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ABSTRACT 

From the viewpoint of a service provider, demands on the network are not entirely predictable. 

Traffic modeling is the problem of representing our understanding of dynamic demands by 

stochastic processes. Accurate traffic models are necessary for service providers to properly 

maintain quality of service. Many traffic models have been developed based on traffic 

measurement data. This chapter gives an overview of a number of common continuous-time and 

discrete-time traffic models. Sources are sometimes policed or regulated at the network access, 

usually by a leaky-bucket algorithm. Access policing can change the shape of source traffic by 

limiting the peak rate or burstiness. Source traffic may also be regulated by protocol mechanisms 

such as sliding windows or congestion windows (as in TCP), leading to other traffic models.   

 

INTRODUCTION 

Teletraffic theory is the application of mathematics to the measurement, modeling, and 

control of traffic in telecommunications networks (Willinger and Paxson, 1998). The aim of 

traffic modeling is to find stochastic processes to represent the behavior of traffic. Working at the 

Copenhagen Telephone Company in the 1910s, A. K. Erlang famously characterized telephone 

traffic at the call level by certain probability distributions for arrivals of new calls and their 

holding times. Erlang applied the traffic models to estimate the telephone switch capacity needed 
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to achieve a given call blocking probability. The Erlang blocking formulas had tremendous 

practical interest for public carriers because telephone facilities (switching and transmission) 

involved considerable investments. Over several decades, Erlang’s work stimulated the use of 

queueing theory, and applied probability in general, to engineer the public switched telephone 

network. 

Packet-switched networks started to be deployed on a large scale in the 1970s. Like 

circuit-switched networks, packet networks are designed to handle a certain traffic capacity. 

Greater network capacity leads to better network performance and user satisfaction, but requires 

more investment by service providers. The network capacity is typically chosen to provide a 

target level of quality of service (QoS). QoS is the network performance seen by a packet flow, 

measured mainly in terms of end-to-end packet loss probability, maximum packet delay, and 

delay jitter or variation (Firoiu, et al., 2002). The target QoS is derived from the requirements of 

applications.  For example, a real-time application can tolerate end-to-end packet delays up to a 

maximum bound. 

Unfortunately, teletraffic theory from traditional circuit-switched networks could not be 

applied directly to emerging packet-switched networks for a number of reasons. First, voice 

traffic is fairly consistent from call to call, and the aggregate behavior of telephone users does 

not vary much over time. However, packet networks carry more diverse data traffic, for example, 

e-mail, file transfers, remote login, and client-server transactions. Data applications are typically 

“bursty” (highly variable over time) and vary in behavior from each other. Also, the traffic 

diversity has increased with the growing number of multimedia applications. Second, traffic is 

controlled differently in circuit- and packet-switched networks. A circuit-switched telephone call 

proceeds at a constant bit-rate after it is accepted by the network. It consumes a fixed amount of 
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bandwidth at each telephone switch. In contrast, packet flows may be subjected to access control 

(rate enforcement at the network boundary); flow control (the destination slowing down the 

sender); congestion control (the network slowing down the sender); and contention within the 

network from other packet flows. Thus, packet traffic exhibits much more complex behavior 

than circuit-switched voice.        

Teletraffic theory for packet networks has seen considerable progress in recent decades 

(Adas, 1997; Frost and Melamed, 1994; Michiel and Laevens, 1997; Park and Willinger, 2000). 

Significant advances have been made in long-range dependence, wavelet, and multifractal 

approaches. At the same time, traffic modeling continues to be challenged by evolving network 

technologies and new multimedia applications. For example, wireless technologies allow greater 

mobility of users. Mobility must be an additional consideration for modeling traffic in wireless 

networks (Thajchayapong and Peha, 2006; Wu, Lin, and Lan, 2002). Traffic modeling is clearly 

an ongoing process without a real end. Traffic models represent our best current understanding 

of traffic behavior, but our understanding will change and grow over time. 

This chapter presents an overview of commonly used traffic models reflecting recent 

developments in the field. The first step in modeling is understanding the statistical 

characteristics of the traffic. The first section reviews common statistical measures such as 

burstiness, long range dependence, and frequency analysis. Next, we examine common 

continuous-time and discrete-time source models. These models are sufficiently general to apply 

to any type of traffic, but application-specific models are tailored closer to particular 

applications. We highlight studies of the major Internet applications: World Wide Web, peer-to-

peer file sharing, and streaming video. In the last section, we examine two major ways that the 

network affects the source traffic. First, traffic sources can be “policed” at the network access. 
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Second, the dynamics of TCP flows (the majority of Internet traffic) are affected by network 

congestion and active queue management schemes at network nodes. 

   

Packets, flows, and sessions 

Some terminology should be introduced at this point because traffic can be viewed at 

different levels, as shown in Figure 1. When the need arises, a host will establish a session with 

another host. A session is associated with a human activity. For example, a client host will open 

a TCP connection to port 21 on a server to initiate a FTP session. The TCP connection will be 

closed at the end of the FTP session. Or a session may be viewed as the time interval when a 

dial-up user is connected to an ISP. For connection-oriented networks such as ATM, a session is 

a call established and terminated by signaling messages. Traffic modeling at the session (or call) 

level consists of characterizing the start times and duration of each session.  

 

Session

Host Host

Burst Burst

Flow

Packet Packet Packet

Burst

 

 

Fig. 1. Levels of traffic 
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During a session, each host may transmit one or more packet flows to the other host 

(Roberts, 2004). Although the term is used inconsistently in the literature, a flow is commonly 

considered to be a series of closely spaced packets in one direction between a specific pair of 

hosts. Packets in a flow usually have common packet header fields such as protocol ID and port 

numbers (in addition to source and destination addresses). For example, an FTP session involves 

two packet flows between a client and server: one flow is the control stream through TCP port 

21, and the second flow is the data stream (through a negotiated TCP port). Traffic modeling at 

the flow level consists of characterizing the random start times and durations of each flow.  

TCP flows have been called “elephants” and “mice” depending on their size. An 

elephant’s duration is longer than the TCP slow start phase (the initial rate increase of a TCP 

connection until the first dropped packet). Due to their short duration, mice are subject to TCP’s 

slow start but not to TCP’s congestion avoidance algorithm. Less common terms are 

“dragonflies,” flows shorter than two seconds, and “tortoises,” flows longer than 15 minutes 

(Brownlee and Claffy, 2003). Traffic measurements have suggested that 40-70 percent of 

Internet traffic consist of short flows, predominantly Web traffic. Long flows (mainly non-Web 

traffic) are a minority of the overall traffic, but have a significant effect because they can last 

hours to days.  

Viewed in more detail, a flow may be made up of intermittent bursts, each burst 

consisting of consecutively transmitted packets. Bursts may arise in window-based protocols 

where a host is allowed to send a window of packets, then must wait to receive credit to send 

another window. Another example is an FTP session where a burst could result from each file 

transferred. If a file is large, it will be segmented into multiple packets. A third example is a 

talkspurt in packet voice. In normal conversations, a person alternates between speaking and 
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listening. An interval of continuous talking is a talkspurt, which results in a burst of consecutive 

packets. 

Finally, traffic can be viewed at the level of individual packets. This level is concerned 

only with the arrival process of packets and ignores any higher structure in the traffic (bursts, 

flows, sessions). The majority of research (and this chapter) address traffic models mainly at the 

packet level. Studies at the packet level are relatively straightforward because packets can be 

easily captured for minutes or hours. 

Studies of traffic flows and sessions require collection and analysis of greater traffic 

volumes because flows and sessions change over minutes to hours, so hours or days of traffic 

need to be examined. For example, one analysis involved a few packet traces of several hours 

each  (Barakat, Thiran, Iannaccone, Diot, and Owezarski, 2003). Another study collected eight 

days of traffic (Brownlee and Claffy, 2002). 

