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Abstract Understanding patterns of human activity from the fusion of multimodal
sensor surveillance sources is an important capability. Most related research empha-
sizes improvement in the performance of biometric systems in controlled conditions
characterized by suitable lighting and favorable acquisition distances. However, the
need for monitoring humans in night environments is of equal if not greater im-
portance. This chapter will present techniques for the extraction, processing and
matching of biometrics under adverse night conditions in the presence of either nat-
ural or artificial illumination. Our work includes capture, analysis and evaluation
of a broad range of electromagnetic bands suitable for night-time image acquisi-
tion, including visible light, near infrared (IR), extended near IR and thermal IR.
We develop algorithms for human detection and tracking from night-time imagery
at ranges between 5 and 200 meters. Identification algorithms include face, iris, and
gait recognition, supplemented by soft biometric features. Our preliminary research
indicates the challenges in performing human identification in night-time environ-
ments.

Keywords Visible/infrared spectrum · Face/iris/gait recognition · Soft biometrics ·
Performance evaluation

1 Introduction

Biometrics plays a pivotal role in human identification. Determination of human
activity patterns in groups relies on a combination of local and global subject dif-
ferentiation. Local differentiation can be obtained through soft biometrics whereby
each subject is differentiated within the group and tracked. Global subject identifi-
cation uses strong biometrics where the actual identity of individuals is ascertained
from comparisons with biometric watch lists or other biometric databases. Within
the last two decades, we notice improvement in the performance of biometric sys-
tems in outdoor daytime conditions at various acquisition distances. Subject presen-
tations support understanding of human network activity in daylight. However, it
is of equal if not greater importance to redirect the focus of such research to night
environments. The extraction, processing and matching of biometrics under adverse
night conditions in the presence of either available natural or artificial illumination
is an open area of study.

In order to motivate on the scope of the study, we begin by surveying the spectral
ranges of potential interest for use in biometric recognition in night environments
under either active or passive illumination. Table 1 summarizes the electromag-
netic bands of interest, their wavelength range, detection devices and illumination
sources. The visible, near IR, extended IR and thermal IR bands have the best inter-
section of night vision and illumination ranges of operational interest. Further, the
technology is available for our study.

In this chapter we provide a broad analysis and evaluation of techniques used
for ascertaining the identity in night environments. The contributions of this work
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Table 1 Imaging ranges of interest for night environments

Electromagnetic
Band

Wavelength
Range

Detection Source Illumination Source Viability

Ultraviolet <450 nm GaN Detectors,
Schottky Devices

GaN LEDs,
discharge sources,
Lightning,
Explosions

Low

Visible 450–750 nm High sensitivity Si
CCDs

Ambient light,
Broadband sources

High
High

Near IR 750–1100 nm Si CCDs AlGaAs LEDs,
LDs

High

SWIR 1100–2500 nm InGaAs Focal Plane InGaAs LEDs, LDs High

Thermal IR 7–14 µm BST (Bolometric),
CdTe Devices

Subject reflected
ambient thermal

High

Submillimeter,
Millimeter

0.1–3 mm High-f electronics
(SiGe),
Optoelectronics

Gyrotron, far IR or
free electron lasers

Low

Microwave centimeters High-f diodes, array Magnetron, klyston Low

are four-fold. First (see Sect. 2—Nicolo, Zuo, Schmid), the problem of Color-NIR
cross-spectral iris matching will be broadly studied. In this section we will show
some preliminary results of a nonlinear adaptive model to predict the value of the
NIR channel from a visible range iris image. Second (see Sect. 3—Bourlai, Kalka,
Jafri, Whitelam, Cukic, Dawson, Hornak, Ross), we will discuss the problem of
face verification across the short wave infrared spectrum (SWIR). We will elaborate
on the biometric image acquisition process, the sensors and the data collection setup
used. We will also demonstrate the possibility for SWIR inter-wavelength matching.
Third (see Sect. 4—Decann, Ross), we will describe our efforts on the extraction of
gait curves, i.e., a spatio-temporal representation of silhouette shape dynamics, for
human gait identification. Fourth (see Sect. 5—Cao, Adjeroh), we will describe our
preliminary work towards categorizing and grouping people in surveillance video
using metrological features (e.g. human body shape) and other soft biometrics (e.g.
gait, age, etc.). The chapter will conclude in Sect. 6 where we will discuss our cur-
rent results, and provide some future research directions.

