
A ph Mesh Refinement Method for Optimal Control

Michael. A. Patterson∗

William W. Hager †

Anil V. Rao‡

University of Florida
Gainesville, FL 32611

Abstract

A mesh refinement method is described for solving a continuous-time optimal control
problem using collocation at Legendre-Gauss-Radau points. The method allows for changes
in both the number of mesh intervals and the degree of the approximating polynomial within
a mesh interval. First, a relative error estimate is derived based on the difference between
the Lagrange polynomial approximation of the state and a Legendre-Gauss-Radau quadra-
ture integration of the dynamics within a mesh interval. The derived relative error estimate
is then used to decide if the degree of the approximating polynomial within a mesh should
be increased or if the mesh interval should be divided into sub-intervals. The degree of the
approximating polynomial within a mesh interval is increased if the polynomial degree es-
timated by the method remains below a maximum allowable degree. Otherwise, the mesh
interval is divided into sub-intervals. The process of refining the mesh is repeated until a
specified relative error tolerance is met. Three examples highlight various features of the
method and show that the approach is more computationally efficient and produces signif-
icantly smaller mesh sizes for a given accuracy tolerance when compared with fixed-order
methods.

1 Introduction

Over the past two decades, direct collocation methods have become popular in the numerical

solution of nonlinear optimal control problems. In a direct collocation method, the state and

control are discretized at a set of appropriately chosen points in the time interval of interest. The

∗Postdoctoral Teaching Fellow, Department of Mechanical and Aerospace Engineering. E-mail: mpatter-
son@ufl.edu.

†Professor, Department of Mathematics. E-mail: hager@ufl.edu.
‡Associate Professor, Department of Mechanical and Aerospace Engineering. Corresponding Author. Associate

Fellow AIAA. E-mail: anilvrao@ufl.edu.

1

continuous-time optimal control problem is then transcribed to a finite-dimensional nonlinear

programming problem (NLP) and the NLP is solved using well known software.1, 2 Originally,

direct collocation methods were developed as h methods (for example, Euler or Runge-Kutta

methods) where the time interval is divided into a mesh and the state is approximated using

the same fixed-degree polynomial in each mesh interval. Convergence in an h method is then

achieved by increasing the number and placement of the mesh points.3–5 More recently, a great

deal of research as been done in the class of direct Gaussian quadrature orthogonal collocation meth-

ods.6–19 In a Gaussian quadrature collocation method, the state is typically approximated using

a Lagrange polynomial where the support points of the Lagrange polynomial are chosen to

be points associated with a Gaussian quadrature. Originally, Gaussian quadrature collocation

methods were implemented as p methods using a single interval. Convergence of the p method

was then achieved by increasing the degree of the polynomial approximation. For problems

whose solutions are smooth and well-behaved, a Gaussian quadrature collocation method has

a simple structure and converges at an exponential rate.20–22 The most well developed Gaussian

quadrature methods are those that employ either Legendre-Gauss (LG) points,9, 13 Legendre-

Gauss-Radau (LGR) points,14, 15, 17 or Legendre-Gauss-Lobatto (LGL) points.6

While h methods have a long history and p methods have shown promise in certain types

of problems, both the h and p approaches have limitations. Specifically, achieving a desired

accuracy tolerance may require an extremely fine mesh (in the case of an h method) or may

require the use of an unreasonably large degree polynomial approximation (in the case of a

p method). In order to reduce significantly the size of the finite-dimensional approximation,

and thus improve computational efficiency of solving the NLP, hp collocation methods have

been developed. In an hp method, both the number of mesh intervals and the degree of the

approximating polynomial within each mesh interval is allowed to vary. Originally, hp methods

were developed as finite-element methods for solving partial differential equations.23–27 In the

past few years the problem of developing hp methods for solving optimal control problems has

been of interest.28, 29 This recent research has shown that convergence using hp methods can be

achieved with a significantly smaller finite-dimensional approximation than would be required

when using either an h or a p method.

Motivated by the desire to improve computational efficiency when solving the NLP while

providing high accuracy in the discrete approximation of the optimal control problem, in this

2

paper we describe a new ph Gaussian quadrature collocation method for solving continuous-

time nonlinear optimal control problems. Here we have deliberately changed the order from hp

to ph since our scheme tries to achieve the prescribed error tolerance by increasing the degree

of the polynomials in the approximating space, and if this fails, by increasing the number of

mesh intervals. The method is divided into three parts. First, an approach is developed for

estimating the relative error in the state within each mesh interval. This relative error estimate is

obtained by comparing the original state variable to a higher order approximation of the state.

This relative error estimate is used to determine if the degree of the polynomial approximation

should be increased or if mesh intervals should be added. The polynomial degree is increased if

it is estimated that the ensuing mesh requires a polynomial degree that is less than a maximum

allowable degree. Otherwise, the mesh is refined. This process is repeated on a series of meshes

until a specified accuracy tolerance is met. The decision to increase the polynomial degree or

refine the mesh is based on the ratio of the maximum relative error and the accuracy tolerance

and is consistent with the known exponential convergence of a Gaussian quadrature method for

a problem whose solution is smooth.

Various mesh refinement methods employing direct collocation methods have been described

in recent years.5, 28–30 Reference 30 describes a method that employs a differentiation matrix to

attempt to identify switches, kinks, corners, and other discontinuities in the solution, and uses

Gaussian quadrature rules to generate a mesh that is dense near the end points of the time in-

terval of interest. Reference 5 employs a density function and attempts to generate a fixed-order

mesh on which to solve the problem. References 31 and 32 (and the references therein) describe

a dual weighted residual (DWR) method for mesh refinement and goal-oriented model reduc-

tion. The DWR method uses estimates of a dual multiplier together with local estimates of the

residuals to adaptively refine a mesh and control the error in problems governed by partial dif-

ferential equations. References 28 and 29 describe hp adaptive methods where the error estimate

is based on the difference between an approximation of the time derivative of the state and the

right-hand side of the dynamics midway between the collocation points. It is noted that the ap-

proach of Refs. 28 and 29 creates a great deal of noise in the error estimate, thereby making these

approaches computationally intractable when a high-accuracy solution is desired. Furthermore,

the error estimate of Refs. 28 and 29 does not take advantage of the exponential convergence rate

of a Gaussian quadrature collocation method. Finally, in Ref. 3 an error estimate is developed

3

by integrating the difference between an interpolation of the time derivative of the state and the

right-hand side of the dynamics. The error estimate developed in Ref. 3 is predicated on the use

of a fixed-order method (for example, trapezoid, Hermite-Simpson, Runge-Kutta) and computes

a low-order approximation of the integral of the aforementioned difference. On the other hand,

in this paper an estimate of the error on a given mesh is obtained by varying the degree of the

polynomial in the Gaussian quadrature approximation.

The method of this paper is fundamentally different from any of the previously developed

methods due to the fact that it takes advantage of the exponential convergence properties of a

Gaussian quadrature. Specifically, in the discretization used in this paper, the state is approx-

imated using a piecewise polynomial and the dynamics are collocated at the Legendre-Gauss-

Radau quadrature points in each interval. This leads to a finite dimensional mathematical pro-

gramming problem that is solved to obtain estimates for the control and the state at the colloca-

tion points. A relative error estimate is then derived that uses the difference between an interpo-

lated value of the state and a Legendre-Gauss-Radau quadrature approximation to the integral

of the state dynamics. This relative error estimate remains computationally tractable when a

high-accuracy solution is desired and reduces significantly the number of collocation points re-

quired to meet a specified accuracy tolerance when compared with the the methods of Ref. 28 or

29. Furthermore, different from the error estimate developed in Ref. 3, the error estimate in this

research utilizes the Legendre-Gauss-Radau quadrature points in both the interpolation of the

state and the integration of the state along the interpolated solution. Consequently, the approach

of this research enables the use of a Gaussian quadrature method to estimate the errors, thereby

achieving convergence using fewer collocation points than may be necessary using an h method

with the error estimate of Ref. 3. It is noted, however, that in the case of an h LGR method (that

is, a method whose order is the same in all mesh intervals), the error estimate in this paper is

similar to the estimate derived in Ref. 3 with the exception that the approach of this paper still

employs a higher-order integration method than the approach of Ref. 3.

While the mesh refinement method presented in this paper is based on only the state error

and seems to ignore the error in the costate as well as ignore the control minimum principle, in

earlier work (such as Refs. 14–16) a close connection has been established between the first-order

optimality conditions for the mathematical program and the continuous first-order optimality

conditions (that is, the system dynamics, the costate equation, and the minimum principle).

4

Specifically, it is observed that at a solution of the mathematical programming problem, the min-

imum principle holds at the collocation points. Thus by solving the mathematical program, the

minimum principle is satisfied exactly. As has been shown in Refs. 14–16, the discretization of

the state equation leads to an induced discretization for the costate equation which is expressed

in terms of the multipliers of the mathematical programming problem. Hence, when the math-

ematical programming problem is solved, in essence a two point boundary value problem is

solved in which the control has been eliminated through the minimum principle. In this paper

we develop a mesh refinement method that is based entirely on the estimation of the error in the

state. While the error in the induced costate approximation could be monitored using the same

approach as is used to monitor the state error, one finds that the errors connected with the sys-

tem dynamics and the induced costate equation are tightly coupled in that the induced costate

error is large during intervals where the state error is large. As a result, the benefit of monitor-

ing the error in the state and the induced costate is marginal when compared to monitoring the

error in only the state. Thus it is more efficient and simpler to focus entirely on the error in the

state equation. The effectiveness of our mesh refinement strategy is studied on three examples

that have different features in the optimal solution and, thus, exercise different benefits of the

new ph approach. It is found that the mesh refinement method developed in this paper is an

effective yet simple way to generate meshes and to reduce computation times when compared

with fixed-order h methods.

The significance of this research is threefold. First, we develop a systematic way to estimate

the error in the Radau discretization of an optimal control problem using the fact that Radau

collocation is a Gaussian quadrature integration method. Second, based on the derived estimate

of the error, we provide a simple yet effective ph mesh refinement method that allows both the

degree of the approximating polynomial and the number of mesh intervals to vary. Third, we

show on three non-trivial examples that the phmesh refinement method developed in this paper

is more computationally efficient and produces smaller meshes for a given accuracy tolerance

when compared with traditional fixed-order h methods.