 

The modeling process 

Traffic models reflect our best knowledge of traffic behavior. Traffic is easier to 

characterize at sources than within the network because flows of traffic mix together randomly 

within the network. When flows contend for limited bandwidth and buffer space, their 

interactions can be complex to model. The “shape” of a traffic flow can change unpredictably as 

the flow progresses along its route. On the other hand, source traffic depends only on the rate of 

data generated by a host independent of other sources.  

Our knowledge is gained primarily from traces (measurements) of past traffic consisting 

of packet arrival times, packet header fields, and packet sizes. A publicly available trace of 

Ethernet traffic recorded in 1989 is shown in Figure 2. A trace of Star Wars IV encoded by 
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MPEG-4 at medium quality is shown in Figure 3 (data rate per frame). Traffic can be measured 

by packet sniffers or protocol analyzers, which are specialized pieces of hardware and software 

for recording packets at link rates (Thompson, et al., 1997). Common sniffers are tcpdump, 

Snort, and Ethereal. These can be easily connected to transmission links, local area networks, or 

mirrored ports on switches and routers. Also, traffic volume is routinely recorded by routers as 

part of the simple network management protocol (SNMP). In addition, some NetFlow-capable 

routers are able to record simple flow information (e.g., flow start/stop times, number of bytes, 

and number of packets).  

 

 

 

Fig. 2. Ethernet traffic trace. 
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Fig. 3. Trace of Star Wars IV encoded at medium quality MPEG-4. 

 

One of the practical difficulties in traffic modeling is collecting and analyzing large sets 

of traffic measurements. Traffic can be highly variable, even between two similar types of 

sources. For example, one video might have many scene changes reflected by frequent spikes in 

the source rate, while another video might have few scene changes resulting in a smoother source 

rate. Therefore, it is good practice to collect measurements from many sources or over many 

time periods, and then look for common aspects in their behavior. In probabilistic terms, each 

traffic trace is a single realization or sample of the traffic behavior. A small sample set could 

give a misleading portrayal of the true traffic behavior.  
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A good choice for stochastic model should exhibit accuracy and universality. Accuracy 

refers to a close fit between the model and actual traffic traces in statistical terms. Sometimes 

accuracy is judged by the usefulness of a model to predict future behavior of a traffic source. 

Universality refers to the suitability of a model for a wide range of sources. For example, an 

MPEG traffic model should be equally applicable to any particular video source, not just to Star 

Wars (although the parameter values of the model may need to change to fit different sources).  

Our knowledge of traffic is augmented from analyses and simulations of protocols. For 

example, we know that TCP sources are limited by the TCP congestion avoidance algorithm. 

The TCP congestion avoidance algorithm has been analyzed extensively, and TCP sources have 

been simulated to investigate the interactions between multiple TCP flows to verify the stability 

and fairness of the algorithm. 

Ultimately, a traffic model is a mathematical approximation for real traffic behavior. 

There are typically more than one possible model for the same traffic source, and the choice 

depends somewhat on subjective judgment. The choice often lies between simple, less accurate 

models and more complex, accurate models. An ideal traffic model would be both simple to use 

and accurate, but there is usually a trade-off between simplicity and accuracy. For example, a 

common time series model is the p-order autoregressive model (discussed later). As the order p 

increases, the autoregressive model can fit any data more accurately, but its complexity increases 

with the number of model parameters.  

 

Uses of traffic models 

Given the capability to capture traffic traces, a natural question is why traffic models are 

needed. Would not traffic measurements be sufficient to design, control, and manage networks? 
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Indeed, measurements are useful and necessary for verifying the actual network performance. 

However, measurements do not have the level of abstraction that makes traffic models useful. 

Traffic models can be used for hypothetical problem solving whereas traffic measurements only 

reflect current reality. In probabilistic terms, a traffic trace is a realization of a random process, 

whereas a traffic model is a random process. Thus, traffic models have universality. A traffic 

trace gives insight about a particular traffic source, but a traffic model gives insight about all 

traffic sources of that type. 

Traffic models have many uses, but at least three major ones. One important use of traffic 

models is to properly dimension network resources for a target level of QoS. It was mentioned 

earlier that Erlang developed models of voice calls to estimate telephone switch capacity to 

achieve a target call blocking probability. Similarly, models of packet traffic are needed to 

estimate the bandwidth and buffer resources to provide acceptable packet delays and packet loss 

probability. Knowledge of the average traffic rate is not sufficient. It is known from queueing 

theory that queue lengths increase with the variability of traffic (Kleinrock, 1976). Hence, an 

understanding of traffic burstiness or variability is needed to determine sufficient buffer sizes at 

nodes and link capacities (Barakat, et al., 2003). 

A second important use of traffic models is to verify network performance under specific 

traffic controls. For example, given a packet scheduling algorithm, it would be possible to 

evaluate the network performance resulting from different traffic scenarios. For another example, 

a popular area of research is new improvements to the TCP congestion avoidance algorithm. It is 

critical that any algorithm is stable and allows multiple hosts to share bandwidth fairly, while 

sustaining a high throughput. Effective evaluation of the stability, fairness, and throughput of 

new algorithms would not be possible without realistic source models. 
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A third important use of  traffic models is admission control. In particular, connection-

oriented networks such as ATM depend on admission control to block new connections to 

maintain QoS guarantees. A simple admission strategy could be based on the peak rate of a new 

connection; a new connection is admitted if the available bandwidth is greater than the peak rate. 

However, that strategy would be overly conservative because a variable bit-rate connection may 

need significantly less bandwidth than its peak rate. A more sophisticated admission strategy is 

based on effective bandwidths (Kelly, 1996). The source traffic behavior is translated into an 

effective bandwidth between the peak rate and average rate, which is the specific amount of 

bandwidth required to meet a given QoS constraint. The effective bandwidth depends on the 

variability of the source.  

 

SOURCE TRAFFIC STATISTICS 

This section gives an overview of general statistics to characterize source traffic. The 

traffic may be represented by its time-varying rate X(t)  in continuous time or X
n
 in discrete 

time. In practice, we are often measuring the amount of data generated over short periodic time 

intervals, and then the traffic rate is the discrete-time process X
n
. A discrete-time process is also 

easier for computers to record and analyze (as a numerical vector) than a continuous-time 

process. On the other hand, it might be preferable to view the traffic rate as a continuous-time 

process X(t)  for analysis purposes, because the analysis in continuous time can be more elegant. 

For example, video source rates are usually characterized by the data per frame, so X
n
 would 

represent the amount of data generated for the nth frame. But X
n
 could be closely approximated 

by a suitable continuous-time process X(t)  for convenience, if analysis is easier in continuous 
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time. Alternatively, traffic may be viewed as a point process defined by a set of packet arrival 

times 
 
{t
1
,t
2
,…}  or equivalently a set of interarrival times !

n
= t

n
" t

n"1
.  

When a traffic trace is examined, one of the first analysis steps is calculation of various 

statistics. Statistics can suggest an appropriate traffic model. For example, an exponential 

autocorrelation function is suggestive of a first-order autoregressive process (discussed later).  

Simple statistics 

The traffic rate is usually assumed to be a stationary or at least wide sense stationary 

(WSS) process for convenience, although stationarity of observed traffic is impossible to prove 

because it is a property over an infinite (and unobservable) time horizon. WSS means that the 

mean E(X
t
)  is constant over all time t, and the autocovariance function 

  R
X
(t, s) = E[(X

t
! E(X

t
))(X

s
! E(X

s
))]   (1) 

depends strictly on the lag t ! s  and can be written as R
X
(t ! s) . 

