Pr{A1} ≤

⌈

2π

θ

⌉

M

(

(
2π − θ + θ/M

2π
)φn + c1e

−c2n

)

.
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Proof of part (i) of Theorem 1.

Let us define event Ak, for all k ∈ N := {1, 2, · · · , n}, as in Lemma 3.2. Then because of

symmetry we have,

Pr{G(n, φn) is θ-covered}

= 1 − Pr{∪k∈NAk}

≥ 1 −

n
∑

k=1

Pr{Ak}

= 1 − n · Pr{A1}

≥ 1 − n

⌈

2π

θ

⌉

M

(

(

2π − θ + θ/M

2π

)φn

+ c1e
−c2n

)

= 1 −

⌈

2π

θ

⌉

M · nc1e
−c2n −

⌈

2π

θ

⌉

M · exp

{

log n −
(1 + δ) log n

log 2π
2π−θ

log
2π

2π − θ
+

(1 + δ) log n

log 2π
2π−θ

log(1 +
θ

(2π − θ)M
)

}

= 1 − o(1) −

⌈

2π

θ

⌉

M · exp

{(

−δ + (1 + δ)
log(1 + θ

(2π−θ)M
)

log 2π
2π−θ

)

log n

}

.

So, if M is sufficiently large such that (1 + δ)
log(1+ θ

(2π−θ)M
)

log 2π
2π−θ

< δ, then

lim
n

Pr
{

G(n, (1 + δ) log 2π
2π−θ

n) is θ-covered
}

= 1.

3.2 (1 − δ) log 2π

2π−θ

n neighbors are necessary for θ-coverage of the

network

For convenience, set φθ(n) := (1−δ) log 2π
2π−θ

n in this subsection. Also define Disk(X, φθ(n))

as the disk centered at node X with radius equal to the distance to its φθ(n)-th nearest

neighbor.

We need the following lemmas.

Lemma 3.3. Tessellate the unit square S with small axis-parallel squares of side dn :=
√

K log n
n

, where K is a tunable parameter; see Figure 2. Label the squares as Sn
k , and the

disk inscribing each square Sn
k as Cn

k , k = 1, · · · , n
K log n

. Let N(Sn
k ) denote the number of
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nodes in Sn
k , and similarly for N(Cn

k ). Then, for all K− > 0, there exist positive constants

K and K+ such that

lim
n

Pr

{

max
1≤k≤n/K log n

N(Sn
k ) ≤ K+ log n

}

= 1, and

lim
n

Pr

{

min
1≤k≤n/K log n

N(Cn
k ) ≥ K− log n

}

= 1. (1)

PSfrag replacements

Sn
1 Sn

2
Cn

1

Cn
1

dn

Figure 2: The square tessellation.

Proof. We introduce the following notations:

p1 := Pr{Xi ∈ Sn
k } =

K log n

n
, ∀i, k;

p2 := Pr{Xi ∈ Cn
k } = π

(

1

2

√

K log n

n

)2

=
πK log n

4n
, ∀i, k.

First we show that, for all K > 0, if one chooses K+ := K(e − 1) + 1, then

limn Pr{max1≤k≤n/K log n N(Sn
k ) ≤ K+ log n} = 1.

Consider N(Sn
1 ). It has a binomial distribution with parameters (p1, n). So by the

Chernoff bound, we have

Pr
(

N(Sn
1 ) > K+ log n

)

≤
E exp(N(Sn

1 ))

exp(K+ log n)
=

E exp(N(Sn
1 ))

nK+ .

Since E exp(N(Sn
1 )) = (1 + (e − 1)p1)

n ≤ nK(e−1) (because 1 + x ≤ ex), we have

Pr
(

N(Sn
1 ) > K+ log n

)

≤ nK(e−1)−K+

= n−1.
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Thus by the union bound, we have

Pr {For some k: N(Sn
k ) > (K(e − 1) + 1) log n}

≤

n/K log n
∑

1

Pr {N(Sn
k ) > (K(e − 1) + 1) log n}

≤
n

K log n
n−1 → 0, as n → ∞. (2)

Now we show that, for all K− > 0, if one chooses K = 4(K−+1)
π(1−e−1)

, then

limn Pr{min1≤k≤n/K log n N(Cn
k ) ≥ K− log n} = 1.

