
Towards Automatic Composition of Network
Management Web Services

Torsten Klie
Technische Universität Braunschweig, Germany

Email: tklie@ibr.cs.tu-bs.de

Felix Gebhard
Exinit GmbH & Co KG, Germany

Email: fgebhard@exinit.de

Stefan Fischer
Universität zu Lübeck, Germany

Email: fischer@itm.uni-luebeck.de

Abstract— Despite the automation in many domains, network
management still requires a lot of manual interaction. With
the ongoing rapid growth of the Internet and the number
of connected devices, the need for automated and intelligent
management becomes even higher. Using Web services for man-
agement can be seen as a first step towards a better integration of
business functions and technical management. However, offering
basic management functions through Web services is still not
enough for better automation. An autonomic management system
is needed, which is able to perform more abstract tasks. These
higher level tasks could be aggregated Web service calls. In
this paper, we analyze existing techniques for automatic Web
service composition and show how they can be used for network
management. Moreover, we discuss our implementation of an
automatic service composition engine.

I. INTRODUCTION

The quick growth of the Internet and the number of con-
nected devices stresses the need for further automation in
the network management field. Currently, managing business
networks requires a lot of manual work. Standard management
technologies such as SNMP have a number of problematic
issues [1]. One way to get rid of some of these issues is
to use Web services, a technology that is independent from
the application domain. Web services offer several benefits
that make them very interesting for network management,
e.g., using a general XML framework for service description
and communication. Several Frameworks for Web services
based management have been recently developed (e.g. OASIS
WSDM, DMTF WS Management) and IETF NETCONF
supports Web services as an optional feature.

To push automation, it will not be sufficient to set up
management functions as Web services; additionally, searching
and finding relevant services will be of significant importance.
Only if a manager can find and call the relevant services
without knowing many details of the underlying network real
automation can be established. In other domains, especially in
the area of commercial Web services, combined and composed
Web services have shown advantages. Web services can be
composed statically (which means manually in this case), but
in recent years, several approaches for automatic Web service
composition have been published.

This paper shows how the automation of network manage-
ment can be supported by automatic Web service composition
and is structured as follows: next, we will introduce Web
service composition techniques briefly and will present exist-

ing composition approaches. Then we will describe the tasks
an automatic composition engine must perform along with a
management ontology in Section III. In Section IV we will
present the design, some selected implementation details, and
evaluation results of our composition engine. This paper will
end with a brief summary and an outlook on further work.

II. WEB SERVICE COMPOSITION

This section is a brief introduction to Web services compo-
sition including a comparison of different existing composition
approaches: BPEL4WS, as a representative of template-based
composition, and WSMO, WSDL- S, and OWL-S, which are
semantic approaches.

A. Composition Basics

A composition consists of its synthesis and its orchestration.
Synthesis means the way a composition is created. Possible
synthesis models are manual composition, template based
composition, and automatic composition.Orchestration is the
execution of the composed service. It can be performed
centralized or in a peer-to-peer fashion.

B. Template-based Composition

The XML-based Business Process Execution Language for
Web Services (BPEL4WS) [2] has been designed to define
processes that communicate with external Web services speci-
fied in WSDL 1.1 and present themselves as a Web service in
WSDL 1.1. BPEL4WS compositions are complete executable
process specifications which contain implementation logic.
Parts of the process could be either basic activities (i.e. simple
activities) or structured activities (i.e. a group of activities).
These compositions are template-based compositions, so if
a single Web service described in the execution plan is not
available or produces an error, the whole execution fails.

C. Automatic Composition

In order to enable automatic compositions, requests and
Web services must be stated in a way a machine can under-
stand. The composition engine must be able to understand
the semantics of the request to compose and execute an
appropriate service. A request or task, respectively, could be
described by specifying input and output parameters and the
“world state” before and after the execution. These semantics
can be expressed using an ontology that enables machines



to reason (i.e. draw conclusions) about described objects and
relations.

An ontology is a knowledge representation of a specific
domain in form of a data model which is expressed by an
ontology language, a kind of description language. A common
ontology language is the Web Ontology Language (OWL) [3].
With an OWL DL reasoner conclusions can be drawn and it
is possible to infer new facts from existing ones. It can also
be used to find inconsistencies within the ontology.

WSDL-S [4] is a simple extension to WSDL that allows
for the description of IOPEs (functional semantic informa-
tion: input and output parameters, preconditions, and effects)
of Web services. Its advantages are the independence from
ontology languages and the seamless integration into WSDL.
However, some dimensions of a service composition, such
as orchestration, choreography, and data transfer, are not
definable in WSDL-S.