First-order statistics such as peak rate and mean rate are easy to measure. The marginal 

probability distribution function can be estimated by a histogram. Second-order statistics include 

the variance and autocorrelation function 

  !
X
(t " s) = R

X
(t " s) / R

X
(0) .  (2) 

An example of the autocorrelation function estimated for the Ethernet traffic from Figure 2 is 

shown in Figure 4 (lag is in units of 10 ms). The variance indicates the degree of variability in 

the source rate, while the autocorrelation function gives an indication of the persistence of bursts 

(long range dependence is discussed later). The shape of the autocorrelation function is 

informative about the choice of a suitable time series model (discussed later). Equivalently, the 

power spectral density function, which is the Fourier transform of the autocorrelation function, is 

just as informative.  
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Fig. 4. Autocorrelation function for Ethernet traffic. 

 

 

Burstiness measures 

For variable bit-rate sources, “burstiness” is a quantity reflecting its variability. While 

burstiness is easy to understand intuitively, there is unfortunately not a universally agreed 

definition of burstiness. The simplest definition of burstiness is the ratio of peak rate to mean 

rate. This does not reveal much information about the source because it does not capture how 

long the peak rate can be sustained (which would have the greatest effect on queueing).  

Another possibility is the squared coefficient of variation, treating the traffic rate as 

samples of a random variable X. The squared coefficient of variation c2 (X) = var(X) / E2
(X)  is a 

normalized version of the variance of X (normalized by dividing by the squared mean).  
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A related but more sophisticated measure is the index of dispersion of counts or IDC, 

I
c
(t) = var(N(t)) / E(N(t)) , the variance of the number of arrivals up to time t normalized by the 

mean number of arrivals (Gusella, 1991). The number of arrivals up to time t, N(t), is the number 

of interarrival times fitting in the interval (0,t). Thus, the index of dispersion of counts captures 

similar but more timescale-dependent information than the coefficient of variation c2 (X) .  

Perhaps a more accurate measure is the index of dispersion of workload (IDW), 

I
w
(t) = var(Y (t)) / E(Y (t)) , where Y(t) is the total amount of data that has arrived up to time t. 

The workload takes into account the amount of data in packets, not only the number of packets 

(Fendick, et al., 1991). 

 

Long range dependence and self similarity 

Measurements of Ethernet, MPEG video, and World Wide Web traffic have pointed out 

the importance of self similarity in network traffic (Beran, 1994; Crovella and Bestavros, 1997; 

Erramilli, Roughan, Veitch, and Willinger, 2002; Leland, et al., 1994; Paxson and Floyd, 1995; 

Sahinoglu and Tekinay, 1999). Suppose the traffic rate is a discrete-time WSS process X
n
 with 

mean X  and autocorrelation function !
X
(k) . For positive integer m, a new process X

n

(m )  is 

constructed as shown below by averaging the original process over non-overlapping blocks of 

size m: 

 
 
X
n

(m )
= (X

nm
+!+ X

nm+m!1
) / m . (3) 
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Fig. 5. Construction of rescaled process by averaging over blocks. 

 

The new process X
n

(m )  is WSS with mean X  and autocorrelation function !
X

(m )
(k) . The 

process X
n
 is asymptotically second-order self-similar if !

X

(m )
(k) = !

X
(k)  for large m and k. 

Essentially, self similarity means that the rescaled process a!H
X
an

 has the same statistical 

properties as the original process X
n
 over a wide range of scales a > 0  and some parameter 

0 < H <1. This would not be true for a process such as the Poisson process, which tends to 

become smoother for large m. The Hurst parameter H is a measure of self similarity. 

Self similarity is manifested by a slowly decaying autocorrelation function: 

 
 
!
X
(k) ! ck

2(H "1)  (4) 

for some c > 0  as k!" . Self similarity implies long range dependence which is a property of 

the asymptotic rate of decay of the autocorrelation function. A short range dependent (SRD) 

process has an autocorrelation function that decays at least as fast as exponentially: 
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!
X
(k) ! "#k  (5) 

for large k and some constant ! . Equivalently, the sum !
X

k

" (k)  is finite. A long range 

dependent (LRD) process has an autocorrelation function that decays slower than exponentially, 

e.g., hyperbolically !
k
(k)" k

2(H #1)  for 0.5 < H <1. In this case, the sum !
X

k

" (k)  is infinite.  

Self similarity and long range dependence are important statistical characteristics because 

they believed to have a major effect on queueing performance (Erramilli, Roughan, Veitch, and 

Willinger, 2002). Essentially, bursts of LRD traffic tends to be more persistent, thereby causing 

longer queue lengths than estimated for traditional SRD traffic such as Poisson. 

 

Multiresolution timescale 

The establishment of long range dependence in network traffic prompted interest in the 

analysis of self-similar processes using timescale methods, particularly wavelets (Abry and 

Veitch, 1998; Ma and Ji, 2001). Wavelet transforms are a useful tool for examining processes 

with scaling behavior, referred to as multiresolution analysis. They are most easily approached 

and motivated from the familiar Fourier transform which decomposes a process (or signal) into a 

weighted sum of sinusoids. That is, the Fourier transform gives information about the frequency 

components but not any time information (where the frequency components occur in time). This 

is well suited for stationary processes but not well suited for non-stationary processes. In 

contrast, the wavelet transform gives both time-frequency information. The short-time Fourier 

transform can handle non-stationary processes by taking windows of the signal, but there is a 

trade-off between time and frequency resolution. 
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A continuous wavelet transform decomposes a process into a weighted sum of wavelet 

functions. The wavelet functions are derived from a “mother wavelet” !(t) , for example, the 

Haar wavelet, Morlet wavelet, Mexican Hat, or Daubechies family of wavelets. The set of 

wavelets is generated by dilating the mother wavelet,  

 !
s
(t) =

1

s

! t

s

"
#
$

%
&
'  (6) 

where s is the scale parameter. Larger scales correspond to dilated signals and give a global view 

of the process (low frequencies), while the opposite holds for smaller scales. The continuous 

wavelet transform of a process X(t) is  

 CWT (b, s) =
1

s

X(t)
!"

"

# $ t ! b
s

%
&
'

(
)
*dt  (7) 

where b is the translation parameter. 

In order to facilitate computer processing, it is necessary to discretize the transform by 

sampling the time-frequency plane. The discrete wavelet transform analyzes a process at dyadic 

scales using inner products at shifts equal to the length of the wavelet. It is computed by passing 

the process through a series or bank of filters. The first level consists of parallel low-pass and 

high-pass filters, followed by downsampling by two. The level 1 coefficients are output from the 

downsampled high-pass filter. The output of the low-pass filter goes again through another filter 

stage (with high and low pass filters, and downsampling) to increase the frequency resolution. 

The level 2 coefficients are output from the high-pass filter in the second stage, and additional 

stages of filters can be used in the same manner. The result is a set of coefficientst that represent 

the process as a low resolution approximation and additional approximations of increasing 

resolutions. 
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An early use of the DWT was estimation of the Hurst parameter (Abry and Veitch, 1998; 

Roughan, Veitch, and Abry, 2000). Wavelet transforms have been been used to analyze video 

and Ethernet traffic for the purpose of accurately synthesizing traffic with both long and short 

range dependence (Ma and Ji, 2001). 

  

Scaling 

Recent studies of network traffic have found complex scaling behavior at small 

timescales (Riedi, et al., 1999; Gilbert, Willinger, and Feldmann, 1999; Abry, et al., 2002). 

Previous studies had focused on monofractal models, such as self-similar processes. These show 

invariance across a wide range of scales and can be characterized by a single scaling law, for 

example, the Hurst parameter H. 

Multifractal models have been found to better explain scaling behavior at small time 

scales. Loosely speaking, multifractal models have local scaling properties dependent on a time-

varying h(t) , the local Hölder exponent, instead of a constant Hurst parameter. Intervals where 

h(t) <1  show bursts while intervals where h(t) >1  correspond to small fluctuations. In traffic 

measurements, the local scaling h(t)  appears to change randomly in time.  

 

CONTINUOUS-TIME SOURCE MODELS 

Traffic models can be continuous-time or discrete-time. In continuous time, we are 

interested in a stochastic process to represent the time-varying source rate X(t)  or the set of 

packet arrival times 
 
{t
1
,t
2
,…} . 