This can be shown similarly as for the upper bound. Notice that N(Cn
1 ) has a binomial

distribution with parameters (p2, n). So by the Chernoff bound, we have

Pr
(

N(Cn
1 ) < K− log n

)

= Pr
(

−N(Cn
1 ) > −K− log n

)

≤
E exp(−N(Sn

1 ))

exp(−K− log n)
= nK−

E exp(−N(Cn
1 )).

Since E exp(−N(Cn
1 )) = (1 − (1 − e−1)p2)

n
≤ n−

(1−e−1)πK
4 (because 1 − x ≤ e−x), we have

Pr(N(Cn
1 ) < K− log n) ≤ nK−−

π(1−e−1)
4

K = n−1.

Thus by the union bound, we have

Pr
{

For some k: N(Cn
k ) < K− log n

}

≤

n/K log n
∑

1

Pr
{

N(Cn
k ) < K− log n

}

≤
n

K log n
n−1 → 0, as n → ∞. (3)

Combining (2) and (3), the lemma is proven.

Given Lemma 3.3, the following corollary follows immediately, which will be used in

Section 4 for the proof of Theorem 2(ii).

Corollary 3.1. For any δ > 0, there exists K̃ > 0 such that in the torus graph Gτ
n,

lim
n→∞

Pr







Every node can find its (1 + δ) log2 n nearest neighbors within distance

√

K̃ log n

n







= 1.
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Lemma 3.4. Suppose S is tessellated by small axis-parallel squares Sn
k , k = 1, · · · , n/K log n,

as in Lemma 3.3, and Cn
k is the disk inscribing Sn

k . For all 0 < θ < 2π, define An
k as follows:

An
k := {There is a node X in Cn

k , with Disk(X, φθ(n)) ⊆ Cn
k , which

is not θ-covered by its φθ(n) nearest neighbors.}

Then there exists K− = K−(θ), such that, for all n1 ≥ K− log n,

Pr{An
k |N(Cn

k ) = n1} ≥ c3n
−(1−δ),

where c3 > 0 is a constant.

Proof. Given N(Cn
k ) = n1, the n1 nodes can be considered as iid random variables with

uniform distribution. Denote them as Y1, · · · , Yn1. We first show that, for large enough K−,

there exists constant c3 > 0 such that Pr{ Disk(Y1, φθ(n)) is within Cn
k } > c3, for all n large.

Denote Cn
k ’s center and radius as Ok and rn respectively. By the law of large numbers,

for K− such that K− log n
φθ(n)

> 9, i.e., K− > 9(1−δ)
log(2π/(2π−θ))

, we have

lim
n→∞

Pr{There are at least φθ(n) nodes within distance rn/3 of Ok |N(Cn
k ) ≥ K− log n}

= lim
n→∞

Pr{At least a fraction φθ(n)
K− log n

(< 1/9) of nodes

fall within distance rn/3 of Ok |N(Cn
k ) ≥ K− log n} = 1.

Once there are at least φθ(n) nodes within distance rn/3 of Ok, then the event {Y1 is

within that range} implies that Disk(Y1, φθ(n)) ⊆ Cn
k . Since Pr{Y1 is within distance rn/3

of Ok} = 1/9, we know there exists c3 > 0 such that Pr{Disk(Y1, φθ(n)) is within Cn
k } > c3.

Denote Sec0(θ) as the sector of Cn
1 with angle θ which begins from the North and spans

clockwise. Then we have,

Pr{An
k |N(Cn

k ) = n1}

≥ Pr{An
k ; Disk(Y1, φθ(n)) ⊆ Cn

k |N(Cn
k ) = n1}

= Pr{Disk(Y1, φθ(n)) ⊆ Cn
k |N(Cn

k ) = n1} · Pr{An
k |Disk(Y1, φθ(n)) ⊆ Cn

k }

≥ c3 · Pr{All Y1’s φθ(n) nearest neighbors are outside Sec0(θ)}

= c3

(

2π − θ

2π

)(1−δ) log2π/(2π−θ) n

= c3n
−(1−δ).
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Proof of part (ii) of Theorem 1.