This paper is organized as follows. In Section 2 we provide a motivation for our new ph

method. In Section 3 we state the continuous-time Bolza optimal control problem. In Section 4,

we state the integral form of the ph Legendre-Gauss-Radau integration method14–16 that is used

as the basis for the ph mesh refinement method developed in this paper. In Section 5 we develop

5

the error estimate and our new ph-adaptive mesh refinement method. In Section 6 we apply the

method of Section 5 to three examples that highlight different features of the method. In Section

7 we describe the key features of our approach and compare our method to recently developed

hp-adaptive methods. Finally, in Section 8 we provide conclusions on our work.

2 Motivation for New ph-Adaptive Collocation Method

In order to motivate the development of our new ph-adaptive Gaussian quadrature collocation

method, consider the following two first-order differential equations on the interval τ ∈ [−1,+1]:

dy1
dτ

= f1(τ) = π cos(πτ), y1(−1) = y10, (1)

dy2
dτ

= f2(τ) =

0, −1 ≤ τ < −1/2

π cos(πτ), −1/2 ≤ τ ≤ +1/2,

0, +1/2 < τ ≤ +1

, y2(−1) = y20. (2)

The solutions to the differential equations of Eqs. (1) and (2) are given, respectively, as

y1(τ) = y10 + sin(πτ), (3)

y2(τ) =

y20, −1 ≤ τ < −1/2,

y20 + 1 + sin(πτ), −1/2 ≤ τ ≤ +1/2,

y20 + 2, +1/2 < τ ≤ +1.

(4)

Suppose now that it is desired to approximate the solutions to the differential equations of

Eqs. (1) and (2) using the following three different methods that employ the Legendre-Gauss-

Radau33 collocation method as described in various forms in Refs. 14–17, 19: (1) a p-method

where the state is approximated using an N th
k degree polynomial on [−1,+1] and Nk is allowed

to vary; (2) an h-method using K equally spaced mesh intervals where K is allowed to vary and

a fixed fourth-degree polynomial is employed within each mesh interval; and (3) a ph method

where both the number of mesh intervals, K, and the degree of the approximating polynomial,

Nk, within each mesh interval are allowed to vary. Using any of the aforementioned approx-

imations (p, h, or ph), within any mesh interval [Tk−1, Tk] the functions yi(τ), (i = 1, 2) are

approximated using the following Lagrange polynomial approximations:

y
(k)
i (τ) ≈ Y

(k)
i (τ) =

N+1
∑

j=1

Y
(k)
ij ℓ

(k)
j (τ), ℓ

(k)
j (τ) =

N+1
∏

l=1
l 6=j

τ − τ
(k)
l

τ
(k)
j − τ

(k)
l

, (5)

6

where the support points for ℓ
(k)
j (τ), j = 1, . . . , Nk+1, are theNk Legendre-Gauss-Radau points33

(τ
(k)
1 , . . . , τ

(k)
N) on [Tk−1, Tk] such that τ

(k)
1 = Tk−1 and τ

(k)
N+1 = Tk is a non-collocated point that

defines the end of mesh interval k. Within any particular mesh interval [Tk−1, Tk] ⊆ [−1,+1], the

approximations of y
(k)
i (τ), i = 1, 2, are given at the support points τ

(k)
j+1, j = 1, . . . , N , as

y
(k)
i (τ

(k)
j+1) ≈ Y

(k)
i (τ

(k)
j+1) = Y

(k)
i1 +

N
∑

l=1

I
(k)
jl fi(τ

(k)
l), (i = 1, 2), (j = 1, . . . , N), (6)

where Y
(k)
i1 is the approximation to yi(τ

(k)
1) at the start of the mesh interval and I

(k)
jl (j, l =

1, . . . , Nk) is the Nk × Nk Legendre-Gauss-Radau integration matrix (see Ref. 14 for details) de-

fined on the mesh interval [Tk−1, Tk].

Suppose now that we define the maximum absolute error in the solution of the differential

equation as

Ei = max
j∈[1,...,Nk]

k∈[1,...,K]

∣

∣

∣
Y

(k)
ij − yi(τ

(k)
j)
∣

∣

∣
, (i = 1, 2).

Figures 1a and 1b show the base-10 logarithm of E1 as a function of N for the p method and as

a function of K for the h method. First, it is seen that because y1(τ) is a smooth function, the p

method converges exponentially as a function of N while the h method converges significantly

more slowly as a function of K. Figures 1c and 1d show E2. Unlike y1, the function y2 is contin-

uous but not smooth. As a result, the h method converges faster than the p method because no

single polynomial (regardless of degree) on [−1,+1] is able to approximate the solution to Eq. (2)

as accurately as a piecewise polynomial. However, while the h method converges more quickly

than does the p method when approximating the solution of Eq. (2), it is seen that the h method

does not converge as quickly as the p method does when approximating the solution to Eq. (1).

In fact, when approximating the solution of Eq. (1) it is seen that the h method achieves an error

of ≈ 10−7 for K = 24 whereas the p method converges exponentially and achieves an error of

≈ 10−15 for N = 20. As a result, an h method does not provide the fastest possible convergence

rate when approximating the solution to a differential equation whose solution is smooth.

Given the aforementioned p and h analysis, suppose now that the solution to Eq. (2) is ap-

proximated using the aforementioned ph Radau method (that is, both the number of mesh inter-

vals and the degree of the approximating polynomial within each mesh interval are allowed to

vary). Assume further that the ph method is constructed such that the time interval [−1,+1] is

divided into three mesh intervals [−1,−1/2], [−1/2,+1/2], and [+1/2,+1] and Lagrange polyno-

7

N

lo
g 1

0
E

1p

4 8 12 16 24

0

20

-5

-10

-15

(a) log
10

E1p vs. N Using p Radau Method.

K

lo
g 1

0
E

1h

4 8 12 16 24

0

20

-5

-10

-15

(b) log
10

E1h vs. K Using h Radau Method

with N = 4.

N

lo
g 1

0
E

2p

4 8 12 16 24

0

20
-3.5

-3

-2.5

-1.5

-1

-0.5

-2

(c) log
10

E2p vs. N Using p Radau Method.

K

lo
g 1

0
E

2h

4 8 12 16 24
-3.5

-3

-2.5

-1.5

-1

-0.5

0

20

-2

(d) log
10

E2h vs. K Using h Radau Method with

N = 4.

lo
g 1

0
E

2p
h

N2

4 8 12 16 24

0

20

-2

-4

-6

-8

-10

-12

-14

-16

(e) log
10

E2ph vs. N2 Using ph Radau Method.

Figure 1: Base-10 Logarithm of Absolute Errors in Solutions of Eqs. (1) and (2) at Lagrange

polynomial Support Points Using p, h Methods, and ph Methods.

8

mial approximations of the form of Eq. (5) of degreeN1,N2, andN3, respectively, are used in each

mesh interval. Furthermore, suppose N1, N2, and N3 are allowed to vary. Because the solution

y2(τ) is a constant in the first and third mesh intervals, it is possible to set N1 = N3 = 2 and vary

only N2. Figure 1e shows the error in y2(τ), E2ph = max |y2 − Y2| using the aforementioned three

interval ph approach. Similar to the results obtained using the p method when approximating

the solution of Eq. (1), in this case the error in the solution of Eq. (2) converges exponentially as a

function of N2. Thus, while an h method may outperform a p method on a problem whose solu-

tion is not smooth, it is possible improve the convergence rate by using an ph-adaptive method.

The foregoing analysis provides a motivation for the development of the ph method described

in the remainder of this paper.

3 Bolza Optimal Control Problem

Without loss of generality, consider the following general optimal control problem in Bolza form.

Determine the state, y(t) ∈ R
ny , the control u(t) ∈ R

nu , the initial time, t0, and the terminal time,

tf , on the time interval t ∈ [t0, tf] that minimize the cost functional

J = φ(y(t0), t0, y(tf), tf) +

∫ tf

t0

g(y(t),u(t), t) dt (7)

subject to the dynamic constraints

dy

dt
= a(y(t),u(t), t), (8)

the inequality path constraints

cmin ≤ c(y(t),u(t), t) ≤ cmax, (9)

and the boundary conditions

bmin ≤ b(y(t0), t0,y(tf), tf) ≤ bmax. (10)

The functions φ, g, a, c and b are defined by the following mappings:

φ : R
ny × R× R

ny × R → R,

g : R
ny × R

nu × R → R,

a : R
ny × R

nu × R → R
ny ,

c : R
ny × R

nu × R → R
nc ,

b : R
ny × R× R

ny × R → R
nb ,

9

where all vector functions of time are treated as row vectors. In this presentation it will be use-

ful to modify the Bolza problem given in Eqs. (7)–(10) as follows. Let τ ∈ [−1,+1] be a new

independent variable such that

t =
tf − t0

2
τ +

tf + t0
2

. (11)

The Bolza optimal control problem of Eqs. (7)–(10) is then defined in terms of the variable τ as

follows. Determine the state, y(τ) ∈ R
ny , the control u(τ) ∈ R

nu , the initial time, t0, and the

terminal time tf on the time interval τ ∈ [−1,+1] that minimize the cost functional

J = φ(y(−1), t0,y(+1), tf) +
tf − t0

2

∫ +1

−1

g(y(τ),u(τ), τ ; t0, tf) dτ (12)

subject to the dynamic constraints

dy

dτ
=
tf − t0

2
a(y(τ),u(τ), τ ; t0, tf), (13)

the inequality path constraints

cmin ≤ c(y(τ),u(τ), τ ; t0, tf) ≤ cmax, (14)

and the boundary conditions

bmin ≤ b(y(−1), t0,y(+1), tf) ≤ bmax. (15)

Suppose now that the time interval τ ∈ [−1,+1] is divided into a mesh consisting of K mesh

intervals Sk = [Tk−1, Tk], k = 1, . . . , K, where (T0, . . . , TK) are the mesh points. The mesh intervals

Sk, (k = 1, . . . , K) have the properties that
K
⋃

k=1

Sk = [−1,+1] and
K
⋂

k=1

Sk = ∅, while the mesh

points have the property that −1 = T0 < T1 < T2 < · · · < TK = +1. Let y(k)(τ) and u(k)(τ) be the

state and control in Sk. The Bolza optimal control problem of Eqs. (12)–(15) can then rewritten

as follows. Minimize the cost functional

J = φ(y(1)(−1), t0,y
(K)(+1), tf) +

tf − t0
2

K
∑

k=1

∫ Tk

Tk−1

g(y(k)(τ),u(k)(τ), τ ; t0, tf) dτ, (k = 1, . . . , K),

(16)

subject to the dynamic constraints

dy(k)(τ)

dτ
=
tf − t0

2
a(y(k)(τ),u(k)(τ), τ ; t0, tf), (k = 1, . . . , K), (17)

10

the path constraints

cmin ≤ c(y(k)(τ),u(k)(τ), τ ; t0, tf) ≤ cmax, (k = 1, . . . , K), (18)

and the boundary conditions

bmin ≤ b(y(1)(−1), t0,y
(K)(+1), tf) ≤ bmax. (19)

Because the state must be continuous at each interior mesh point, it is required that the condition

y(T−
k) = y(T+

k), (k = 1, . . . , K − 1) be satisfied at the interior mesh points (T1, . . . , TK−1).