Traditional Poisson process 
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In traditional queueing theory, the Poisson arrival process has been a favorite traffic 

model for data and voice. The traditional assumption of Poisson arrivals has been often justified 

by arguing that the aggregation of many independent and identically distributed renewal 

processes tends to a Poisson process when the number increases (Sriram and Whitt, 1986). 

Poisson arrivals with mean rate !  are separated by interarrival times 
 
{!

1
,!

2
,…}  that are i.i.d. 

(independent and identically distributed) according to an exponential probability distribution 

function p(! ) = "e
#"! , ! " 0 . Equivalently, the number of arrivals up to time t is a Markov birth 

process with all birth rates of ! .  

The Poisson arrival process has several properties that make it appealing for analysis.  

• It is memoryless in the sense that, given the previous arrival occurred T time ago, the 

time to the next arrival will be exponentially distributed with mean 1/!  regardless of T. 

In other words, the waiting time for the next arrival is independent of the time of the 

previous arrival. This memoryless property simplifies analysis because future arrivals do 

not need to take into account the past history of the arrival process.  

• The number of arrivals  in any interval of length t will have a Poisson probability 

distribution with mean !t .  

• The sum of two independent Poisson arrival processes with rates !
1
 and !

2
, is a Poisson 

process with rate !
1
+ !

2
. This is convenient for analysis because traffic flows are 

multiplexed in a network. 

• Suppose a Poisson arrival process with rate !  is randomly split, meaning that each 

arrival is diverted to a first process with probability p or a second process with 

probability 1-p. The first process is a Poisson arrival process with rate p!  and the second 

process is another Poisson process with rate (1! p)" .  
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Despite the attractiveness of the Poisson model, its validity for real traffic has been often 

questioned. Barakat, et al. (2003) offered evidence that flow arrivals on Internet backbone links 

are well matched by a Poisson process. 

For large populations where each user is independently contributing a small portion of 

the overall traffic, user sessions can be assumed to follow a Poisson arrival process (Roberts, 

2004). Based on traces of wide-area TCP traffic, Poisson arrivals appears to be suitable for 

traffic at the session level when sessions are human initiated, e.g., interactive TELNET and FTP 

sessions (Paxson and Floyd, 1995). However, the Poisson model does not hold for machine-

initiated sessions nor any packet-level traffic. 

 

Simple on/off model 

The simple on/off model is motivated by sources that alternate between active and idle 

periods. An obvious example is speech where a person is either talking or listening. The time in 

the active state is exponentially distributed with mean 1 /! , and the time in the idle state is 

exponentially distributed with mean 1 / ! . The state of the source can be represented by the two-

state continuous-time Markov chain shown in Figure 6. 

 

!

On Off

"

 

Fig. 6. Two-state Markov chain 
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In the active state, the source is generating packets at a constant rate 1/T, i.e., interarrival 

times between packets are a constant T. In the idle state, no packets are generated. This on/off 

model can be considered a simple example of a modulated process, which is a combination of 

two processes. The basic process is a steady stream of packets at constant rate 1/T. The basic 

process is multiplied by a modulating process which is the Markov chain shown in Figure 6 (the 

active state is equivalent to 1 while the idle state is equivalent to 0). The modulation has the 

effect of canceling the packets during the idle state. The resulting on/off traffic is shown in 

Figure 7. 

 

Basic process

Modulating process

On/off process
 

Fig. 7. On/off traffic as example of a modulated process. 

 

Suppose that packets are generated as a Poisson process with rate !  during active 

periods, instead of a constant rate process. This process is an interrupted Poisson process (IPP). 

The effect of the modulating process is to cancel or “interrupt” a normal Poisson process during 

idle states.  

 

Markov modulated Poisson process (MMPP)  

While the Poisson process is attractive as a traffic model, it is obviously unrealistic in one 

aspect: the arrival rate !  is constant. If we consider the aggregate of multiple packet speech 
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flows, the flow rate will not be constant because speech conversations are starting and 

terminating at random times. The flow rate will drop whenever a speech conversation stops and 

will increase whenever a new conversation begins.  

Suppose N speech conversations are multiplexed, and each speech conversation is an IPP. 

The aggregate flow will be a Markov modulated Poisson process (Heffes and Lucantoni, 1986). 

The basic process is a Poisson process with rate !(t) . The rate is modulated as !(t) = n(t)!  

where n(t) is the number of speech conversations that are active at time t. In this case, n(t) is the 

state of a continuous-time Markov chain (specifically a birth-death process) shown in Figure 8. 

The MMPP preserves some of the memoryless property of the Poisson process and can be 

analyzed by Markov theory. However, the complexity of the analysis increases with N so the 

value of N is usually small.  

 

!

0 1

"#

"!

N-1 N
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Fig. 8. Birth-death process for number of active sources. 

 

Stochastic fluid model 

Fluid models depart from traditional point process models by ignoring the discrete nature 

of packets. Consider again the MMPP model. The traffic rate is X(t) = n(t)!  where n(t)  is again 

the number of active sources at time t represented by the birth-death process in Figure 8. The 
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packet process is a complicated point process if one attempts to characterize the packet arrival 

times 
 
{t
1
,t
2
,…}  shown in Figure 9.  

 

Modulated 
rate X(t) = n(t)!

Packets

 

Fig. 9. Packet arrivals in MMPP model. 

 

Instead, it is easier to simply use the process X(t) as the traffic model for most purposes 

(Cassandras, Wardi, Melamed, Sun, and Panayiotou, 2002). According to the stochastic fluid 

model, an active source transmits data at a constant rate !  like a fluid flow instead of discrete 

packets. The stochastic fluid model is the aggregation of N such fluid sources. The stochastic 

fluid buffer is attractive for its simplicity and tractability for fluid buffer flow analysis (Anick, et 

al., 1982).  

 

Fractional Brownian motion 

The definition of fractional Brownian motion (FBM) is similar to the well known 

Brownian motion except generalized to depend on a Hurst parameter H. A fractional Brownian 

motion X(t) is a Gaussian continuous process starting at X(0) = 0 , with zero mean and variance 

var(X(t)) = t
2H , and has stationary increments that are normally distributed with zero mean and 

variance ! 2
t
2H . Its autocorrelation function is  
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 R(s,t) = E(X(s)X(t)) = 1

2
(s
2H

+ t
2H

! s ! t
2H
)  (8) 

which shows that regular Brownian motion is a special case when H = 0.5 . For 0.5 < H <1, the 

autocorrelation function exhibits long range dependence with Hurst parameter H.  

Fractional Brownian motion has been proposed as a model for “free traffic” 

(unconstrained by network resources) aggregated from many independent sources  (Norros, 

1995). The model is attractive because it is fairly straightforward for analysis and 

characterization of long range dependence. It is also tractable for queueing (fluid buffer) 

analysis, unlike most discrete-time models. 

 

DISCRETE-TIME SOURCE MODELS 

In discrete time, we are interested in a stochastic process X
n
 to represent the source rate 

sampled at discrete times n = 1, 2,… In a sense, there is little difference between continuous-time 

and discrete-time models because there are stochastic processes in continuous or discrete time 

that behave similarly to each other. Discrete-time processes can be closely approximated by 

continuous-time processes, and vice versa. Discrete-time models may be preferred when analysis 

is easier in discrete time, or when network simulations are carried out in discrete time (versus 

discrete event simulations). 

Time series are commonly assumed to be consecutive measurements of some random 

phenomenon taken at equally spaced time intervals. Classical time series analysis using ARIMA 

(autoregressive integrated moving average) models largely follows the Box and Jenkins (1970) 

methodology.  

Time series 
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The simplest time series model is perhaps the autoregressive (AR) process. A p-th order 

autoregressive model, denoted AR(p), has the form  

 
 
X
n
= (!