For the K−(θ) required in Lemma 3.4, we can select K large enough according to Lemma

3.3, such that, if one tessellates S according to this K, (1) holds. Now let a := n/(K log n),

the total number of the small squares in the tessellation of S. Define a set of integer vectors

as follows,

D :=

{

(n
(1)
1 , n

(2)
1 , · · · , n

(a)
1 ) : n

(k)
1 ≥ K− log n, ∀k;

a
∑

k=1

n
(k)
1 ≤ n

}

.

Then

Pr(Every node X with Disk(X, φθ(n)) ⊆ S is θ-covered)

≤ Pr(

a
⋂

k=1

Ān
k)

=







∑

(n
(1)
1 ,··· ,n

(a)
1 )∈D

+
∑

otherwise






Pr

(

a
⋂

k=1

Ān
k ; N(Cn

k ) = n
(k)
1 , 1 ≤ k ≤ a

)

(b)
= o(1) +

∑

(n
(1)
1 ,··· ,n

(a)
1 )∈D

Pr
(

N(Cn
k ) = n

(k)
1 , 1 ≤ k ≤ a

)

· Pr

(

a
⋂

k=1

Ān
k |N(Cn

k ) = n
(k)
1 , 1 ≤ k ≤ a

)

,

where (b) holds because of Lemma 3.3.

For every k, event An
k is completely determined by the locations of the nodes within disk

Cn
k . If {N(Cn

k )} is given, i.e. N(Cn
k ) = nk for 1 ≤ k ≤ a, then the nodes within one small

disk are uniformly distributed in it, and are independent of all other small disks. Thus An
k ,

1 ≤ k ≤ a, are conditionally independent of each other given {N(Cn
k ), 1 ≤ k ≤ a}. So we

have

Pr(Every node X with Disk(X, φθ(n)) ⊆ S is θ-covered)

= o(1) +
∑

(n
(1)
1 ,··· ,n

(a)
1 )∈D

Pr
(

N(Cn
k ) = n

(k)
1 , 1 ≤ k ≤ a

)

·

a
∏

k=1

Pr
(

Ān
k |N(Cn

k ) = n
(k)
1

)

13



(d)

≤ o(1) +
∑

(n
(1)
1 ,··· ,n

(a)
1 )∈D

Pr
(

N(Cn
k ) = n

(k)
1 , 1 ≤ k ≤ a

)

·
a
∏

k=1

(1 − c3n
−(1−δ))

≤ o(1) + (1 + o(1)) ·

a
∏

k=1

(1 − c3n
−(1−δ))

= o(1) + (1 + o(1)) · exp
{

a
(

−c3n
−(1−δ) + o(n−(1−δ)

)}

= o(1) + (1 + o(1)) · exp

{

n

K log n

(

−c3n
−(1−δ) + o(n−(1−δ))

)

}

= o(1) + (1 + o(1)) · exp

{

−c3n
δ

K log n
(1 + o(1))

}

→ 0, as n → ∞,

where (d) holds because of Lemma 3.4.

4 (1 + δ) log2 n neighbors are sufficient for connected-

ness of the network

In this section we prove Theorem 2. Within this section, denote G(n, (1 + δ) log2 n) in short

by Gn, and Gτ (n, (1 + δ) log2 n) by Gτ
n.

We need the following lemma.

Lemma 4.1. Suppose U1, V1, U2, V2 are four nodes in Gτ
n, and V1 is one of U1’s φn nearest

neighbors in Gτ
n, while V2 is U2’s. Furthermore, U1V1 and U2V2 cross each other at point W ;

see Figure 3. Then, nodes U1, V1, U2, V2 belong to the same connected component of Gτ
n.

PSfrag replacementsU1

V1

U2

V2

W

Figure 3: Crossing edges of Gτ
n.