WSMO [5] is a complex conceptual model that describes
all the dimensions of a service composition using ontologies.
Requests (goals) and services are defined in the same way,
but separately. Mediators can be defined to intercede between
requests, Web services, and different ontologies. As of this
writing, some core issues of WSMO, such as orchestration,
choreography, data types and transfers, are not yet specified.

OWL-S [6] is a commonly known model for semantic
description of Web services and Web service compositions.
As opposed to WSMO, both requests and Web services are
described via one element (ServiceProfile). A definition of
mediators is not provided. Instead, they can either be emu-
lated by plan generators (e.g. such as WGMediators) or be
described directly as OWL-S descriptions (e.g. OOMediators).
Due to the missing mediators, only static and template-based
compositions can be described in OWL-S.

III. AUTOMATIC COMPOSITION OF MANAGEMENT WEB
SERVICES WITH OWL-S

In Section II, we have compared different Web service
composition approaches. In the following, we will explain the
major steps towards an automatic service composition with
the OWL-S approach. We chose OWL-S because it allows for
formal specification of compositions and it is not restricted to
a specific architecture. Furthermore, there is a large number of
tools and Java APIs available. The other approaches are not so
useful for our purpose, because BPEL lacks semantic support,
WSDL-S does not allow for the description of compositions,
and WSMO is still missing important parts such as orchestra-
tion. However, a plan generator to implement automatic Web
service composition with OWL-S is needed and descriptions
of all semantic information relevant to the composition in form
of an ontology must exist.

A. Building a Management Ontology

Different information modeling languages such as Structure
of Management Information (SMI), Guidelines for the Defi-
nitions of Managed Objects (GDMO), and DMTFs Common
Information Model (CIM) have been developed for network

management. In order to enable machine-driven inferencing
and reasoning, more components such as axioms and restric-
tions have to be defined. Several approaches [7], [8] have
been made to translate existing models into a heavy-weight
ontology.

In this work we want to focus on the aspects of service
composition. Therefore, we do not address the problems
related to ontology conversion towards a general (network)
management ontology. Instead, we introduce our own simple
but limited ontologies in OWL DL: a system ontology, a
configuration ontology, and an operations ontology.

Fig. 1. Excerpt of the system ontology

Our system ontology contains the necessary elements to
describe networks and individual devices. Each functionality
in the network (switches, firewalls, Web server, printer, etc.)
are represented by the concept Role. As shown in Figure
11, an individual of Node can have several roles, which have
exactly one device type and one current configuration.Roles
can have several addresses. Their state is represented by a
State individual. Node individuals can be directly connected
to other Node individuals.

The configuration ontology contains elements that can be
used to describe configurations of devices. A configuration
modelis necessary to base certain decisions on certain config-
uration characteristics. An individual of a Configuration
consists of a base configuration and a device configuration. A
DeviceConfiguration individual represents an installa-
tion of a foreign device at a Node individual such as a printer
configuration of a network printer at a PC.

The operations ontology contains elements for the de-
scription and execution of actions. Basically, there are four
different operations: ReadConfiguration, ReadState,
WriteConfiguration, and a combined operation, which
is used to classify operations. Combined operations are not

1The Figure has been generated using the Jambalaya plug-in for Protégé.
The full OWL documents can be found in [9].



directly provided by devices, but can be executed as a com-
position of Web services or mediator services.

B. Tasks and Solutions

In [10], automatic Web service composition is divided into
discovery, negotiation, composition, and invocation. In the
following, we describe possible problems and solutions for
each step.

1) Discovery: After a task has been specified, it is looked
for Web services that can fulfill the task completely or
in parts. The registry and the matching mechanism are
the most important components here.

a) Registry: The registry provides information about
available Web services and how they are described.
Unfortunately, UDDI does not provide sufficient
information to evaluate automatically whether a
Web service is suitable to fulfill a given task.
On the one hand, the taxonomy provided is too
simple and on the other hand, semantic information
is missing. The OWL-S/UDDI Matchmaker [11]
extends the taxonomies with semantic informa-
tion and enables a machine to search for IOPEs.
OWLS-MX [12] is another matchmaker, which
contains a simple proprietary registry.

b) Matching: The matching algorithm used by
OWLS/UDDI matchmaker compares input- and
output parameters of a request with the parameters
of the listed Web services. The output parameters
are compared first. If the degree of match between
all output parameters of the request and a Web
service is not “fail”, the input parameters will be
compared next.
OWLS-MX has an extended matching algo-
rithm and a slightly different result classification,
which includes a syntactic similarity evaluation
(SIM(S,R) ≥ α).