1
X
n"1

+!+!
p
X
n" p
)+ e

n  (9) 

where 
 
{!

1
,…,!

p
}  are coefficients and e

n
 is the residual process assumed to be i.i.d. zero-mean 

normal random variables. Each point in the process is a linear combination of previous points 

and a random noise. The coefficients are found by linear regression, or fitting the exponential 

autocorrelation function to the observed autocorrelation function. 

Autoregressive (AR) models are particularly motivated by studies of packet video with 

low motion (e.g., videoconferencing) where X
n
 is the bit rate of the n-th video frame (Maglaris, 

et al., 1988). There is strong correlation between the bit rates of successive frames due to the 

nature of low-motion video and interframe coding algorithms.  

An autoregressive moving average (ARMA) model of order (p,q), denoted ARMA(p,q), 

has a more general form than the AR process: 

 
 
X
n
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p
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q
e
n"q )  (10) 

where 
 
{!

1
,…,!

p
,"

1
,…,"

q
}  are coefficients. The moving average terms constitute a linear 

combination of prior noise samples. The ARMA process has also been proposed for a video 

source model (Grunenfelder, 1991). 

The autoregressive integrated moving average process, denoted ARIMA(p,d,q) with 

integer d, is a generalization of ARMA processes.  Define B as the backward operator 

BX
n
= X

n!1
. A succinct representation of an ARMA process is 

 !(B)X
n
="(B)e

n
 (11) 
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where the polynomials are 
 
!(B) =1"#

1
B "!"#

p
B

p  and 
 
!(B) =1+ "

1
B+!+ "

q
B
q . In addition, 

define the difference operator !X
n
= X

n
" X

n"1
. An ARIMA(p,d,q) process has the form: 

 !(B)"d
X
n
=#(B)e

n
 (12) 

The parameter d is the number of times that the time series is differenced (i.e., converting each 

ith element of the series into its difference from the (i-j)th element). The reason for differencing 

is usually to convert a nonstationary time series into a stationary series by removing seasonal 

dependencies. The parameters of the autoregressive and moving average components are 

computed for the series after the differencing is done. 

A fractional ARIMA, denoted F-ARIMA(p,d,q), is a generalization of an ARIMA 

allowing non-integer values of d. With 0 < d < 0.5 , the F-ARIMA(p,d,q) is stationary with long 

range dependence with Hurst parameter H = d + 0.5 . 

 

Box-Jenkins methodology 

The Box-Jenkins method proceeds in three stages: model identification; model 

estimation; and model validation. Model identification is perhaps the most challenging and 

depends largely on the expert judgment of the analyst. The analyst needs to examine the 

stationarity of the time series, including seasonality (periodic components) and trends (non-

periodic linear or non-linear components). Seasonality and trends are subtracted from the series 

in order to obtain a stationary process. Differencing is another technique to convert a non-

stationary series into a stationary one. After stationarity is achieved, the analyst must decide on 

the order (p,q) of the ARMA model, largely based on examination of the autocorrelation 

function.  
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With the order of the ARMA process decided, the next step is estimation of the model 

parameters (coefficients). The most common methods are least squares regression or maximum 

likelihood estimation. 

The last step examines the validity of the chosen ARMA model. If the model was fit 

properly, the residuals should appear like white noise. That is, residuals should be stationary, 

mutually independent, and normally distributed.  

 

APPLICATION-SPECIFIC MODELS 

Network traffic is obviously driven by applications. The most common applications that 

come to mind might include Web, e-mail, peer-to-peer file sharing, and multimedia streaming. A 

recent traffic study of Internet backbone traffic showed that Web traffic is the single largest type 

of traffic, on the average more than 40 percent of total traffic (Fraleigh, et al., 2003). Although 

on a minority of links, peer-to-peer traffic was the heaviest type of traffic, indicating a growing 

trend. Streaming traffic (e.g., video and audio) constitute a smaller but stable portion of the 

overall traffic. E-mail is an even smaller portion of the traffic. 

It is possible to apply the general-purpose continuous-time and discrete-time traffic 

models from the previous section. However, it is logical that specialized traffic models may work 

better for particular applications. Therefore, traffic analysts have attempted to search for models 

tailored to the most common Internet applications (Web, peer-to-peer, and video).    

Web traffic 

The World Wide Web is a familiar client-server application. Most studies have indicated 

that Web traffic is the single largest portion of overall Internet traffic, which is not surprising 

considering that the Web browser has become the preferred user-friendly interface for e-mail, 
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file transfers, remote data processing, commercial transactions, instant messages, multimedia 

streaming, and other applications.  

An early study focused on the measurement of self-similarity in Web traffic (Crovella 

and Bestavros, 1997). Self similarity had already been found in Ethernet traffic. Based on days of 

traffic traces from hundreds of modified Mosaic Web browser clients, it was found that Web 

traffic exhibited self-similarity with the estimated Hurst parameter H in the range 0.7-0.8. More 

interestingly, it was theorized that Web clients could be characterized as on/off sources with 

heavy-tailed on periods. In previous studies, it had been demonstrated that self-similar traffic can 

arise from the aggregation of many on/off flows that have heavy-tailed on or off periods. A 

probability distribution is heavy tailed if the asymptotic shape of the distribution is hyperbolic: 

 
 
Pr(X > x) ! x

!"  (13) 

as x!" , for 0 < ! < 2 . Heavy tails implies that very large values have non-negligible 

probability. For Web clients, on periods represent active transmissions of Web files, which were 

found to be heavy tailed. The off periods were either “active off”, when a user is inspecting the 

Web browser but not transmitting data, or “inactive off”, when the user is not using the Web 

browser. Active off periods could be fit with a Weibull probability distribution, while inactive 

off periods could be fit by a Pareto probability distribution. The Pareto distribution is heavy 

tailed. However, the self-similarity in Web traffic was attributed mainly to the heavy-tailed on 

periods (or essentially, the heavy-tailed distribution of Web files). 

A study of 1900 Web browser clients also characterized Web traffic with an on/off model 

(Choi and Limb, 1999). Off periods include the user viewing the browser or doing something 

else. Off periods were fit with a Weibull probability distribution, consistent with earlier studies. 

The on period again represents a retrieved Web page, but the model was refined with a more 
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detailed view of a Web page as shown in Figure 10. A Web page consists of a main object, 

which is an HTML document, and multiple in-line objects that are linked to the main object. 

Both main object sizes and in-line object sizes were fit with (different) lognormal probability 

distributions. The number of in-line objects associated with the same main object was found to 

follow a gamma probability distribution. In the same Web page, the intervals between the start 

times of consecutive in-line objects was fit with a gamma probability distribution. 

 

On period

Time

Main object In-line object 1

In-line object 2

In-line object 3

Off

 

Fig. 10. On/off model with Web page consisting of a main object linked to multiple in-line 

objects. 

 

It has been argued that TCP flow models are more natural for Web traffic than “page-

based” models (Cao, Cleveland, Gao, Jeffay, Smith, and Weigle, 2004). Requests for TCP 

connections originate from a set of Web clients and go to one of multiple Web servers. A model 

parameter is the random time between new TCP connection requests. A TCP connection is held 

between a client and server for the duration of a random number of request/response 

transactions. Additional model parameters include: sizes of request messages; server response 

delay; sizes of response messages; and delay until the next request message. Statistics for these 
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model parameters were collected from days of traffic traces on two high-speed Internet access 

links. 

Another study examined 24 hours of flow records from NetFlow-capable routers in the 

Abilene backbone network (Meiss, Menczer, and Vespignani, 2005). Web traffic composed 42 

percent (319 million flows) of the total observed traffic. The Web traffic flows were mapped to a 

graph of 18 million nodes (Web clients and servers) and 68 million links (flows between client-

server pairs). The weight assigned to a link reflects the aggregate amount of data between the 

nodes. The traffic study examined the probability distribution for number of servers contacted by 

a client; number of clients handled by a server; amount of data sent by a client; and amount of 

downloads handled by a server. One of the observations is that both client and server behaviors 

vary extremely widely, and therefore a “typical” client or server behavior is hard to characterize.  