4 Legendre-Gauss-Radau Collocation Method

The ph form of the continuous-time Bolza optimal control problem in Section 3 is discretized us-

ing collocation at Legendre-Gauss-Radau (LGR) points.14–17, 19 In the LGR collocation method,

the state of the continuous-time Bolza optimal control problem is approximated in Sk, k ∈
[1, . . . , K] as

y(k)(τ) ≈ y(k)(τ) =

Nk+1
∑

j=1

y
(k)
j ℓ

(k)
j (τ), ℓ

(k)
j (τ) =

Nk+1
∏

l=1
l 6=j

τ − τ
(k)
l

τ
(k)
j − τ

(k)
l

, (20)

where τ ∈ [−1,+1], ℓ
(k)
j (τ), j = 1, . . . , Nk + 1, is a basis of Lagrange polynomials,

(

τ
(k)
1 , . . . , τ

(k)
Nk

)

are the Legendre-Gauss-Radau33 (LGR) collocation points in Sk = [Tk−1, Tk), and τ
(k)
Nk+1 = Tk is a

noncollocated point. Differentiating y(k)(τ) in Eq. (20) with respect to τ , we obtain

dy(k)(τ)

dτ
=

Nk+1
∑

j=1

y
(k)
j

dℓ
(k)
j (τ)

dτ
. (21)

The cost functional of Eq. (16) is then approximated using a multiple-interval LGR quadrature

as

J ≈ φ(y
(1)
1 , t0,y

(K)
NK+1, tf) +

K
∑

k=1

Nk
∑

j=1

tf − t0
2

w
(k)
j g(y

(k)
j ,u

(k)
j , τ

(k)
j ; t0, tf), (22)

where w
(k)
j (j = 1, . . . , Nk) are the LGR quadrature weights33 in Sk = [Tk−1, Tk], k ∈ [1, . . . , K],

u
(k)
i , i = 1, . . . , Nk, are the approximations of the control at the Nk LGR points in mesh interval

k ∈ [1, . . . , K], y
(1)
1 is the approximation of y(T0), and y

(K)
NK+1 is the approximation of y(TK)

11

(where we recall that T0 = −1 and TK = +1). Collocating the dynamics of Eq. (17) at the Nk LGR

points using Eq. (21), we have

Nk+1
∑

j=1

D
(k)
ij y

(k)
j − tf − t0

2
a(y

(k)
i ,u

(k)
i , τ

(k)
i ; t0, tf) = 0, (i = 1, . . . , Nk),

where

D
(k)
ij =

dℓ
(k)
j (τ

(k)
i)

dτ
, (i = 1, . . . , Nk, j = 1, . . . , Nk + 1),

are the elements of the Nk × (Nk +1) Legendre-Gauss-Radau differentiation matrix14 D(k) associated

with Sk, k ∈ [1, . . . , K]. While the dynamics can be collocated in differential form, in this paper

we choose to collocate the dynamics using the equivalent implicit integral form (see Refs. 14–16

for details). The implicit integral form of the Legendre-Gauss-Radau collocation method is given

as

y
(k)
i+1 − y

(k)
1 − tf − t0

2

Nk
∑

j=1

I
(k)
ij a(y

(k)
i ,u

(k)
i , τ

(k)
i ; t0, tf) = 0, (i = 1, . . . , Nk), (23)

where I
(k)
ij , (i = 1, . . . , Nk, j = 1, . . . , Nk, k = 1, . . . , K) is the Nk × Nk Legendre-Gauss-Radau

integration matrix in mesh interval k ∈ [1, . . . , K]; it is obtained by inverting a submatrix of the

differentiation matrix formed by columns 2 through Nk + 1:

I(k) =
[

D
(k)
2 · · ·D(k)

Nk+1

]−1

,

It is noted for completeness that I(k)D
(k)
1 = −1 (see Refs. 14–16), where 1 is a column vector of

length Nk of all ones.14–16 Next, the path constraints of Eq. (18) in Sk, k ∈ [1, . . . , K] are enforced

at the Nk LGR points as

cmin ≤ c(y
(k)
i ,u

(k)
i , τ

(k)
i ; t0, tf) ≤ cmax, (i = 1, . . . , Nk). (24)

The boundary conditions of Eq. (19) are approximated as

bmin ≤ b(y
(1)
1 , t0,y

(K)
NK+1, tf) ≤ bmax. (25)

It is noted that continuity in the state at the interior mesh points k ∈ [1, . . . , K − 1] is enforced

via the condition

y
(k)
Nk+1 = y

(k+1)
1 , (k = 1, . . . , K − 1), (26)

where the same variable is used for both y
(k)
Nk+1 and y

(k+1)
1 . Hence, the constraint of Eq. (26) is

eliminated from the problem because it is taken into account explicitly. The NLP that arises

12

from the LGR collocation method is then to minimize the cost function of Eq. (22) subject to the

algebraic constraints of Eqs. (23)–(25).

5 ph-Adaptive Mesh Refinement Method

We now develop a ph-adaptive mesh refinement method that using the LGR collocation method

described in Section 4. We call our method a ph-method since we first try to adjust the poly-

nomial degree to achieve convergence, and if this fails, we adjust the mesh spacing. The ph-

adaptive mesh refinement method developed in this paper is divided into two parts. In Section

5.1, the method for estimating the error in the current solution is derived, and in Section 5.4, the

p-then-h strategy is developed for refining the mesh.

5.1 Error Estimate in Each Mesh Interval

In this Section an estimate of the relative error in the solution within a mesh interval is derived.

Because the state is the only quantity in the LGR collocation method for which a uniquely de-

fined function approximation is available, we develop an error estimate for the state. The error

estimate is obtained by comparing two approximations to the state, one with higher accuracy.

The key idea is that for a problem whose solution is smooth, an increase in the number of LGR

points should yield a state that more accurately satisfies the dynamics. Hence, the difference

between the solution associated with the original set of LGR points, and the approximation as-

sociated with the increased number of LGR points should yield an estimate for the error in the

state.

Assume that the NLP of Eqs. (22)–(25) corresponding to the discretized control problem has

been solved on a mesh Sk = [Tk−1, Tk], k = 1, . . . , K, with Nk LGR points in mesh interval

Sk. Suppose that we want to estimate the error in the state at a set of Mk = Nk + 1 LGR

points
(

τ̂
(k)
1 , . . . , τ̂

(k)
Mk

)

, where τ̂
(k)
1 = τ

(k)
1 = Tk−1, and that τ̂

(k)
Mk+1 = Tk. Suppose further that

the values of the state approximation given in Eq. (20) at the points
(

τ̂
(k)
1 , . . . , τ̂

(k)
Mk

)

are denoted
(

y(τ̂
(k)
1), . . . ,y(τ̂

(k)
Mk

)
)

. Next, let the control be approximated in Sk using the Lagrange interpolat-

13

ing polynomial

u(k)(τ) =

Nk
∑

j=1

u
(k)
j ℓ̂

(k)
j (τ), ℓ̂

(k)
j (τ) =

Nk
∏

l=1
l 6=j

τ − τ
(k)
l

τ
(k)
j − τ

(k)
l

, (27)

and let the control approximation at τ̂
(k)
i be denoted u(τ̂

(k)
i), 1 ≤ i ≤Mk. We use the value of the

right-hand side of the dynamics at (y(τ̂
(k)
i),u(τ̂

(k)
i), τ̂

(k)
i) to construct an improved approximation

of the state. Let ŷ(k) be a polynomial of degree at mostMk that is defined on the interval Sk. If the

derivative of ŷ(k) matches the dynamics at each of the Radau quadrature points τ̂
(k)
i , 1 ≤ i ≤Mk,

then we have

ŷ(k)(τ̂
(k)
j) = y(k)(τk−1) +

tf − t0
2

Mk
∑

l=1

Î
(k)
jl a

(

y(k)(τ̂
(k)
l),u(k)(τ̂

(k)
l), τ̂

(k)
l

)

, j = 2, . . . ,Mk + 1, (28)

where Î
(k)
jl , j, l = 1, . . . ,Mk, is the Mk ×Mk LGR integration matrix corresponding to the LGR

points defined by
(

τ̂
(k)
1 , . . . , τ̂

(k)
Mk

)

. Using the values y(τ̂
(k)
l) and ŷ(τ̂

(k)
l), l = 1, . . . ,Mk + 1, the

absolute and relative errors in the ith component of the state at (τ̂
(k)
1 , . . . , τ̂

(k)
Mk+1) are then defined,

respectively, as

E
(k)
i (τ̂

(k)
l) =

∣

∣

∣
Ŷ

(k)
i (τ̂

(k)
l)− Y

(k)
i (τ̂

(k)
l)
∣

∣

∣
,

e
(k)
i (τ̂

(k)
l) =

E
(k)
i (τ̂

(k)
l)

1 + max
j∈[1,...,Mk+1]

∣

∣

∣
Y

(k)
i (τ̂

(k)
j)
∣

∣

∣

,

l = 1, . . . ,Mk + 1,

i = 1, . . . , ny,

 . (29)

The maximum relative error in Sk is then defined as

e(k)max = max
i∈[1,...,ny]

l∈[1,...,Mk+1]

e
(k)
i (τ̂

(k)
l). (30)

5.2 Rationale for Error Estimate

The error estimate derived in Section 5.1 is similar to the error estimate obtained using the mod-

ified Euler Runge-Kutta scheme to numerically solve a differential equation ẏ(t) = f(y(t)). The

first-order Euler method is given as

yj+1 = yj + hf(yj), (31)

where h is the step-size and yj is the approximation to y(t) at t = tj = jh. In the second-order

modified Euler Runge-Kutta method, the first stage generates the following approximation ȳ to

y(tj+1/2):

ȳ = yj +
1
2
hf(yj).