Proof. In order to show that U1V1 and U2V2 belong to the same connected component of

Gτ
n, it suffices to show that either min{|U2V1|, |U2U1|} < |U2V2|, or min{|U1U2|, |U1V2|} <

|U1V1|. Otherwise, we would have |U2V1| ≤ |U2V2|, |U2U1| ≤ |U2V2|, |U1U2| ≥ |U1V1|, and

14



|U1V2| ≥ |U1V1|. This implies that ∠V2V1U1 ≥ ∠U1V2V1 and ∠U2V2V1 ≥ ∠V2V1U2. Since

∠U1V2V1 > ∠U2V2V1, we will have ∠V2V1U1 > ∠U2V2V1 ≥ ∠V2V1U2. This is a contradiction,

and so U1V1 and U2V2 belong to the same connected component of Gτ
n.

Remark 4.1. It is easy to verify that the result still holds if one replaces Gτ
n with Gn.

Now we prove Theorem 2(i), i.e. limn{G
τ
n is connected} = 1.

Proof of part (i) of Theorem 2.

Since δ is positive, by applying Theorem 1 (i) we know that there exists an angle θ∗ ∈

(0, π) such that limn Pr{Gτ
n is θ∗-covered} = 1. From now on, we assume that Gτ

n is θ∗-

covered, and we prove its connectedness by a geometric contradiction argument.

First notice that, for each realization of Gτ
n, both the set of degrees of all the angles

between edges, and the set of lengths of all the edges, are finite. This is because Gτ
n is

constructed as the periotic repetition of a finite variation.

If Gτ
n is not connected, then there are two separate components CA and CB. By Lemma

4.1, no edge of CA can cross an edge of CB. So because of the finiteness of the sets of both the

angle degrees and the edge lengths, the minimum distance between a point in CA and a point

in CB is strictly positive. Note that a point here need not be a vertex (one of the original

nodes); it could be a point on an edge. Now we show that one can find a pair of new points,

one in CA and one in CB, with strictly smaller distance, thus leading to a contradiction.

Assume the two points achieving the minimum distance are X ∈ CA and Y ∈ CB; see

Figure 4. Draw the line LX crossing X and perpendicular to XY . Draw line LY similarly.

There are three possible cases: 1) If either X or Y is a node (vertex), say X is, then X must

have an edge XZ to the lower side of LX towards LY , because Gτ
n is θ∗-covered; see Case (i)

of Figure 4. Then one can find a point Z ′ on the edge such that |Z ′Y | < |XY |. 2) If either

X or Y is a crossing point of two edges of Gτ
n, say X is, then one of the two edges must cross

LX ; see Case (ii) of Figure 4. Thus one can also find a point Z ′ such that |Z ′Y | < |XY |.

3) If neither X nor Y is a node or crossing point, then the two edges in which X and Y

lie, respectively, must be parallel to each other and perpendicular to XY ; see Case (iii) of

Figure 4. Consider the end points of the two edges to the right of XY . Suppose the nearer

one is X ′. Let Y ′ be the point on the edge in which Y lies such that X ′Y ′ is parallel to XY .

15



Then |X ′Y ′| = |XY |. Applying the same argument as earlier for Cases 1) and 2) to |X ′Y ′|,

since X ′ is now a node, we again get a contradiction. Thus, assuming a strictly positive

distance between two components of Gτ
n leads to a contradiction; so Gτ

n is connected.

(iii)(i) (ii)

180o

PSfrag replacements

CA

CB

LXLX

LYLY

XX X X ′

YY Y Y ′

Z

Figure 4: Case (i) X or Y is a node; Case (ii) X or Y is a crossing point; Case (iii) Neither
X nor Y is a node or crossing point.

In order to prove Theorem 2(ii), we need to study the geometric properties of the graph

Gτ
n. The following definition and lemmas are needed.

Definition 4.1. For a point X belonging to an edge of Gτ
n, a sequence of points {Yk,

1 ≤ k ≤ m + 1}, is called an enclosing circle of X if (i) YkYk+1, 1 ≤ k ≤ m, is an edge or

part of an edge of Gτ
n, with Ym+1 = Y1; (ii) {YkYk+1, 1 ≤ k ≤ m} forms a simple curve on

the plane; (iii) X is within that curve and belongs to the same component of Gτ
n containing

{Yk, 1 ≤ k ≤ m + 1}.