 

Peer-to-peer traffic 

Peer-to-peer (P2P) traffic is often compared with Web traffic because P2P applications 

work in the opposite way from client-server applications, at least in theory. In actuality, P2P 

applications may use servers. P2P applications consist of a signaling scheme to query and search 

for file locations, and a data transfer scheme to exchange data files. While the data transfer is 

typically between peer and peer, sometimes the signaling is done in a client-server way (e.g., the 

original Napster kept a centralized index). 

Since P2P applications have emerged only in the last few years, there are few traffic 

studies to date. They have understandably focused more on collecting statistics than the harder 

problem of stochastic modeling. A recent study examined the statistics of traffic on a university 

campus network (Saroiu, Gummadi, Dunn, Gribble, and Levy, 2002). The observed P2P 
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applications were Kazaa and Gnutella. The bulk of P2P traffic was AVI and MPEG video, and a 

small portion was MP3 audio. With this mix of traffic, the average P2P file was about 4 MB, 

three orders of magnitude larger than the average Web document. A significant portion of P2P 

was dominated by a few very large objects (around 700 MB) accessed 10-20 times. In other 

words, a small number of P2P hosts are responsible for consuming a large portion of the total 

network bandwidth.   

Another study collected P2P traffic traces from NetFlow-capable routers in an ISP 

backbone network (Sen and Wang, 2004). The observed P2P applications were Gnutella, Kazaa, 

Grokster, Morpheus, and DirectConnect. Again, an extreme skew in the traffic was observed; a 

small number of P2P hosts (called heavy hitters) accounted for much of the total traffic. The 

flow interarrival time, defined as the time between the host finishing one flow and then starting 

another flow, was found to be clustered at 1, 60, and 500 seconds. The very short (one second) 

interarrival time could be the result of programmed sequential downloading of multiple files. The 

reason for the 60 and 500 second interarrival times was not clear.    

 

Video 

The literature on video traffic modeling is vast because the problem is very challenging. 

The characteristics of compressed video can vary greatly depending on: the type of video which 

determines the amount of motion (from low motion videoconferencing to high motion broadcast 

video) and frequency of scene changes; and the specific intraframe and interframe video coding 

algorithms. Generally, interframe encoding takes the differences between consecutive frames, 

compensating for the estimated motion of objects in the scene. Hence, more motion means that 
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the video traffic rate is more dynamic, and more frequent scene changes is manifested by more 

“spikes” in the traffic rate.  

While many video coding algorithms exist, the greatest interest has been in the MPEG 

(Moving Picture Coding Experts Group) standards. Approved in 1992, MPEG-1 video coding 

was designed for reasonable quality video at low bit rates. MPEG-2 video encoding at higher bit 

rates (such as DVDs) was approved in 1994. MPEG-4 approved in 1998 is highly efficient video 

coding for broadcast and interactive environments. In 2003, a more efficient coding method was 

approved jointly by the ITU-T as H.264 and MPEG as MPEG-4 Part 10 (also known as 

Advanced Video Coding).   

Video source rates are typically measured frame by frame (which are usually 1/30 sec 

apart). That is, X
n
 represents the bit rate of the n-th video frame. Video source models address at 

least these statistical characteristics: the probability distribution for the amount of data per frame; 

the correlation structure between frames; times between scene changes; and the probability 

distribution for the length of video files.   

Due to the wide range of video characteristics and available video coding techniques, it 

has seemed impossible to find a single universal video traffic model (Heyman and Lakshman, 

1996). The best model varies from video to video file. A summary of research findings:  

• The amount of data per frame have been fit to lognormal, gamma, and Pareto probability 

distributions or combinations of them.  

• The autocorrelation function for low motion video is roughly exponential (Maglaris, 

Anastassiou, Sen, Karlsson, and Robbins, 1988). The autocorrelation function for 

broadcast video is more complicated, exhibiting both short range dependence at short 

lags and long range dependence at much longer lags (Ma and Ji, 2001). Time series, 
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Markov modulated, and wavelet models are popular to capture the autocorrelation 

structure (Dai and Loguinov, 2005). 

• The lengths of scenes usually follow Pareto, Weibull, or gamma probability distributions. 

• The amount of data in scene change frames are uncorrelated and follow Weibull, 

Gamma, or unknown probability distributions. 

• The lengths of streaming video found on the Web appear to have a long-tailed Pareto 

probability distribution (Li, Claypool, Kinicki, and Nichols, 2005). 

 

 

ACCESS REGULATED SOURCES 

Traffic sources can not typically transmit data without any constraints. To be more 

realistic, traffic models must taking the limiting factors into account. For one thing, networks can 

regulate or “police” the rate of source traffic at the user-network interface in order to prevent 

congestion. Access policing is more common in networks where connections are established by a 

signaling protocol. Signaling messages inform the network about traffic characteristics (e.g., 

peak rate, mean rate) and request a QoS. If a connection is accepted, the QoS is guaranteed as 

long as source traffic conforms to the given traffic parameters. A policer enforces conformance 

to given traffic parameters by limiting the source traffic as necessary. 

Leaky bucket regulated sources 

The simplest policer enforces a peak rate defined by the shortest allowable interarrival 

time between two consecutive packets. If packets are arriving too closely in time, the second 

packet is nonconforming and therefore discarded. However, a policer with more tolerance for 

minor deviations from the peak rate is preferred.  
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The leaky bucket algorithm is typically used for access policing because its enforcement 

is flexible dependent on adjustment of two parameters: the bucket size B and a leak rate R. 

Packets are conforming and admitted into the network if they can increment the bucket contents 

by their payload size without overflowing. The contents of the bucket are emptied at the leak rate 

R. The leak rate R is the long-term average rate allowed. A larger bucket size allows greater 

variations from the rate R. A burst at a rate higher than R can still be conforming as long as the 

burst is not long enough to overflow the bucket. Hence the maximum burst length b is directly 

related to the bucket size. 

The maximum amount of traffic allowed by a leaky bucket policer in an interval (0,t) is 

represented by the deterministic (! ,")  calculus (Cruz, 1991). The allowable traffic is 

deterministically bounded by  

 X(s)ds !" + #t
0

t

$  (14) 

where ! > 0 , ! > 0 . From (14), it is clear that !  is the long-term average rate, while !  is an 

allowable burst size.  

 

Bounding interval-length dependent (BIND) model 

The deterministic bounding interval-length dependent (D-BIND) model characterizes 

traffic sources by multiple rate-interval pairs (R
k
, I

k
) . R

k
 is the worst case rate measured over 

every interval of length I
k
. For practical applications, only a limited number of pairs would be 

used to characterize a source (Knightly and Zhang, 1997).  

S-BIND is a stochastic version where a traffic source is similarly characterized by 

multiple pairs. In this case, R
k
 is a random variable that is stochastically larger than the rate over 
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any interval of length I
k
. Suppose r

k
 is the traffic rate in interval I

k
, then 

Pr(R
k
> x) ! Pr(r

k
> x) . 

 

CONGESTION-DEPENDENT FLOWS 

Traffic sources may be limited by access control or the level of network congestion. 

Some protocols limit the sending rates of hosts by means of sliding windows or closed loop rate 

control. Clearly, traffic models must take such protocols into account in order to be realistic. 

Here we focus on TCP because TCP traffic constitutes the vast majority of Internet traffic. TCP 

uses a congestion avoidance algorithm that infers the level of network congestion and adjusts the 

transmission rate of hosts accordingly. Even other protocols should be “TCP friendly”, meaning 

that they interact fairly with TCP flows.  