14

The second stage then uses the dynamics evaluated at ȳ to obtain an improved estimate ŷj+1 of

y(tj+1):

ŷj+1 = yj + hf(ȳ). (32)

The original Euler scheme starts at yj and generates yj+1. The first-stage variable ȳ is the in-

terpolant of the line (first degree polynomial) connecting (tj, yj) and (tj+1, yj+1) evaluated at the

new point tj+1/2. The second-stage given Eq. (32) uses the dynamics at the interpolant ȳ to obtain

an improved approximation to y(tj+1). Because ŷj+1 is a second-order approximation to y(tj+1)

and yj+1 is a first-order approximation to yj+1, the absolute difference |ŷj+1 − yj+1| is an estimate

of the error in yj+1 in a manner similar to the absolute error estimate E
(k)
i (τ̂

(k)
l) (l = 1, . . . ,Mk+1)

derived in Eq. (29).

The effectiveness of the derived error estimate derived in Section 5.1 can be seen by revisiting

the motivating examples of Section 2. Figures 2a and 2b show the p and h error estimates, respec-

tively, E1p and E1h, in the solution to Eq. (1), Figs. 2c and 2d show the p and h error estimates,

respectively, E2p and E2h, in the solution to Eq. (2), and Fig. 2e shows the ph error estimates, E2ph

in the solution to Eq. (2). It is seen that the error estimates are nearly identical to the actual error.

The relative error estimate given in Eq. (30) is used in the next section as the basis for modifying

an existing mesh.

5.3 Estimation of Required Polynomial Degree within a Mesh Interval

Suppose again the LGR collocation NLP of Eqs. (22)–(25) has been solved on a mesh Sk, k =

1, . . . , K. Suppose further that it is desired to meet a relative error accuracy tolerance ǫ in each

mesh interval Sk, k = 1, . . . , K. If the tolerance ǫ is not met in at least one mesh interval, then

the next step is to refine the current mesh, either by dividing the mesh interval or increasing the

degree of the approximating polynomial within the mesh interval.

Consider a mesh interval Sq, q ∈ [1, . . . , K] where Nq LGR points were used to solve the NLP

of Eqs. (22)–(25), and again let ǫ be the desired relative error accuracy tolerance. Suppose further

that the estimated maximum relative error, e
(q)
max, has been computed as described in Section 5.1

and that e
(q)
max > ǫ (that is, the accuracy tolerance ǫ is not satisfied in the existing mesh interval).

Finally, let Nmin and Nmax be user-specified minimum and maximum bounds on the number

of LGR points within any mesh interval. According to the convergence theory summarized

15

N

lo
g 1

0
E

1p

Estimate

Exact

4 8 12 16 24

0

20

-5

-10

-15

(a) log
10

e1p vs. N Using p Radau Method.

K

lo
g 1

0
E

1h

Estimate

Exact

4 8 12 16 24

0

20

-5

-10

-15

(b) log
10

e1h vs. K Using h Radau Method with

N = 4.

N

lo
g 1

0
E

2p

Estimate
Exact

4 8 12 16 24
-3.5

-3

-2.5

-1.5

-1

-0.5

0

20

-2

(c) log
10

e2p vs. N Using p Radau Method.

K

lo
g 1

0
E

2h

Estimate
Exact

4 8 12 16 24
-3.5

-3

-2.5

-1.5

-1

-0.5

0

20

-2

(d) log
10

e2h vs. K Using h Radau Method with

N = 4.

lo
g 1

0
E

2p
h

N2

Estimate

Exact

4 8 12 16 24

0

20

-2

-4

-6

-8

-10

-12

-14

-16

(e) log
10

e2ph vs. N2 Using ph Radau Method.

Figure 2: Base-10 Logarithm of Absolute Error Estimates in Solutions of Eqs. (1) and (2) at Points

(τ̂2, . . . , τ̂Mk
) Using p, h Methods, and ph Methods.

16

in,34, 35 the error in a global collocation scheme behaves like O(N2.5−k) where N is the number of

collocation points within a mesh interval and k is the number of continuous derivatives in the

solution.20, 21 If the solution is smooth, then we could take k = N . Hence, if N was replace by

N + P , then the error bound decreases by at least the factor N−P .

Based on these considerations, suppose that interval Sq employs Nq collocation points and

has relative error estimate e
(q)
max which is larger than the desired relative error tolerance ǫ; to reach

the desired error tolerance, the error should be multiplied by the factor ǫ/e
(q)
max. This reduction is

achieved by increasing Nq by Pq where Pq is chosen so that N
−Pq
q = ǫ/e

(q)
max, or equivalently,

NPq

q =
e
(q)
max

ǫ
.

This implies that

Pq = logNq

(

e
(q)
max

ǫ

)

. (33)

Since the expression on the right side of (33) may not be an integer, we round up to obtain

Pq =

⌈

logNq

(

e
(q)
max

ǫ

)⌉

. (34)

Note that Pq ≥ 0 since we only use (34) when e
(q)
max is greater than the prescribed error tolerance

ǫ. The dependence of Pq on Nq is shown in Fig. 3.

5.4 p-Then-h Strategy for Mesh Refinement

Using Eq. (34), the predicted number of LGR points required in mesh interval Sq on the ensuing

mesh is Ñq = Nq + Pq, assuming e
(q)
max has not reach the specified error tolerance ǫ. The only

possibilities are that Ñq ≤ Nmax (that is, Ñ does not exceed the maximum allowable polynomial

degree) or that Ñq > Nmax (that is, Ñ exceeds the maximum allowable polynomial degree). If

Ñq ≤ Nmax, then Nq is increased to Ñq on the ensuing mesh. If, on the other hand, Ñq > Nmax,

then Ñq exceeds the upper limit and the mesh interval Sq must be divided into sub-intervals.

Our strategy for mesh interval division uses the following approach. First, whenever a mesh

interval is divided, the sum of the number of collocation points in the newly created mesh inter-

vals should equal the predicted polynomial degree for the next mesh. Second, each newly cre-

ated sub-interval should contain the minimum allowable number of collocation points. In other

17

0

2

2

4

5

6

8

8

10

11

12

14

14

16

18

N

P
=
⌈lo

g N
(e

m
ax
/ǫ
)⌉

log10(emax/ǫ) = 5

log10(emax/ǫ) = 4

log10(emax/ǫ) = 3

log10(emax/ǫ) = 2

log10(emax/ǫ) = 1

log10(emax/ǫ) = 0

(a) P = ⌈logN (emax/ǫ)⌉ vs. N for Fixed Values of

log
10
(emax/ǫ).

0
0

N = 2

N = 5

N = 8

N = 11

N = 14

1

2

23

4

45

6

8

10

12

14

16

18

log10(emax/ǫ)

P
=
⌈lo

g N
(e

m
ax
/ǫ
)⌉

(b) P = ⌈logN (emax/ǫ)⌉ vs. log
10
(emax/ǫ) for Fixed

Values of N .

Figure 3: Function That Relates the Increase in the Degree of the Approximating Polynomial to

the Ratio emax/ǫ and the Current Polynomial Degree, N .

words, if a mesh interval Sq is divided into Bq subintervals, then each newly created subinterval

will contain Nmin collocation points and the sum of the collocation points in these newly created

subintervals should be BqNmin. Using this strategy, the number of subintervals, Bq, into which

Sq is divided is computed as

Bq = max

(⌈

Ñq

Nmin

⌉

, 2

)

, (35)

where it is seen in Eq. (35) that 2 ≤ Bq ≤ ⌈Ñq/Nmin⌉. It is seen that this strategy for mesh

interval division ensures that the same total number of collocation points is the same regardless

of whether the polynomial degree in a mesh interval is increased or the mesh interval is refined.

Second, because the number of LGR points in a newly created mesh interval is started at Nmin,

the method uses the full range of allowable values of N . Because of the hierarchy, the ph method

of this paper can be thought of more precisely as a “p-then-h” method where p refinement is

exhausted prior to performing any h refinement. In other words, the polynomial degree within

a mesh interval is increased until the upper limit Nmax is exceeded. The h refinement (mesh

interval division) is then performed after which the p refinement is restarted.

It is important to note that the ph method developed in this paper can be employed as a

fixed-order h method simply by setting Nmin = Nmax. The h version of the method of this paper

is similar to an adaptive step-size fixed-order integration method, such as an adaptive step-size

18

Runge-Kutta method, in the following respect: In both cases, the mesh is refined, often by step-

halving or step-doubling,36 when the specified error tolerance is not met.

A summary of our adaptive mesh refinement algorithm appears below. Here M denotes the

mesh refinement iteration, and in each loop of the algorithm, the mesh number increases by 1.

The algorithm terminates in Step 4 when the error tolerance is satisfied or when M reaches a

prescribed maximum Mmax.

ph-Adaptive Mesh Refinement Method

Step 1: Set M = 0 and supply initial mesh, S =
K
⋃

k

Sk = [−1,+1], where
K
⋂

k

Sk = ∅.

Step 2: Solve Radau collocation NLP of Eqs. (22)–(25) on current mesh S .

Step 3: Compute scaled error e
(k)
max in Sk, k = 1, . . . , K, using method of Section 5.1.

Step 4: If e
(k)
max ≤ ǫ for all k ∈ [1, . . . , K] or M > Mmax, then quit. Otherwise, proceed to Step 5.

Step 5: Using the method of Section 5.4, modify all mesh intervals Sk for which e
(k)
max > ǫ.

Step 6: Set M
→
=M + 1, and return to Step 2.

6 Examples

In this Section the ph-adaptive Legendre-Gauss-Radau (LGR) method described in Section 5

is applied to three examples from the open literature. The first example is a variation of the

hyper-sensitive optimal control problem originally described in Ref. 37, where the effectiveness

of the error estimate derived in Section 5.1 is demonstrated and the improved efficiency of the

ph method over various h methods is shown. The second example is a tumor anti-angiogenesis

optimal control problem originally described in Ref. 38, where it is seen that the ph method of

this paper accurately and efficiently captures a discontinuity in a problem whose optimal control

is discontinuous. The third example is the reusable launch vehicle entry problem from Ref. 3,

where it is seen that using the ph method of this paper leads to a significantly smaller mesh than

19

would be obtained using an h method. This third example also shows that allowing Nmin to be

too small can reduce the effectiveness of the ph method.