Lemma 4.2. If Gτ
n is θ-covered for θ < π, and no edge of Gτ

n has length more than L :=
√

K̃ log n
πn

for K̃ > 0, then there exists an enclosing circle for any point X belonging to an

edge of Gτ
n. Furthermore, the Euclidean diameter (the maximum Euclidean distance between

every pair of points) of the enclosing circle is no more than M1L, where M1 only depends

on θ.

Proof. Suppose X is on an edge of Gτ
n with A1 as an end node. Denote the line containing

XA1 as Γ; see Figure 5. Since Gτ
n is θ-covered, there is a node A2 with ∠XA1A2 ≤ θ on

one side (“the upper side”) of Γ. Again because of the θ-coverage, there is a node A3 with

∠XA2A3 ≤ θ. So continuing, we can find a sequence of nodes {Ak, k ≥ 1}, which satisfy:

(i) AkAk+1 is an edge of Gτ
n; and (ii) ∠AkXA1, k ≥ 1, keeps expanding counterclockwise,

i.e., ∠Ak+1XA1 > ∠AkXA1 for k ≥ 1. Considering the other side of line Γ similarly, we can

find another sequence of nodes {A′
k, k ≥ 1}, spanning clockwise (letting A′

1 := A1).
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θ
θ
θ

θ

θθ
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A3

A4

A′
2

AkAk+1

Am1

A′
m2

Aj

Figure 5: Finding an enclosing circle.

Without loss of generality, assume θ ∈ (π/2, π). Let β∗ be an angle such that θ < β∗+θ <

π. Now we show that there exists constant ε∗ > 0, only depending on θ and β∗, such that

|AjX| ≤ exp(
π

sin(θ + β∗)
) · (L +

L

ε∗
), ∀j such that ∠AjXA1 < π. (4)

For k < j−1, consider the triangle formed by X, Ak+1, and Ak; see Figure 6. For brevity,

let ak := |AkX|, ak+1 := |Ak+1X|, δk := |AkAk+1|, αk := ∠Ak+1XAk.

PSfrag replacements

θ

αk

Bk+1

akak+1

X

AkAk+1 δk

∆k

Figure 6: The triangle formed by XAkAk+1.

Since no edge of Gτ
n is longer than L, we have L/ak ≥ δk/ak ≥ sin αk. So there exists

ε∗ > 0 such that αk ≤ β∗ (less than π − θ) whenever L/ak ≤ ε∗. Moreover, once αk < π − θ,

if one draws an angle of θ at Ak with one side coinciding with AkX, the line containing

XAk+1 will cross the other side at a point Bk+1 with |Bk+1X| ≥ |Ak+1X|; see Figure 6. So,

in summary, we now have

|Bk+1Ak| = ak ·
sin αk

sin(θ + αk)
≤ ak ·

sin αk

sin(θ + β∗)
, if ak ≥ L/ε∗.
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Denoting ∆k := |Bk+1Ak|, we thus obtain the following relations:

ak+1 ≤

{

ak + ∆k ≤
(

1 + sinαk

sin(θ+β∗)

)

ak, if ak ≥ L/ε∗;

ak + L, otherwise.

It is easy to verify that the sequence {ak} is dominated by the following sequence:

bk+1 := bk

(

1 +
sin αk

sin(θ + β∗)

)

, with b1 = L +
L

ε∗
.

We then have,

ak+1 ≤ bk+1

=

k+1
∏

i=1

(

1 +
sin αi

sin(θ + β∗)

)

·

(

L +
L

ε∗

)

= exp

{

k+1
∑

i=1

log

(

1 +
sin αi

sin(θ + β∗)

)

}

(

L +
L

ε∗

)

≤ exp

{

k+1
∑

i=1

sin αi

sin(θ + β∗)

}

(

L +
L

ε∗

)

≤ exp

{

k+1
∑

i=1

αi

sin(θ + β∗)

}

(

L +
L

ε∗

)

≤ exp

{

π

sin(θ + β∗)

}(

L +
L

ε∗

)

,

for all k ≤ j − 1. Hence we have proved (4), which means that all the points along the

sequence A1A2 · · ·Aj are within distance M ′L of X, for some constant M ′ > 0 depending

only on θ.