TCP flows with congestion avoidance 

TCP senders follow a self-limiting congestion avoidance algorithm that adjusts the size of 

a congestion window according to the inferred level of congestion in the network. The 

congestion window is adjusted by so-called additive increase multiplicative decrease (AIMD). In 

the absence of congestion when packets are acknowledged before their retransmission time-out, 

the congestion window is allowed to expand linearly. If a retransmission timer expires, TCP 

assumes that the packet was lost and infers that the network is entering congestion. The 

congestion window is collapsed by a factor of a half. Thus, TCP flows generally have the classic 

“sawtooth” shape (Firoiu, et al., 2002; Paxson, 1994). 

Accurate models of TCP dynamics are important because of TCP’s dominant effect on 

Internet performance and stability. Hence, many studies have attempted to model TCP dynamics 

(Mathis, et al., 1997; Padhye, 2000; Barakat, 2001; Sikdar, Kalyanaraman, and Vastola, 2003; 
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Altman, Avrachenkov, and Barakat, 2005). Simple equations for the average throughput exist, 

but the problem of characterizing the time-varying flow dynamics is generally difficult due to 

interdependence on many parameters such as the TCP connection path length, round trip time, 

probability of packet loss, link bandwidths, buffer sizes, packet sizes, and number of interacting 

TCP connections.  

 

TCP flows with active queue management 

The TCP congestion avoidance algorithm has an unfortunate behavior where TCP flows 

tend to become synchronized. When a buffer overflows, it takes some time for TCP sources to 

detect a packet loss. In the meantime, the buffer continues to overflow, and packets will be 

discarded from multiple TCP flows. Thus, many TCP sources will detect packet loss and slow 

down at the same time. The synchronization phenomenon causes underutilization and large 

queues.  

Active queue management schemes, mainly random early detection (RED) and its many 

variants, eliminate the synchronization phenomenon and thereby try to achieve better utilization 

and smaller queue lengths (Floyd and Jacobson, 1993; Firoiu and Borden, 2000). Instead of 

waiting for the buffer to overflow, RED drops a packet randomly with the goal of losing packets 

from multiple TCP flows at different times. Thus, TCP flows are unsynchronized, and their 

aggregate rate is smoother than before. From a queueing theory viewpoint, smooth traffic 

achieves the best utilization and shortest queue. 

Active queue management has stimulated a number of control theory approaches to 

understanding the stability, fairness issues, and flow dynamics (Tan, Zhang, Peng, and Chen, 

2006; Srikant, 2004).  
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CONCLUSIONS 

 

Proper network design requires an understanding of the source traffic entering the 

network. Many continuous-time and discrete-time traffic models have been developed based on 

traffic measurement data. The choice of traffic models involves at least two major 

considerations. The first consideration is accuracy. Accurate traffic models should include not 

only source behavior but also possible policing or congestion avoidance. The second 

consideration is ease of queueing analysis. Traffic models are useful only if network 

performance can be evaluated. It is always possible to evaluate network performance via 

computer simulations, but analysis is preferred whenever analysis is tractable.  

 

GLOSSARY 

 

Access policing: regulation of ingress traffic at the user-network interface. 

Active queue management (AQM): intelligent buffer management strategies, mainly random 

early detection (RED) and its variants, enabling traffic sources to respond to congestion 

before buffers overflow. 

Autoregressive moving average (ARMA): a general type of time series model including linear 

dependence on previous data samples and linear dependence on noise samples. 

Burstiness: a measure of the variability of a traffic source rate. 

Fluid model: a view of data traffic ignoring the discrete nature of packets. 
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Fractional Brownian motion (FBM): a long range dependent Gaussian process with stationary 

increments including Brownian motion as a special case. 

Leaky bucket: a flexible algorithm for policing a specific traffic rate with an adjustable tolerance 

for deviation from that rate. 

Long range dependence (LRD): a property of stochastic processes with autocorrelation functions 

that decay slower than exponentially. 

Markov modulated Poisson process (MMPP): a Poisson process where the arrival rate varies 

according to a continuous-time Markov chain. 

On/off model: a stochastic process with alternating active and idle states. 

Poisson process: a point process with interarrival times that are independent and identically 

distributed exponential random variables. 

Quality of service (QoS): the end-to-end network performance defined from the perspective of a 

specific user’s connection. 

Self similarity: a property of stochastic processes that preserve statistical characteristics over 

different timescales. 

Time series: a discrete-time stochastic process usually considered to represent measurements of a 

random phenomenon sampled at regularly spaced times. 

Transmission control protocol (TCP): a transport layer protocol used over IP to ensure reliable 

data delivery between hosts. 

 

REFERENCES 

 



40 

Abry, P., and Veitch, D. (1998). Wavelet analysis of long-range-dependent traffic. IEEE 

Transactions on Information Theory, 44, 2-15. 

Abry, P., Baraniuk, R., Flandrin, P., Riedi, R., and Veitch, D. (2002). Multiscale nature 

of network traffic. IEEE Signal Processing Magazine, 19, 28-46. 

Adas, A. (1997). Traffic models in broadband networks. IEEE Communications 

Magazine, 35, 82-89. 

Anick, D., Mitra, D., and Sondhi, M. (1982). Stochastic theory of a data-handling system 

with multiple sources. Bell System Technical Journal, 61, 1971-1894. 

Barakat, C., Thiran, P., Iannaccone, G., Diot, C., and Owezarski, P. (2003). Modeling 

Internet backbone traffic at the flow level. IEEE Transactions on Signal Processing, 51, 2111-

2124. 

Beran, J. (1994). Statistics for Long-Memory Processes. London: Chapman and Hall. 

Box, G., and Jenkins, G. (1970). Time-Series Analysis, Forecasting and Control. San 

Francisco, CA: Holden-Day. 

Brownlee, N., and Claffy, K. (2002). Understanding Internet traffic streams: dragonflies 

and tortoises. IEEE Communications Magazine, vol. 40, 110-117. 

Cao, J., Cleveland, W., Gao, Y., Jeffay, K., Smith, F., and Weigle, M. (2004). Stochastic 

models for generating synthetic HTTP source traffic. In proc. of IEEE Infocom 2004, 1546-

1557. 

Cassandras, C., Wardi, Y., Melamed, B., Sun, G., and Panayiotou, C. (2002). 

Perturbation analysis for online control and optimization of stochastic fluid models. IEEE 

Transactions on Automatic Control, 47, 1234-1248. 



41 

Choi, H-K., and Limb, J. (1999). A behavioral model of Web traffic. In proc. of 7th 

International Conf. on Network Protocols (ICNP’99), 327-334. 

Crovella, M., and Bestavros, A. (1997). Self-similarity in World Wide Web traffic: 

evidence and possible causes. IEEE/ACM Transactions on Networking, 5, 835-846. 

Cruz, R. (1991). A calculus for network delay, part I: network elements in isolation. 

IEEE Transactions on Information Theory, 37, 114-131. 

Dai, M., and Loguinov, D. (2005). Analysis and modeling of MPEG-4 and H.264 multi-

layer video traffic. In proc. of IEEE Infocom 2005, 2257-2267. 

Erramilli, A., Roughan, M., Veitch, D., and Willinger, W. (2002). Self-similar traffic and 

network dynamics. Proceedings of the IEEE, 90, 800-819. 

Fendick, K., Saksena, V., and Whitt, W. (1991). Investigating dependence in packet 

queues with the index of dispersion for work. IEEE Transactions on Communications, 39, 1231-

1244. 

Firoiu, V., and Borden, M., (2000). A study of active queue management for congestion 

control. In proc. of IEEE Infocom 2000, 1435-1444. 

Firoiu, V., Le Boudec, J.-Y., Towsley, D., and Zhang, Z.-L. (2002). Theories and models 

for Internet quality of service. Proceedings of the IEEE, 90, 1565-1591. 

Floyd, S., and Jacobson, V. (1993). Random early detection gateways for congestion 

avoidance. IEEE/ACM Transactions on Networking, 1, 397-413. 