When using a ph-adaptive method, the terminology ph-(Nmin, Nmax) refers to the ph-adaptive

method of this paper where the polynomial degree can vary between Nmin and Nmax, respec-

tively, while an h-N method refers to an h method with a polynomial of fixed degree N . For

example, a ph-(2, 8) method is a ph-adaptive method where Nmin = 2 and Nmax = 8, while an h-2

method is an h method where N = 2. All results were obtained using the optimal control soft-

ware GPOPS− II
39 running with the NLP solver IPOPT40 in second derivative mode with the

multifrontal massively parallel sparse direct solver MUMPS,41 default NLP solver tolerances,

and a mesh refinement accuracy tolerance ǫ = 10−6. The initial mesh for a ph-(Nmin, Nmax) or

h-Nmin method consisted of ten uniformly-spaced mesh intervals with Nmin LGR points in each

interval, while the initial guess was a straight line between the known initial conditions and

known terminal conditions for the problem under consideration with the guess on all other

variables being a constant. The required first and second derivatives required by IPOPT were

computed using the built-in sparse first and second finite-differencing method in GPOPS− II

that uses the method of Ref. 19. Finally, all computations were performed on a 2.5 GHz Intel

Core i7 MacBook Pro running Mac OS-X Version 10.7.5 (Lion) 16 GB of 1333 MHz DDR3 RAM

and MATLAB Version R2012b. The central processing unit (CPU) times reported in this paper

are ten-run averages of the execution time.

Example 1: Hyper-Sensitive Problem

Consider the following variation of the hyper-sensitive optimal control problem.37 Minimize the

cost functional

J = 1
2

∫ tf

0

(x2 + u2)dt (36)

subject to the dynamic constraint

ẋ = −x+ u (37)

and the boundary conditions

x(0) = 1.5 , x(tf) = 1, (38)

20

where tf is fixed. It is known that for sufficiently large values of tf that the solution to the hyper-

sensitive problem exhibits a so called “take-off”, “cruise”, and “landing” structure where all of

the interesting behavior occurs near the “take-off” and “landing” segments while the solution

is essentially constant in the “cruise” segment. Furthermore, the “cruise” segment becomes

and increasingly large percentage of the total trajectory time as tf increases, while “take-off”

and “landing” segments have rapid exponential decay and growth, respectively. The analytic

optimal state and control for this problem are given as

x∗(t) = c1 exp(t
√
2) + c2 exp(−t

√
2),

u∗(t) = ẋ∗(t) + x∗(t),
(39)

where

c1

c2

 =
1

exp(−tf
√
2)− exp(tf

√
2)

1.5 exp(−tf
√
2)− 1

1− 1.5 exp(tf
√
2)

 . (40)

Figures 4a and 4b shows the exact state and control for the hyper-sensitive problem with tf =

10000 and highlight the “take-off”, “cruise”, and “landing” feature of the optimal solution.

Given the structure of the optimal solution, it should be the case that a mesh refinement method

place many more collocation and mesh points near the ends of the time interval when tf is large.

Figures 4c shows the evolution of the mesh points Tk while Figure 4d shows the evolution col-

location (LGR) points τ
(k)
j on each mesh refinement iteration using the ph-(3, 14) scheme. Two

key related features are seen in the mesh refinement. First, Fig. 4c shows that mesh intervals

are added on each refinement iteration only in the regions near t = 0 and t = tf , while mesh

intervals are not added in the interior region t ∈ [1000, 9000]. Second, Fig. 4d shows that after

the first mesh refinement iteration LGR points are also added only in the regions regions near

t = 0 and t = tf and are not added in the interior region t ∈ [1000, 9000]. This behavior of

the ph-adaptive method shows that error reduction is achieved by added mesh and collocation

points in regions of t ∈ [0, tf] where points are needed to capture the changes in the solution.

Finally, for comparison with the ph-adaptive method, Figs. 4e and 4f show the solution obtained

using an h-2 method. Unlike the ph-(3, 14) method, where mesh points are added only where

needed to meet the accuracy tolerance, the h-2 method places many more mesh points over

much larger segments at the start and end of the overall time interval. Specifically, it is seen that

the mesh is quite dense over time intervals t ∈ [0, 3000] and t ∈ [7000, 10000] whereas for the

ph-(3, 14) method, the mesh remains dense over the smaller intervals [0, 1000] and [9000, 10000].

21

Table 1: Estimated Relative State Error, emax
x , Exact Relative State Error, emax

x,exact, and Exact Rela-

tive Control Error, emax
u,exact, for Example 1 with tf = 10000 Using a ph-(3, 14) with an Accuracy

Tolerance ǫ = 10−6.

M emax

x emax

x,exact emax

u,exact

1 3.377× 100 5.708× 10−3 1.280× 100

2 6.436× 10−1 4.009× 10−2 1.127× 100

3 9.648× 10−2 7.462× 10−2 3.369× 10−1

4 8.315× 10−10 1.016× 10−9 1.329× 10−8

Admittedly, the ph-(3, 14) does add LGR points in the regions t ∈ [1000, 3000] and t ∈ [7000, 9000]

whereas the h-2 method adds more mesh intervals, but the mesh obtained using the ph-(3, 14) is

much smaller (273 collocation points) than the mesh obtained using the h-2 method (672 colloca-

tion points). Thus the ph-method exploits the solution smoothness on the intervals [1000, 3000]

and [7000, 9000] to achieve more rapid convergence by increasing the degree of the approximat-

ing polynomials instead of increasing the number of mesh intervals.

Next, we analyze the quality of the error estimate of Section 5.1 by examining more closely

the numerical solution near t = 0 and t = tf . Figures 5a and 5b show the state and control in

the regions t ∈ [0, 15] and t ∈ [9985, 10000] on each mesh refinement iteration alongside the exact

solution using the ph-(3, 14) method, while Table 1 shows the estimated and exact relative errors

in the state and the exact relative error in the control for each mesh refinement iteration. First, it

is seen in Table 1 that the state and control relative error on the final mesh is quite small at ≈ 10−9

for the state and ≈ 10−8 for the control. In addition, it is seen from Figs. 5a and 5b that the state

and control approximations improve with each mesh refinement iteration. Moreover, the error

estimate shown in Table 1 agrees qualitatively with the solutions on the corresponding mesh

as shown in Figs. 5a and 5b. It is also interesting to see that the state relative error estimate is

approximately the same on each mesh iteration as the exact relative error. The consistency in the

relative error approximation and the exact relative error demonstrates the accuracy of the error

estimate derived in Section 5.1. Thus, the error estimate derived in this paper reflects correctly

the locations where the solution error is large and ph-adaptive method constructs new meshes

that reduce the error without making the mesh overly dense.

Finally, we provide a comparison of the computational efficiency and mesh sizes obtained

22

6000 8000
t

x
(t
)

0
0

1

10000

0.5

1.5

2000 4000

(a) x(t) vs. t for tf = 10000.

-1
6000 8000

t

u
(t
)

0

0

1

2

10000

-0.5

0.5

1.5

2.5

2000 4000

(b) u(t) vs. t.

M
es
h
R
efi
n
em

en
t
It
er
at
io
n

6000 8000
t

0
0

1

2

3

4

100002000 4000

(c) Mesh Point History Using ph-(3, 14)

Method.

M
es
h
R
efi
n
em

en
t
It
er
at
io
n

6000 8000
t

0
0

1

2

3

4

100002000 4000

(d) Collocation Point History Using ph-(3, 14)

Method.

M
es
h
R
efi
n
em

en
t
It
er
at
io
n

6000 8000
t

0
0

1

2

3

4

5

100002000 4000

(e) Mesh Point History Using h-2 Method.

M
es
h
R
efi
n
em

en
t
It
er
at
io
n

6000 8000
t

0
0

1

2

3

4

5

100002000 4000

(f) Collocation Point History Using h-2

Method.

Figure 4: Exact Solution to Example 1 with tf = 10000 and Mesh Refinement History When

Using the ph-(3, 14) and h-2 Methods with an Accuracy Tolerance ǫ = 10−6.

23

Mesh Refinement Iteration 1

Mesh Refinement Iteration 2

Mesh Refinement Iteration 3

Mesh Refinement Iteration 4

Exact Solution

t

x
(t
)

0

0

1

5 10 15
-0.2

0.2

0.4

0.6

1.2

1.4

1.6

1.8

(a) x(t) vs. t Near t = 0 for tf = 10000.

Mesh Refinement Iteration 1

Mesh Refinement Iteration 2

Mesh Refinement Iteration 3

Mesh Refinement Iteration 4

Exact Solution

t
x
(t
)

0

1

9990 99959995 10000
-0.2

0.2

0.4

0.6

1.2

1.4

1.6

1.8

(b) x(t) vs. t Near t = tf for tf = 10000.

Mesh Refinement Iteration 1

Mesh Refinement Iteration 2

Mesh Refinement Iteration 3

Mesh Refinement Iteration 4

Exact Solution
-1

t

u
(t
)

0

0 5 10 15

-0.5

0.5

(c) x(t) vs. t Near t = 0 for tf = 10000.

Mesh Refinement Iteration 1

Mesh Refinement Iteration 2

Mesh Refinement Iteration 3

Mesh Refinement Iteration 4

Exact Solution

-1

-2

t

u
(t
)

0

1

2

3

4

5

9990 99959995 10000

(d) x(t) vs. t Near t = tf for tf = 10000.

Figure 5: Solution Near Endpoints of t ∈ [0, tf] for Example 1 with tf = 10000 Using the ph-(3, 14)

and an Accuracy Tolerance ǫ = 10−6.

24

by solving Example 1 using the various ph-adaptive and h methods described Section 5. Table 2

shows the CPU times and mesh sizes, where it is seen for this example that the ph-(3, 14) and h-2

methods result in the smallest overall CPU times (with the ph-(3, 14) being slightly more com-

putationally efficient than the h-2 method). Interestingly, while the ph-(3, 14) and h-2 methods

have nearly the same computational efficiency, the ph-(3, 14) produces a significantly smaller

mesh (N = 293 LGR points, nearly the smallest amongst all of the methods) while the h-2

mesh produced a much larger mesh (N = 672 LGR points, by far the largest amongst all of

the different methods). In fact Table 2 shows for this example that, for any fixed value Nmin, the

ph-(Nmin, Nmax) methods produced smaller mesh sizes than the corresponding h-Nmin method.