Notice now that since Gτ
n is a period repetition of a finite set, {∠AkXA1, s.t. ∠AkXA1 <

π} can only include a finite number of possible values because nodes in {Ak, s.t. ∠AkXA1 <

π} are within a finite range of X. Since every such value is strictly positive, we know there

exists m1 > 0 such that ∠Am1XA1 > π ≥ ∠Am1−1XA1; see Figure 5.

Similarly, we can show that there exists M ′′ > 0 such that all the points along the

sequence {A′
1A

′
2 · · ·A

′
l} are within distance M ′′L of X, as long as ∠A′

lXA1 < π. Moreover,

there exists m2 > 0 such that ∠A′
m2

XA1 > π ≥ ∠A′
m2−1XA1; see Figure 5.

Without loss of generality, assume that the crossing point between A′
m2−1A

′
m2

and Γ

is nearer to X than the crossing point between Am1−1Am1 and Γ; see Figure 5. Then
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sequence A′
kA

′
k+1, k = 1, 2, · · · , must cross XA1A2 · · ·Am1 at some point, say Y . Thus we

have found an enclosing circle of X, and all the points on the circle are within distance

2(max{M ′, M ′′} + 1) · L of each other.

Lemma 4.3. For α > 0 and i, j ∈ {0, 1}, let Si,j
n (α) be the axis-parallel square of size n−α

within S and with one corner at (i, j); see Figure 8. Define the event

Ei,j
n (α) := {Every node in Si,j

n (α) is π/4-covered in Gτ
n}.

Then there exists α∗ ∈ (0, 1/2) such that limn Pr{Ei,j
n (α∗)} = 1, for all i, j ∈ {0, 1}.

Proof. By symmetry, we only need to consider E0,0
n (α). Define Ak(π/4) := {Node Xk is

NOT π/4-covered by its φn nearest neighbors in Gτ
n}, k = 1, · · · , n. It is easy to show, as in

Lemma 3.2, that for any integer M > 0,

Pr{Ak(π/4)} ≤

⌈

2π

π/4

⌉

M

(

(

2π − π
4

+ π
4
/M

2π

)φn

+ c1e
−c2n

)

= 8M

(

7

8
+

1

8M

)φn

+ 8Mc1e
−c2n,

where c1, c2 are two positive constants.

Define Ek(α) := {Node Xk is in S0,0
n (α)}, k = 1, · · · , n. Then

Pr
{

E0,0
n (α)

}

≤ Pr
{

∪n
k=1Ak(

π

4
) and Ek(α)

}

≤
n
∑

k=1

Pr
{

Ak(
π

4
) and Ek(α)

}

= n · Pr
{

A1(
π

4
) and E1(α)

}

= nPr{A1(
π

4
)} · Pr{E1(α)}

≤ n · n−2α ·

(

8M exp

{

φn log

(

7

8
+

1

8M

)}

+ c1e
−c2n

)

= 8M exp

{

(1 − 2α) log n −
(1 + δ)

log 2
log n · log

(

8

7

7M

7M + 1

)}

+ o(1).

Since we can select M to be sufficiently large, it therefore suffices to show that there exists

an α∗ ∈ (0, 1/2), such that (1 − 2α∗) − (1+δ)
log 2

log(8
7
) < 0. Actually this is just equivalent to

requiring α∗ > 1
2
(1 −

(1+δ) log 8
7

log 2
), and so we see easily the existence of such an α∗.
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Now we prove Theorem 2(ii), that, for all δ > 0,

lim
n

Pr{G(n, (1 + δ) log2 n) is connected} = 1.

Proof of Theorem 2 (ii).

By Theorems 1(i) and 2(i), we know that there is a θ∗ < π such that

Pr{Gτ
n is θ∗-covered and connected} → 1, as n → ∞.

By Corollary 3.1, we know that there exists K∗ > 0, such that, with probability converg-

ing to one, every edge of Gτ
n has length no more than L∗ :=

√

K∗ log n
πn

.

By Lemma 4.3, we know there exists α∗ ∈ (0, 1/2), such that, with probability converging

to one as n goes to infinity, every node in Si,j
n (α∗), i, j ∈ {0, 1}, is π/4-covered.