2) Negotiation: Before a found Web service can be used,
it has to be negotiated how the service may be used
(costs, legal restrictions, technical restrictions, etc.). In
the network management context, this step is not so im-
portant, because the managed networks usually belong
to a single business entity and the Web services manage
individual devices.

3) Composition: In order to perform a task, several Web
services, which have to be combined, might be nec-
essary. This kind of composition can be called plan
generation. Plan generation is a well-known subject of
AI.

4) Invocation: This step deals with the correct execution of
the Web services. This includes presenting the specified
semantic data in a way which the particular communi-
cation protocol can handle.

IV. ANEMAC - OUR APPROACH

The aNeMaC framework consists of a network management
ontology presented in section III-A, some base Web services,

e.g., to read and write configurations, and the base software
aNeMaC that we describe in this section. Starting with the
basic requirements, we will also discuss the most important
design decisions and implementation issues. Finally, we will
evaluate our solution and compare it to other existing solutions.

A. Requirements

It should be possible to describe tasks by specifying their
input and output parameters. Furthermore, the administrator
should be able to add descriptions of the devices present in
the network. The core task of the system is the automatic
plan generation to perform the specified tasks. Therefore, an
evaluation of the available Web services which could perform
sub-tasks as well as an arrangement of the Web services
to be used w.r.t. order and data flows is done. If there are
several possible plans, it must be possible to choose one, either
manually or automatically. If there are no plans fitting the task
description, the closest solution should be presented. Existing
plans and task descriptions should be stored in a database. It
should also be possible to modify the task descriptions later
and to add, change, and remove OWL ontologies and Web
service descriptions in OWL-S.

B. aNeMaC Architecture

The overall architecture of aNeMaC is divided into the four
components management core, Web GUI, planning engine,
and matchmaker.

1) Management Core: This core component provides the
main functions to control and manage objects and to
interact between components of the system. The main
tasks of the management core are the management of
task descriptions and plans, starting the plan generation
process, as well as providing access to the database and
OWL functions.

2) Planning Engine: This component contains func-
tions for task description and plan generation. A
ServiceDescription object should contain the
task description provided by the administrator. The
output of the planning engine is a Plan object that
contains all the details of a generated plan. This includes
the Web services, their parameters, and the mapping
between the parameters of the used Web services and
the task description. Such an object should describe a
complete OWL-S composite process in order to enable
an OWL-S import and export in the system.

3) Web GUI: This component allows to use aNeMaC via a
Web browser in order to enable a decentralized use.

4) Matchmaker: The matchmaker component is called from
the planning engine with a given service description and
tries to find Web services that fit the requirements. In ad-
dition to parameter matching, a precondition test should
be performed, if supported by the attached matchmaker.
This component should be able to work with different
existing matchmakers.



C. Implementation Details

A plan consists of a control flow and a data flow. The
control flow in aNeMaC is composed of different Web Ser-
vices, control structures with types like ”Choice”, ”IfThen”
or ”RepeatWhile End” and others2 and preconditions. The
data flow is expressed by a parameter mapping. A complete
parameter mapping contains source parameters for all input
parameters of the Web services and all output parameters of
the task description. These source parameters could be output
parameters of a Web service or input parameters of the task
description.

One important detail of aNeMaC to point out is the plan
generation, therefore a simple algorithm has been developed:
Starting from the task description, matching and precondi-
tions fulfilling Web services are searched by the matchmaker
component. For each found Web service, a new Plan that
contains this Web service as first service will be generated.
Then it is checked whether the plan is complete. For each
incomplete plan, additional Web services are searched. A list
of Web services that provide output parameter for other not yet
mapped parameters is generated for each incomplete plan. For
each found Web service a copy of the original plan is created to
which the Web service is added. Finally, it is checked whether
the new plan is complete.

The generation of a parameter mapping, which is called
after adding a service, follows a simple principle. All input
parameters of the Web service and all output parameters of the
task description that still have to mapped are queried. Then
all available output parameters of the Web services and all
input parameters of the task description are queried. For each
parameter to be mapped, the set of available parameters is
searched for a mapping. Therefore, it is checked whether the
available parameters have the same concept or a sub-concept
as the parameter to be mapped and whether those parameters
will be available before the service with the parameters to
mapped is called. If both conditions are true, those parameters
will be mapped.