Thus, while an h method may perform well on this example due to the structure of the opti-

mal solution, the ph method produces the solution in the most computationally efficient manner

while simultaneously producing a significantly smaller mesh.

Example 2: Tumor Anti-Angiogenesis Optimal Control Problem

Consider the following tumor anti-angiogenesis optimal control problem taken from Ref. 38.

The objective is to minimize

J = y1(tf) (41)

subject to the dynamic constraints

ẏ1(t) = −ξy1(t) ln
(

y1(t)

y2(t)

)

,

ẏ2(t) = q(t)
[

b− µ− dy
2/3
1 (t)−Gu(t)

]

,

(42)

with the initial conditions

y1(0) = [(b− µ)/d]3/2 /2,

y2(0) = [(b− µ)/d]3/2 /4,
(43)

the control constraint

0 ≤ u ≤ umax, (44)

and the integral constraint
∫ tf

0

u(τ)dτ ≤ A, (45)

where G = 0.15, b = 5.85, d = 0.00873, µ = 0.02, umax = 75, A = 15, and tf is free. A solution to

this optimal control problem is shown using the ph-(3, 10) method is shown in Figs. 6a and 6b

25

Table 2: Mesh Refinement Results for Example 1 Using Various ph-Adaptive and h Methods.

Initial Mesh Mesh Refinement Total Constraint

Nmin Nmax CPU Time (s) CPU Time (s) CPU Time (s) N K M Jacobian Density (%)

2 2 0.34 3.10 3.44 672 336 5 0.629

2 8 0.33 6.93 7.26 633 222 5 0.908

2 10 0.33 6.77 7.10 624 210 5 0.971

2 12 0.33 6.12 6.45 583 170 6 1.271

2 14 0.33 5.17 5.50 520 140 5 1.672

2 16 0.33 6.33 6.66 519 126 4 1.839

3 3 0.33 3.28 3.61 417 139 6 1.229

3 8 0.32 3.89 4.22 369 96 6 1.748

3 10 0.32 3.43 3.75 347 79 5 2.165

3 12 0.33 3.79 4.12 343 64 5 2.606

3 14 0.33 3.05 3.38 293 40 4 3.847

3 16 0.33 3.49 3.81 290 41 5 3.825

4 4 0.34 3.86 4.20 384 96 7 1.580

4 8 0.33 3.65 3.98 324 66 6 2.269

4 10 0.33 3.37 3.70 311 56 6 2.637

4 12 0.33 3.69 4.02 291 43 5 3.454

4 14 0.33 4.31 4.64 306 39 7 3.599

4 16 0.33 4.95 5.29 320 44 7 3.413

26

Upon closer examination, it is seen that a key feature in the optimal solution is the fact that

optimal control is discontinuous at t ≈ 0.2. In order to improve the accuracy of the solution in

the vicinity of this discontinuity, it is necessary that an increased number of collocation and mesh

points are placed near t = 0.2. Figure 6b shows the control obtained on the final mesh by the

ph-(3, 10) method. Interestingly, it is seen that the ph-(3, 10) method concentrates the collocation

and mesh points near t = 0.2. Examining the evolution of the mesh refinement, it is seen in

Figs. 6c and 6d that the mesh density increases on each successive mesh iteration, but remains

unchanged in regions distant from t ≈ 0.2. The reason that the mesh is modified near t = 0.2

is because the accuracy of the state is lowest in the region near the discontinuity in the control.

In order to improve solution accuracy, additional collocation and mesh points are required near

t = 0.2. Thus, the ph-method performs properly when solving this problem as it leaves the mesh

untouched in regions where few collocation and mesh points are needed, and it increases the

density of the mesh where additional points are required.

Next, Table 3 summarizes the CPU times and mesh sizes that were obtained by solving Ex-

ample 2 using the various ph and h methods described Section 5. While for this example the

CPU times are quite small, it is still seen that computational efficiency is gained by choosing a

ph method over an h method. Specifically, it is seen that the ph-(3, 10) method produces the low-

est CPU time with an h-3 method being slightly less efficient than the ph-(3, 10) method. More

importantly, Table 3 shows the significant reduction in mesh size when using a ph method. For

example, using a ph-(3, Nmax) or ph-(4, Nmax), the maximum number of LGR points is N = 99

whereas the lowest number of LGR points using either an h-2, h-3, or h-4 method is N = 116.

Moreover, while the ph-(3, 14) and h-2 methods have nearly the same computational efficiency,

the ph-(3, 14) produces a significantly smaller mesh (N = 293 LGR points, nearly the small-

est amongst all of the methods) while the h-2 mesh produced a much larger mesh (N = 672

LGR points, by far the largest amongst all of the different methods). Thus, while an h method

may perform well on this example due to the structure of the optimal solution, the ph method

produces the solution in the most computationally efficient manner while simultaneously pro-

ducing the smallest mesh.

27

t

y1(t)
y2(t)

(y
1
(t
),
y 2
(t
))

0.2 0.4 0.6 0.8 1.2 1.4
0
0 1

1000

2000

3000

4000

5000

6000

7000

8000

9000

(a) (p(t), q(t)) vs. t.

t
u
(t
)

0.2 0.4 0.6 0.8 1.2 1.4

10

20

30

40

50

60

70

80

0
0 1

(b) u(t) vs. t.

t

M
es
h
R
efi
n
em

en
t
It
er
at
io
n

0.2 0.4 0.6 0.8

2

3

4

1.2 1.4
0
0

1

1

(c) Mesh Point History.

t

M
es
h
R
efi
n
em

en
t
It
er
at
io
n

0.2 0.4 0.6 0.8

2

3

4

1.2 1.4
0
0

1

1

(d) Collocation (LGR) Point History.

Figure 6: Solution and Mesh Refinement History for Example 2 Using the ph-(3, 10) Method with

an Accuracy Tolerance of 10−6.

28

Table 3: Mesh Refinement Results for Example 2 Using Various ph-Adaptive and h Methods.

Initial Mesh Mesh Refinement Total Constraint

Nmin Nmax CPU Time (s) CPU Time (s) CPU Time (s) N K M Jacobian Density (%)

2 2 0.11 0.72 0.83 270 135 3 0.979

2 8 0.10 0.88 0.98 245 84 4 1.569

2 10 0.10 1.02 1.12 237 65 5 2.088

2 12 0.10 0.75 0.84 204 40 4 3.354

2 14 0.10 0.74 0.84 204 40 4 3.354

2 16 0.10 0.69 0.78 213 26 4 4.041

3 3 0.17 0.55 0.72 123 41 4 2.746

3 8 0.17 0.71 0.88 104 27 6 4.114

3 10 0.17 0.50 0.67 95 19 4 6.040

3 12 0.17 0.86 1.03 99 18 7 6.310

3 14 0.17 0.62 0.80 89 15 6 7.527

3 16 0.17 1.56 1.73 99 15 13 7.955

4 4 0.16 0.90 1.05 116 29 6 3.587

4 8 0.16 0.70 0.85 87 18 6 5.898

4 10 0.16 0.96 1.12 85 16 9 6.702

4 12 0.16 0.88 1.04 82 16 10 6.929

4 14 0.16 1.11 1.27 83 16 13 7.047

4 16 0.16 1.01 1.16 87 14 10 8.401

29

Example 3: Reusable Launch Vehicle Entry

Consider the following optimal control problem from Ref. 3 of maximizing the crossrange during

the atmospheric entry of a reusable launch vehicle. Minimize the cost functional

J = −φ(tf) (46)

subject to the dynamic constraints

ṙ = v sin γ , θ̇ =
v cos γ sinψ

r cosφ
, φ̇ =

v cos γ cosψ

r
,

v̇ = −D
m

− g sin γ , γ̇ =
L cos σ

mv
−
(g

v
− v

r

)

cos γ , ψ̇ =
L sin σ

mv cos γ
+
v cos γ sinψ tanφ

r
,

(47)

and the boundary conditions

r(0) = r0 , r(tf) = rf , θ(0) = θ0 , θ(tf) = Free,

φ(0) = θf , φ(tf) = Free , v(0) = v0 , v(tf) = vf ,

γ(0) = γ0 , γ(tf) = γf , ψ(0) = ψ0 , ψ(tf) = Free,

(48)

It is noted that the model and the numerical values (r0, rf , θ0, θf , v0, vf , γ0, γf , ψ0) are taken from

Ref. 3 with the exception that all quantities in Ref. 3 are given in English units while the values

used in this example are in SI units. A typical solution of this problem is shown in Figs. 7a–7f

using the ph-(2, 14) method.

It is seen that the solution to this example is relatively smooth; although there seems to be

a rapid change in the angle of attack in Fig. 7e near t = 2000, the total deflection is at most one

degree. As a result, one might hypothesize that it is possible to obtain an accurate solution with

a relatively small number of collocation and mesh points when compared with an h method.

This hypothesis is confirmed in Table 4 where several interesting trends are observed. First,

it is seen that the ph-(2, 14) and ph-(2, 16) methods are the most computationally efficient. In

particular, the ph-(2, 14) and ph-(2, 16) methods are 30 percent, 44 percent, and 61 percent faster,

respectively, than the h-2, h-3, and h-4 methods. Also, it is seen that the ph-(2, 14) and ph-(2, 16)

methods produce smaller meshes (with a total of 170 collocation points) when compared with

the h-2, h-3, or h-4 methods (where the total numbers of collocation points are 486, 261, and 188,

respectively). Next, Figs. 8a and 8b show the evolution of the meshes for the ph-(2, 14) method,

where it is seen that the number of mesh intervals increases from that of the initial mesh only

at the very end of the trajectory due to the rapid change of the flight path angle near t = tf . As

30

Table 4: Mesh Refinement Results for Example 3 Using Various ph-Adaptive and h Methods.