So now we assume that: (i) Gτ
n is connected and θ∗-covered; (ii) Every edge in Gτ

n has

length no more than L∗ :=
√

K∗ log n
πn

; and (iii) Every node in Si,j
n (α∗), i, j ∈ {0, 1}, is π/4-

covered.

The proof then proceeds in three steps.

Step 1: By Lemma 4.2, there exists M1 > 0 such that any point on an edge of Gτ
n can find an

enclosing circle with diameter no more than M1L
∗. For any pair of nodes X, Y ∈ Gn, such

that they are at a distance of at least 2M1L
∗ away from the boundary of S, we now prove

that they belong to the same connected component in Gn.

In graph Gτ
n, draw the line segment connecting X and Y ; see Figure 7. Then XY will

cross an enclosing circle of X at point Y1, and the diameter is no more than M1L
∗. Y1Y will

then cross an enclosing circle of Y1 at some point Y2. So continuing, we obtain a sequence

of points X, Y1, · · · , YJ−1, YJ , with the following properties: (i) Yj, 1 ≤ j ≤ J , are points

on edges of Gτ
n; (ii) X and {Yj} are within the same component of Gτ

n; and (iii) node Y is

within an enclosing circle of YJ .

Since Gτ
n is connected, there is a path of Gτ

n that starts from Y and ends at an edge of

the enclosing circle of YJ . Because both X and Y are at least at a distance 2M1L
∗ away

from the boundary of S, every edge of the enclosing circles is within the boundary of S. By

the definitions of Gn and Gτ
n, they will remain in graph Gn.
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Figure 7: X and Y are connected by enclosing circles.

By Remark 4.1 and Lemma 4.1, we know that two crossing edges of Gn must belong

to the same (connected) component of Gn. So we have proved that X and Y belong to

the same (connected) component of Gn. Hence we conclude that all the nodes lying in the

center square, S∗, which is at a distance 2M1L
∗ from the boundary of S, belong to the same

(connected) component of Gn; see Figure 8.

Step 2: Let γ ∈ (α∗, 1/2), and now we prove that every node in Si,j
n (γ), i, j ∈ {0, 1}, is within

the same component of Gn as that of the nodes in S∗.

By symmetry, we only need to consider the case for S0,0
n (γ). Suppose node X is in S0,0

n (γ);

see Figure 8. Draw an angle of π/4, ∠AXB, towards O, the center of S, with XO dividing

the angle into equal parts. Since n−γ is much less than n−α∗

, XA and XB will be entirely

contained in S0,0
n (α∗) before they enter S∗.

Because X is π/4-covered, it can find a neighboring node Y1 in ∠AXB towards S∗. Draw

line Y1A1 parallel to XA, and line Y1B1 parallel to XB. Then ∠A1Y1B1 is contained in

∠AXB, and node Y1 can find a neighbor Y2 in ∠A1Y1B1. Since both of the two boundary

lines of ∠A1Y1B1 have a segment in S∗ with length at least 1/2, node Y2 cannot be such that

Y1Y2 crosses S∗ and yet Y2 is on the opposite side of Y1. This is because |Y1Y2| is no larger

than L∗ =
√

K∗ log n
πn

, which is far less than 1/2. This procedure can be continued till a node

in S∗ is finally reached. Hence X is connected to the nodes in S∗. So we conclude that every

node in S0,0
n (γ) is in the same (connected) component of Gn as that of a node in S∗, and so

is every node in Si,j
n (γ), i, j ∈ {0, 1}.

Step 3: Now we prove that every node of Gn that is neither in S∗ nor in Si,j
n (γ), i, j ∈ {0, 1},
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Figure 8: Left: Squares S, S∗, Si,j
n (α∗) and Si,j

n (γ), i, j ∈ {0, 1}, and Q. Right: A zoom-in of
the left lower corner of S.

is in the same (connected) component of Gn as that of a node in S∗ or Si,j
n (γ), i, j ∈ {0, 1}.

Again by symmetry, we only need to show this for the nodes in the rectangle, say Q,

defined by points (n−γ, 0), (n−γ, 2M1L
∗), (1 − n−γ, 2M1L

∗), and (1 − n−γ, 0); see Figure 8.