Plans are basically divided into complete plans, i.e. semanti-
cally matching task solutions, and incomplete plans, i.e. plans
that lack parameters. A further classification is not needed
here.

D. Evaluation

As the work is still in progress only a few performance
evaluation results are available. These initial evaluations show
that the amount of time used is growing quickly with the
amount of available Web Services in networks: The need
for checking for preconditions while rating Web Services is
the crook, but there are a few options to optimize this slow
behavior, e.g., caching mechanisms to keep old precondition
checks or to adjust the use of the OWL-S MX matchmaker
and the OWL-S API when checking preconditions.

2These mentioned types are borrowed from OWL.

V. CONCLUSION

In this paper, we have analyzed automatic Web service
composition as a possibility to further automate network
management. We have compared different basic Web ser-
vice composition technologies and described aNeMaC, our
approach of a composition engine for network management
Web services.

Automatic Web service composition can be used to sim-
plify complex network management tasks. aNeMaC with its
network management ontology enables automatic composition
that covers large parts of network management tasks. To
use aNeMaC effectively in a production environment, several
extensions and optimization should be made. First of all,
a generic and network ontology that covers all aspects of
networks should be developed and standardized. Then, all
network resources should be accessible via Web services,
either directly or via proxies. Furthermore, the management
Web services of the resources will have to be described in
OWL-S using the network ontology.

Besides optimization of aNeMaC, we are investigating, how
Web service composition can be used as a complementary
technique for policy refinement in policy-based management
systems.

REFERENCES

[1] J. Schönwälder, A. Pras, and J.-P. Martin-Flatin, “On the Future of
Internet Management Technologies,” IEEE Communications Magazine,
vol. 41, no. 10, Oct. 2003.

[2] S. Thatte et al., “Business Process Execution Language for Web Services
– Version 1.1,” Microsoft and others, OASIS Standard BPELv11-
May052003, May 2003.

[3] P. Patel-Schneider, P. Hayes, and I. Horrocks, “OWL Web Ontology
Language Semantics and Abstract Syntax,” Bell Labs Research and
University of West Florida and University of Manchester,” W3C Rec-
ommendation, Feb. 2004.

[4] R. Akkiraju, J. Farrel, J. Miller, M. Nagarajan, M.-T. Schmidt, A. Sheth,
and K. Verma, “Web Service Semantics – WSDL-S,” University of
Georgia and IBM Corp., W3C Member Submission SUBM-WSDL-S-
20051107, Nov. 2005.

[5] D. Roman, H. Lausen, and U. Keller, “Web Service Modeling Ontology
(WSMO),” WSMO, WSMO Working Draft D2v1.2., Apr. 2005.

[6] D. Martin et al., “OWL-S: Semantic Markup for Web Services,” SRI
International and others, DAML White Paper Release 1.1, Nov. 2004.

[7] D. Heimbigner, “DMTF - CIM to OWL: A Case Study in Ontology
Conversion,” in Proc. 16th International Confernece of Software Engi-
neering & Knowledge Engineering (SEKE), Alberta, Canada, June 2004.

[8] J. E. L. de Vergara, V. A. Villagrá, and J. Berrocal, “Applying the
Web Ontology Language to Managament Information Definition,” IEEE
Communications Magazine, vol. 42, no. 7, July 2004.

[9] F. Gebhard, “Automatische Komposition von Web-Services für das
Netzwerkmanagement,” Master’s thesis, TU Braunschweig, June 2006.

[10] A. Polleres, H. Lausen, and R. Lara, “Semantische Beschreibung von
Web Services,” in Semantic Web - Wege zur vernetzten Wissensge-
sellschaft, T. Pelegrini and A. Blumauer, Eds. Springer, 2006.

[11] N. Srinivasan, M. Paolucci, and K. Sycara, “Adding OWL-S to UDDI,
implementation and throughput,” in Proc. 1st Int. Workshop on Sematic
Web Services and Web Process Composition (SWSWPC), San Diego,
USA, July 2004.

[12] M. Klusch, B. Fries, and K. Sycara, “Automated Semantic Web Service
Discovery with OWLS-MX,” in Proc. 5th International Conference
on Autonomous Agents and Multi-Agent Systems (AAMAS), Hakodate,
Japan, Mai 2006.