Initial Mesh Mesh Refinement Total Constraint

Nmin Nmax CPU Time (s) CPU Time (s) CPU Time (s) N K M Jacobian Density (%)

2 2 0.76 1.56 2.33 486 243 3 0.314

2 8 0.76 1.55 2.30 442 86 3 0.871

2 10 0.76 2.22 2.98 404 60 4 1.061

2 12 0.75 1.33 2.08 227 30 3 2.207

2 14 0.75 0.83 1.58 170 18 2 3.560

2 16 0.75 0.83 1.58 170 18 2 3.560

3 3 1.31 1.53 2.84 261 87 4 0.795

3 8 1.31 1.09 2.41 195 38 3 1.740

3 10 1.31 1.16 2.47 114 13 4 4.762

3 12 1.31 0.78 2.10 98 10 3 5.965

3 14 1.32 0.78 2.10 98 10 3 5.965

3 16 1.32 0.78 2.10 98 10 3 5.965

4 4 3.19 0.90 4.09 188 47 3 1.396

4 8 3.20 0.80 4.00 127 24 3 2.766

4 10 3.19 0.68 3.87 97 12 3 5.134

4 12 3.20 0.43 3.64 89 10 2 6.025

4 14 3.21 0.44 3.65 89 10 2 6.025

4 16 3.19 0.43 3.63 89 10 2 6.025

a result, for the vast majority of the solution the largest decrease in error is obtained by using

a larger polynomial degree in each mesh interval and using fewer mesh intervals. In this case

the fact that the ph-(2, 14) and ph-(2, 16) methods outperform the other methods (in particular,

outperform the hmethods) is consistent with the fact that the solution to this problem is smooth,

having only relatively small oscillations in the altitude and flight path angle. Thus, as stated, the

accuracy tolerance can be achieved by using relatively few mesh intervals with a high-degree

polynomial approximation in each interval.

31

t (sec)

h
(t
)
(k
m
)

0
20

30

40

50

60

70

80

500 1500 25001000 2000

(a) h(t) vs. t.

t (sec)

v
(t
)
(k
m
·s−

1
)

0
0

1

2

3

4

5

500 1500 2500

6

7

8

1000 2000

(b) v(t) vs. t.

φ
(t
)
(d
eg
)

θ(t) (deg)

0
0

5

15

20

20

25

30

30

35

40 50 60 70 80

10

10

(c) φ(t) vs. θ(t).

−6

t (sec)

γ
(t
)
(d
eg
)

0

0

1

500 1500 2500

-1

-2

-3

-4

-5

1000 2000

(d) γ(t) vs. t.

t (sec)

α
(t
)
(d
eg
)

16.5

17

17.5

0 500 1500 25001000 2000

(e) α(t) vs. t.

t (sec)

σ
(t
)
(d
eg
)

-10

-20

-30

-40

-50

-60

-70

-80

0

0 500 1500 25001000 2000

(f) σ(t) vs. t.

Figure 7: Solution to Example 3 Using the ph-(2, 14) Method with an Accuracy Tolerance of 10−6.

32

0
0

t

M
es
h
R
efi
n
em

en
t
It
er
at
io
n

500 1000 1500 2000 2500

1

2

(a) Mesh Point History.

0
0

t

M
es
h
R
efi
n
em

en
t
It
er
at
io
n

500 1000 1500 2000 2500

1

2

(b) Collocation (LGR) Point History.

Figure 8: Mesh Refinement History for Example 3 Using the ph-(2, 14) Method with an Accuracy

Tolerance of 10−6.

7 Discussion

Each of the examples illustrates different features of the ph-adaptive mesh refinement method

developed in Section 5. The first example shows how the computational efficiency of the ph-

adaptive adaptive mesh refinement scheme is similar to the computational efficiency of an h

method while generating a much smaller mesh for a given accuracy tolerance than is required

when using an h method. This first example also demonstrates the effectiveness of the error

estimate derived in Section 5.1. The second example shows how the ph-adaptive method can

efficiently capture a discontinuity in the solution by making the mesh more dense near the dis-

continuity while simultaneously not placing unnecessary mesh and collocation points in regions

distant from the discontinuity. Furthermore, similar to the results obtained in the first example,

the second example shows the significantly smaller mesh that is generated using the ph-adaptive

method when compared with the mesh generated using an h method. Next, the third example

demonstrates how the ph-adaptive method does not unnecessarily add mesh intervals when it

is only necessary to increase the degree of the polynomial approximation to achieve a desired

accuracy tolerance.

Next, the method of this paper takes advantage of the fact that in regions where the solution

is smooth it is possible to gain significant accuracy by increasing the degree of the polynomial

33

approximation. On the other hand, if the estimated polynomial degree exceeds a given threshold

(that is, N exceeds the upper limitNmax) without satisfying the accuracy tolerance, then a further

increase in the polynomial degree will improve the error in the solution only marginally. As a

result, in such cases it is more beneficial to refine the mesh. Next, while the parameters Nmin

and Nmax are somewhat arbitrary, it is seen from the three examples that choosing Nmin = 3

and Nmax = 14 or Nmax = 16 generally provides good performance when compared with an

h method (for example, see Tables 2, 3, and 4 where it is seen that Nmin = 3 and Nmax = 14 or

Nmax = 16 result in either the fastest or nearly the fastest computation times). Finally, the method

of this paper has the potential advantage that the nonlinear programming problem (NLP) may

be smaller in size when compared with that of an h method, requiring less memory than might

be required to achieve the same accuracy using an h method.

It is also observed in each of the three examples that at least one of the phmethods was always

more efficient than any of the hmethods. Generally, a phmethod should be able to outperform an

hmethod since there is another parameter p than can be adjusted. When the solution is smooth, a

p method always performs better than an h method since the p method converges exponentially

fast. If the solution is piecewise smooth, then the phmethod can exploit the smoothness by using

a larger p and fewer mesh intervals in the region where the solution is smooth.

It is also important to note that the ph mesh refinement presented in this paper is based

on only the estimate of the state error. While incorporating other error estimates (for example,

estimates of the errors in the costate or control) is possible, in applications it is often the case

that the errors in the costate and the control are comparable to the error in the state. Thus, it is

simpler and more efficient to develop a mesh refinement method based only on the error in the

state. Moreover, other mesh refinement methods, such as the h mesh refinement methods found

in Ref. 3, are based only on an estimate of the state error.

Next, we compare the method developed in this paper with the recently developed hp-

adaptive method of Refs. 28 and 29. In the methods of Ref. 28 and 29, the error is estimated

from the difference between the time derivative approximation of the state and the right-hand

side of the dynamics at points sampled between the Gaussian quadrature collocation points. It

was found that both of these previously developed approaches were tractable only if a mod-

erate level of accuracy was required. In the case when a high-accuracy solution is desired, the

approaches of Ref. 28 and 29 are unreliable. To see the issue with the approaches of Refs. 28 and

34

29, consider again Example 1 of this paper. It turns out that when Example 1 is solved using the

method of Ref. 29 using an hp − (3, Nmax) method and an accuracy tolerance ǫ ≤ 10−6 that the

lowest achievable error estimate is 1.2 × 10−6. Thus, none of the hp − (3, Nmax) methods is able

to meet any desired tolerance less than 10−6 regardless of the number of mesh refinements per-

formed. In fact, the error estimate after the eighth mesh remained at 1.2 × 10−6 despite the fact

that the method of Ref. 29 continued to attempt to improve the mesh. This result demonstrates

the limited effectiveness of the method of Refs. 28 and 29 when a high-accuracy solution is de-

sired. Contrary to the approach of Ref. 29, it is seen from Table 1 that the method of this paper

provides a much more accurate estimate of the actual error and the error estimate approaches

the true error as the mesh refinement proceeds.

In addition to the improved reliability of the approach developed in this paper over the pre-

viously developed hp-adaptive approaches, the approach of this paper is significantly simpler

than the approaches of Refs. 28 and 29. In particular, the approach of Ref. 28 makes the decision

to change the polynomial degree or to refine the mesh based on the ratio of the maximum to the

mean error in a mesh interval, while the approach of Ref. 29 makes a similar decision based on

the ratio of the maximum to the mean curvature in a mesh interval. In addition, the method of

Ref. 29 requires that an ad hoc parameter be set that determines the number of newly created

mesh intervals in the case where a mesh interval needs to be divided into subintervals. In ei-

ther of these previously developed methods, the choice of these user-defined parameters is ad

hoc. More importantly, the performance of the method on a particular problem changes greatly

depending upon on the choice of these parameters. On the other hand, in the method of this

paper only the minimum and maximum allowable polynomial degrees need to be chosen. Be-

cause for a wide range of problems the allowable polynomial degree will lie between fairly well

known limits, setting the minimum and maximum allowable polynomial degrees is much more

straightforward than setting the parameters required by the methods of Refs. 28 or 29.

8 Conclusions

A ph-adaptive Legendre-Gauss-Radau collocation method for solving continuous-time optimal

control problems has been developed. An estimate of the error was obtained interpolating the

current approximation on a finer mesh and then integrating the dynamics evaluated at the inter-

35

polation points to generate a more accurate approximation to the solution of the state equation.

This process is analogous to the 2-stage modified Euler Runge-Kutta scheme where the first

stage yields a first-order approximation to the solution of a differential equation, and the sec-

ond stage interpolates this solution at a new point and then integrates the dynamics at this new

point to achieve a second-order approximation to the solution. The difference between the first

and second-order approximation is an estimate for the error in the first-order scheme. Using

this error estimate, a mesh refinement method was developed that iteratively reduces the error

estimate either by increasing the degree of the polynomial approximation in a mesh interval or

by increasing the number of mesh intervals. An estimate was made of the polynomial degree re-

quired within a mesh interval to achieve a given accuracy tolerance. If the required polynomial

degree was estimated to be less than an allowable maximum allowable polynomial degree, then

the degree of the polynomial approximation was increased on the ensuing mesh. Otherwise,

the mesh interval was divided into subintervals and the minimum allowable polynomial degree

was used in each newly created subinterval on the ensuing mesh. This process was repeated

until a specified relative error accuracy tolerance was met. The method was applied success-

fully to three examples that highlight various features of the method and show the merits of the

approach relative to a fixed-order method.

Acknowledgments

The authors gratefully acknowledge support for this research from the U.S. Office of Naval Re-

search under Grant N00014-11-1-0068 and from the U.S. Defense Advanced Research Projects

Agency under Contract HR0011-12-C-0011.

Disclaimer

The views expressed are those of the authors and do not reflect the official policy or position of

the Department of Defense or the U.S. Government.