Fraleigh, C., Moon, S., Lyles, B., Cotton, C., Khan, M., Moll, D., Rockell, R., Seely, T., 

and Diot, C. (2003). Packet-level traffic measurements from the Sprint IP backbone. IEEE 

Network, 17, 6-16. 



42 

Frost, V., and Melamed, B. (1994). Traffic modeling for telecommunications networks. 

IEEE Communications Magazine, 32, 70-81. 

Gilbert, A., Willinger, W., and Feldman, A. (1999). Scaling analysis of conservative 

cascades, with applications to network traffic. IEEE Transactions on Information Theory, 45, 

971-991. 

Grunenfelder, R., Cosmas, J., Manthorpe, S., and Odinma-Okafor, A. (1991). 

Characterization of video codecs as autoregressive moving average processes and related 

queueing system performance. IEEE Journal on Selected Areas in Communications, 9, 284-293. 

Gusella, R. (1991). Characterizing the variability of arrival processes with indexes of 

dispersion. IEEE Journal on Selected Areas in Communications, 9, 203-211. 

Heffes, H., and Lucantoni, D. (1986). A Markov modulated characterization of 

packetized voice and data traffic and related statistical multiplexer performance. IEEE Journal on 

Selected Areas in Communications, SAC-4, 856-868. 

Heyman, D., and Lakshman, T. (1996). Source models for VBR broadcast-video traffic. 

IEEE/ACM Transactions on Networking, 4, 40-48. 

Kelly, F. (1996). Notes on effective bandwidths. In Stochastic Networks: Theory and 

Applications (pp. 141–168). Oxford: Oxford University Press.  

Kleinrock, L. (1976). Queueing Systems Volume I. NY: Wiley & Sons. 

Knightly, E., and Zhang, H. (1997). D-BIND: an accurate traffic model for providing 

QoS guarantees to VBR traffic. IEEE/ACM Transactions on Networking, 5, 219-231. 

Leland, W., Taqqu, M., Willinger, W., and Wilson, D. (1994). On the self-similar nature 

of Ethernet traffic (extended version). IEEE/ACM Transactions on Networking, 2, 1-15. 



43 

Li, M., Claypool, M., Kinicki, R., and Nichols, J. (2005). Characteristics of streaming 

media stored on the Web. ACM Transactions on Internet Technology, 5, 601-626. 

Ma, S., and Ji, L. (2001). Modeling heterogeneous network traffic in wavelet domain. 

IEEE/ACM Transactions on Networking, 9, 634-649. 

Maglaris, B., Anastassiou, D., Sen, P., Karlsson, G., and Robbins, J. (1988). Performance 

models of statistical multiplexing in packet video communications. IEEE Transactions on 

Communications, 36, 834-844. 

Mathis, M., Semke, J., Mahdavi, J., and Ott, T. (1997). The macroscopic behavior of the 

TCP congestion avoidance algorithm. Computer Communications Review, 27, 67-82. 

Meiss, M., Menczer, F., and Vespignani, A. (2005). On the lack of typical behavior in the 

global Web traffic network. In proc. of 14th International World Wide Web Conf., 510-518. 

Michiel, H., and Laevens, K. (1997). Teletraffic engineering in a broadband era. 

Proceedings of the IEEE, 85, 2007-2033. 

Norros, I. (1995). On the use of fractional Brownian motion in the theory of 

connectionless networks. IEEE Journal on Selected Areas in Communications, 13, 953-962. 

Padhye, J., Firoiu, V., Towsley, D., and Kurose, J. (2000). Modeling TCP Reno 

performance: a simple model and its empirical validation. IEEE/ACM Transactions on 

Networking, 8, 133-145. 

Park, K., and Willinger, W., eds. (2000). Self-Similar Network Traffic and Performance 

Evaluation. NY: Wiley & Sons. 

Paxson, V. (1994). Empirically derived analytic models of wide-area TCP connections. 

IEEE/ACM Transactions on Networking, 2, 316-336. 



44 

Paxson, V., and Floyd, S. (1995). Wide area traffic: the failure of Poisson modeling. 

IEEE/ACM Transactions on Networking, 3, 226-244. 

Riedi, R., Crouse, M., Ribeiro, V., and Baraniuk, R. (1999). A multifractal wavelet model 

with application to network traffic. IEEE Transactions on Information Theory, 45, 992-1018. 

Roberts, J. (2004). Internet traffic, QoS, and pricing. Proceedings of the IEEE, 92, 1389-

1399. 

Roughan, M., Veitch, D., and Abry, P. (2000). Real-time estimation of the parameters of 

long-range dependence. IEEE/ACM Transactions on Networking, 8, 467-478. 

Sahinoglu, Z, and Tekinay, S. (1999). On multimedia networks: self-similar traffic and 

network performance. IEEE Communications Magazine, 37, 48-52. 

Saroiu, S., Gummadi, K., Dunn, R., Gribble, S., and Levy, H. (2002). An analysis of 

Internet content delivery systems. ACM SIGOPS Operating Systems Review, 36, 315-327. 

Sen, S., and Wang, J. (2004). Analyzing peer-to-peer traffic across large networks. 

IEEE/ACM Transactions on Networking, 12, 219-232. 

Shim, C., Ryoo, I., Lee, J., and Lee, S. (1994). Modeling and call admission control 

algorithm of variable bit rate video in ATM networks. IEEE Journal on Selected Areas in 

Communications, 12, 332-344. 

Srikant, R. (2004). The Mathematics of Internet Congestion Control. Boston: Birkhauser. 

Sriram, K., and Whitt, W. (1986). Characterizing superposition arrival processes in 

packet multiplexers for voice and data. IEEE Journal on Selected Areas in Communications, 

SAC-4, 833-846. 

Tan, L., Zhang, W., Peng, G., and Chen, G. (2006). Stability of TCP/RED systems in 

AQM routers, IEEE Transactions on Automatic Control, 51, 1393-1398. 



45 

Thajchayapong, S., and Peha, J. (2006). Mobility patterns in microcellular wireless 

networks. IEEE Transactions on Mobile Computing, 5, 52-63. 

Thompson, K., Miller, G., and Wilder, R. (1997). Wide-area Internet traffic patterns and 

characteristics. IEEE Network, 11, 10-23. 

Willinger, W., and Paxon, V. (1998). Where mathematics meets the Internet. Notices of 

the American Mathematical Society, 45, 961-970. 

Wu, C-H., Lin, H-P., and Lan, L-S. (2002). A new analytic framework for dynamic 

mobility management of PCS networks. IEEE Transactions on Mobile Computing, 1, 208-220. 

 

FURTHER READING 

 

The literature on traffic models is quite extensive, including references where traffic models are 

discussed in combination with performance analysis. Examples of useful books covering both 

traffic modeling and performance analysis include: 

Jain, R. (1991). The Art of Computer Systems Performance Analysis: Techniques for 

Experimental Design, Measurement, Simulation, and Modeling. NY: Wiley & Sons. 

Krishna, M., Gadre, V., and Desai, U. (2003). Multifractal based Network Traffic 

Modeling. Boston, MA: Kluwer Academic Publishers. 

Kumar, A., Manjunath, D., and Kuri, J. (2004). Communication Networking: An 

Analytical Approach. San Francisco, CA: Morgan Kaufmann Publishers. 

 

A variety of traffic traces are publicly available on the Web. These can easily be found by 

searching. Popular collections include:  



46 

Internet Traffic Archive, available at http://ita.ee.lbl.gov/html/traces.html, date of access: 

Sept. 19, 2006. 

NLANR network traffic packet header traces, available at http://pma.nlanr.net/Traces/, 

date of access: Sept. 19, 2006. 

MPEG-4 and H.263 video traces, available at http://www-tkn.ee.tu-

berlin.de/research/trace/trace.html., date of access: Sept. 19, 2006. 