Suppose Z is such a node in Q. Since Z is θ∗-covered and θ∗ < π, Z can find a neighbor,

say Z1, that has a strictly larger y-coordinate than itself. Continuing this, we can find a

path of Gn consisting of nodes Zk, k ≥ 1, with strictly increasing y-coordinates. Because

|ZkZk+1| ≤ M1L
∗, which is much less than the sizes of S0,0

n (γ), S1,0
n (γ) and S∗, the path must

end up reaching a node in one of these three squares. This means every node in Q belongs

to the same component of Gn to which all the nodes in S∗ and Si,j
n (γ), i, j ∈ {0, 1} belong.

Summing the above three steps, we have proved that the graph Gn is connected.

5 θ-coverage and its application to the performance

analysis of wireless networks

The uniform distribution is a simple model for conducting performance analysis, which, as

noted earlier, dates back to the pioneering work of E. N. Gilbert [5]. It has continued to be

an important model for the study of wireless networks, especially for topology control and

routing algorithms. Our results, which address properties of the network, can be used to

analyze the performance of such algorithms.
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The concept of θ-coverage was used in [11, 12] as the key idea to establish an efficient

topology for wireless networks. In these works, the model is deterministic, and it is shown

that θ = 5π/6 is the critical sector angle for ensuring connectivity. Based on the analysis

and results in our paper, we can assess the performance of their algorithm for uniformly

distributed networks with many nodes. First, we see that each node only needs to guaran-

tee π-coverage, as opposed to 5π/6-coverage, in order to ensure that the whole network is

connected. Such π-coverage can be established, at least asymptotically, by just letting every

node connect to its log2 n nearest neighbors, which does not require the capability for each

node to estimate angles, as used in those algorithms. Secondly, the average degree of a node

in such θ-covered networks is about O(log n), with high probability.

Greedy forwarding is a key idea in many graphical or geographical routing algorithms,

e.g., MFR (Most Forward within Radius) [2], Cartesian routing [25], GPSR (Greedy Perime-

ter Stateless Routing) [26], GRA (Geographical Routing Algorithm) [27], and GOAFR

(Greedy Other Adaptive Face Routing) [28]. Because pure greedy forwarding could re-

sult in stopping at an intermediate node when a packet cannot find a node closer than itself,

many of the routing algorithms implement strategies to circumvent this. If every node in

the network is connected to sufficiently many neighbors, at the scale of O(log n), so that the

resulting network is θ-covered, then we can determine the size of the void that a packet needs

to detour. This is because now every node is surrounded by an enclosing circle (see Definition

4.1), and its size is as given by Lemma 4.2. This provides some insight into designing new

routing algorithms.

The results on θ-coverage can also be used to obtain an estimate of stretching factors

for certain topology control and routing algorithms. For example, in [29], a protocol to

let every node maintain a specified degree is proposed. Since a node needs to connect to

Θ(log n) nearest neighbors [8] to maintain connectivity, the network will be θ-covered with

high probability. Once θ is less than π, the result in [12] yields the stretching factor of the

resulting graph.
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6 Concluding Remarks

To study the behavior of the geometric structure of wireless networks with a large number of

nodes, we have formally defined and examined the notion of θ-coverage, a concept that has

appeared in several previous research works. In this paper, a network is generated as n nodes

uniformly distributed within a unit square, with every node connecting to the same number

of nearest neighbors. We have shown that the exact threshold function for θ-coverage,

including even the pre-constant, is log 2π
2π−θ

n, for any θ ∈ (0, 2π). Using a new argument

solely involving geometry, we have also shown that π-coverage with high probability implies

overall connectivity with high probability.

As discussed in the paper, since the uniform distribution is a simple and favorite model

for analysis and simulation studies, these results provide some insights into the performance

analysis of wireless networks. However, how quick the probability converges with different

pre-constant remains unknown, and this will be useful to study for the behavior of networks

of modest size. Also of interest is the area coverage problem, i.e., how to cover some area

such that every point in the area is covered by several nodes. This has been studied for the

distance-based connection model in [30], while for the number of neighbors based connection

model, or the sector-based connection model, it remains open.
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