36

References

1Gill, P. E., Murray, W., and Saunders, M. A., “SNOPT: An SQP Algorithm for Large-Scale
Constrained Optimization,” SIAM Review, Vol. 47, No. 1, January 2002, pp. 99–131.

2Biegler, L. T. and Zavala, V. M., “Large-Scale Nonlinear Programming Using IPOPT: An In-
tegrating Framework for Enterprise-Wide Optimization,” Computers and Chemical Engineering,
Vol. 33, No. 3, March 2008, pp. 575–582.

3Betts, J. T., Practical Methods for Optimal Control and Estimation Using Nonlinear Programming,
SIAM Press, Philadelphia, 2nd ed., 2009.

4 Jain, D. and Tsiotras, P., “Trajectory Optimization Using Multiresolution Techniques,” Journal
of Guidance, Control, and Dynamics, Vol. 31, No. 5, September-October 2008, pp. 1424–1436.

5Zhao, Y. and Tsiotras, P., “Density Functions for Mesh Refinement in Numerical Optimal Con-
trol,” Journal of Guidance, Control, and Dynamics, Vol. 34, No. 1, January–February 2011, pp. 271–
277.

6Elnagar, G., Kazemi, M., and Razzaghi, M., “The Pseudospectral Legendre Method for Dis-
cretizing Optimal Control Problems,” IEEE Transactions on Automatic Control, Vol. 40, No. 10,
1995, pp. 1793–1796.

7Elnagar, G. and Razzaghi, M., “A Collocation-Type Method for Linear Quadratic Optimal Con-
trol Problems,” Optimal Control Applications and Methods, Vol. 18, No. 3, 1998, pp. 227–235.

8Fahroo, F. and Ross, I. M., “Direct Trajectory Optimization by a Chebyshev Pseudospectral
Method,” Journal of Guidance, Control, and Dynamics, Vol. 25, No. 1, 2002, pp. 160–166.

9Benson, D. A., Huntington, G. T., Thorvaldsen, T. P., and Rao, A. V., “Direct Trajectory Opti-
mization and Costate Estimation via an Orthogonal Collocation Method,” Journal of Guidance,
Control, and Dynamics, Vol. 29, No. 6, November-December 2006, pp. 1435–1440.

10Huntington, G. T., Benson, D. A., and Rao, A. V., “Optimal Configuration of Tetrahedral Space-
craft Formations,” The Journal of the Astronautical Sciences, Vol. 55, No. 2, April-June 2007,
pp. 141–169.

11Huntington, G. T. and Rao, A. V., “Optimal Reconfiguration of Spacecraft Formations Using
the Gauss Pseudospectral Method,” Journal of Guidance, Control, and Dynamics, Vol. 31, No. 3,
May-June 2008, pp. 689–698.

12Gong, Q., Ross, I. M., Kang, W., and Fahroo, F., “Connections Between the Covector Map-
ping Theorem and Convergence of Pseudospectral Methods,” Computational Optimization and
Applications, Vol. 41, No. 3, December 2008, pp. 307–335.

13Rao, A. V., Benson, D. A., Darby, C. L., Francolin, C., Patterson, M. A., Sanders, I., and Hunt-
ington, G. T., “Algorithm 902: GPOPS, A Matlab Software for Solving Multiple-Phase Optimal
Control Problems Using the Gauss Pseudospectral Method,” ACM Transactions on Mathematical
Software, Vol. 37, No. 2, April–June 2010, Article 22, 39 pages.

37

14Garg, D., Patterson, M. A., Darby, C. L., Francolin, C., Huntington, G. T., Hager, W. W., and Rao,
A. V., “Direct Trajectory Optimization and Costate Estimation of Finite-Horizon and Infinite-
Horizon Optimal Control Problems via a Radau Pseudospectral Method,” Computational Op-
timization and Applications, Vol. 49, No. 2, June 2011, pp. 335–358. DOI: 10.1007/s10589–00–
09291–0.

15Garg, D., Patterson, M. A., Hager, W. W., Rao, A. V., Benson, D. A., and Huntington,
G. T., “A Unified Framework for the Numerical Solution of Optimal Control Problems Using
Pseudospectral Methods,” Automatica, Vol. 46, No. 11, November 2010, pp. 1843–1851. DOI:
10.1016/j.automatica.2010.06.048.

16Garg, D., Hager, W. W., and Rao, A. V., “Pseudospectral Methods for Solving Infinite-
Horizon Optimal Control Problems,” Automatica, Vol. 47, No. 4, April 2011, pp. 829–837. DOI:
10.1016/j.automatica.2011.01.085.

17Kameswaran, S. and Biegler, L. T., “Convergence Rates for Direct Transcription of Optimal
Control Problems Using Collocation at Radau Points,” Computational Optimization and Applica-
tions, Vol. 41, No. 1, 2008, pp. 81–126.

18Darby, C. L., Garg, D., and Rao, A. V., “Costate Estimation Using Multiple-Interval Pseu-
dospectral Methods,” Journal of Spacecraft and Rockets, Vol. 48, No. 5, September-October 2011,
pp. 856–866, AIAA Guidance, Navigation, and Control Conference, Portland, OR, AUG 07-13,
2011.

19Patterson, M. A. and Rao, A. V., “Exploiting Sparsity in Direct Collocation Pseudospectral
Methods for Solving Continuous-Time Optimal Control Problems,” Journal of Spacecraft and
Rockets,, Vol. 49, No. 2, March–April 2012, pp. 364–377.

20Canuto, C., Hussaini, M. Y., Quarteroni, A., and Zang, T. A., Spectral Methods in Fluid Dynamics,
Spinger-Verlag, Heidelberg, Germany, 1988.

21Fornberg, B., A Practical Guide to Pseudospectral Methods, Cambridge University Press, 1998.

22Trefethen, L. N., Spectral Methods Using MATLAB, SIAM Press, Philadelphia, 2000.

23Babuska, I. and Suri, M., “The p and hp Version of the Finite Element Method, an Overview,”
Computer Methods in Applied Mechanics and Engineering, Vol. 80, 1990, pp. 5–26.

24Babuska, I. and Suri, M., “The p and hp Version of the Finite Element Method, Basic Principles
and Properties,” SIAM Review, Vol. 36, 1994, pp. 578–632.

25Gui, W. and Babuska, I., “The h, p, and hp Versions of the Finite Element Method in 1 Di-
mension. Part I. The Error Analysis of the p Version,” Numerische Mathematik, Vol. 49, 1986,
pp. 577–612.

26Gui, W. and Babuska, I., “The h, p, and hp Versions of the Finite Element Method in 1 Dimen-
sion. Part II. The Error Analysis of the h and h − p Versions,” Numerische Mathematik, Vol. 49,
1986, pp. 613–657.

27Gui, W. and Babuska, I., “The h, p, and hp Versions of the Finite Element Method in 1 Dimen-
sion. Part III. The Adaptive h− p Version,” Numerische Mathematik, Vol. 49, 1986, pp. 659–683.

38

28Darby, C. L., Hager, W. W., and Rao, A. V., “An hp–Adaptive Pseudospectral Method for Solv-
ing Optimal Control Problems,” Optimal Control Applications and Methods, Vol. 32, No. 4, July–
August 2011, pp. 476–502.

29Darby, C. L., Hager, W. W., and Rao, A. V., “Direct Trajectory Optimization Using a Variable
Low-Order Adaptive Pseudospectral Method,” Journal of Spacecraft and Rockets, Vol. 48, No. 3,
May–June 2011, pp. 433–445.

30Gong, Q., Fahroo, F., and Ross, I. M., “Spectral Algorithm for Pseudospectral Methods in Opti-
mal Control,” Journal of Guidance, Control and Dynamics, Vol. 31, No. 3, May–June 2008, pp. 460–
471.

31Rannacher, R., “Adaptive Finite Element Discretization of Flow Problems for Goal-Oriented
Model Reduction,” Computational Fluid Dynamics 2008, edited by H. Choi, H. Choi, and J. Yoo,
Springer Berlin Heidelberg, 2009, pp. 31–45.

32Besier, M. and Rannacher, R., “Goal-Oriented Space-Time Adaptivity in the Finite Element
Galerkin Method for the Computation of Nonstationary Incompressible Flow,” International
Journal for Numerical Methods in Fluids, Vol. 70, No. 9, November 2012, pp. 1139–1166.

33Abramowitz, M. and Stegun, I., Handbook of Mathematical Functions with Formulas, Graphs, and
Mathematical Tables, Dover Publications, New York, 1965.

34Hou, H., Hager, W. W., and Rao, A. V., “Convergence of a Gauss Pseudospectral Transcription
for Optimal Control,” 2012 AIAA Guidance, Navigation, and Control Conference, AIAA Paper
2012-4452, Minneapolis, MN, August 13-16 2012.

35Hou, H., Convergence Analysis of Orthogonal Collocation Methods for Unconstrained Optimal Con-
trol, Ph.D. thesis, University of Florida, Gainesville, FL, May 2013.

36Press, W. H., Teukolsky, S. A., Vetterling, W. T., and Flannery, B. P., Numerical Recipes: The Art
of Scientific Computing, Cambridge University Press, Cambridge, UK, 3rd ed., 2007.

37Rao, A. V. and Mease, K. D., “Eigenvector Approximate Dichotomic Basis Method for Solving
Hyper-Sensitive optimal Control Problems,” Optimal Control Applications and Methods, Vol. 21,
No. 1, January–February 2000, pp. 1–19.

38Ledzewicz, U. and Schättler, H., “Analysis of Optimal Controls for a Mathematical Model of
Tumour Anti-Angiogenesis,” Optimal Control Applications and Methods, Vol. 29, No. 1, January–
February 2008, pp. 41–57.

39Patterson, M. A. and Rao, A. V., “GPOPS− II: A MATLAB Software for Solving Multiple-
Phase Optimal Control Problems Using hp–Adaptive Gaussian Quadrature Collocation Meth-
ods and Sparse Nonlinear Programming,” ACM Transactions on Mathematical Software, Ac-
cepted Pending Minor Revision, September 2013.

40Biegler, L. T., Ghattas, O., Heinkenschloss, M., and van Bloemen Waanders, B., editors, Large-
Scale PDE Constrained Optimization, Lecture Notes in Computational Science and Engineering,
Vol. 30, Springer-Verlag, Berlin, 2003.

41MUltifrontal Massively Parallel Solver (MUMPS 4.10.0) User’s Guide, May 2011.

39