2 Color-NIR Cross-Spectral Iris Matching

Iris images captured in near infrared (NIR) band are a traditional input to iris recog-
nition systems [3]. In recent years, however, biometricians turned their attention to
iris images acquired in the visible band of electromagnetic spectrum [10]. This trend
is supported by a variety of factors: (1) optical cameras in visible range are cheap
and characterized by a very high resolution; (2) in terms of the application, most of
security and surveillance camera systems (installed for monitoring various human
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activities) are visible range cameras. Apart from monitoring activities these cam-
eras may capture face or iris images, which further may be used to authenticate a
suspicious or violent individual. Thus iris images acquired by the cameras in visible
spectrum are query images, that have to be compared against enrolled database of
irises, which is traditionally formed from the iris images in the NIR range. Although
some publications are available on the topic (for example, publications involving
UBIRIS dataset and WVU multispectral iris dataset), the investigation of matching
NIR and visible range iris images has been very limited. Generally, the problem of
cross-spectral iris matching remains to be solved.

In this section, we, propose a nonlinear adaptive model to predict the value of the
NIR channel from a visible range iris image. The predicted value of the NIR channel
will be compared with real NIR iris images by using the classical log-Gabor filter-
based algorithm [8]. The results of the performance evaluation are promising and
outperform NIR vs. IR cross match comparison.

2.1 Multispectral Iris Dataset and Data Used in Simulations

Multispectral iris data collected at WVU (see [2] for detailed description of the
dataset) are used to demonstrate the performance of the proposed method. MS3100
camera manufactured by Geospatial Systems, Inc. was employed for data requi-
sition. The MS3100 camera is a 3-chip multispectral digital camera with 1.4M+
pixels per sensor. The multispectral iris dataset collected at WVU involves data of
35 users (68 classes, 232 images). Each iris snapshot outputs the data acquired by
three different spectral channels, which are acquired and saved simultaneously. They
are: NIR, R and G/B channels. They are perfectly aligned and synchronized. In our
cross match test, 25 users (50 classes, 150 images) were used as the testing data,
and 10 images from the remaining users were used as the training data to design a
prediction model.

2.2 Proposed Predictive Model

Due to a variety of pigmentation color in irises, all irises can be broadly partitioned
in three groups: blue, brown, and green. Each color mentioned above generates its
own predictive model. Thus, the models for the blue irises, brown irises and green
irises have to be trained separately. It has been empirically confirmed that a predic-
tion model trained on a blue iris performs well only on blue irises.

The predictive model is trained as follows. Training in this case implied estima-
tion of a nonlinear mapping between input and output parameters. For each pixel in
a snapshot (composed of three channels R, G/B, and NIR) selected for training, the
input and output parameters of the mapping with the pair (value of R channel, value
of G/B channel ) as an input and a value of NIR channel as an output are recorded
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Fig. 1 (a) The original NIR channel; (b) the R channel; (c) the G/B channel; and (d) the predicted
NIR channel using (b) and (c) as the input to adaptive mapping

and passed to the training tool, such as a Neural Network (NN). The type of NN
and the number of layers in a NN are selected adaptively based on the availability
of training data. Once the mapping is estimated from training data, it will be further
used to predict NIR image of a testing iris images from R and G/B channels.

An example showing an iris snapshot (its original three channels: R, B/G, and
NIR) and a generated NIR channel are shown in Fig. 1. From this example, it is
clear that the predicted NIR channel visually is very similar to the NIR channel and
substantially differs from the R and G/B channels. Note, however, that the predicted
NIR channel is slightly over-smoothed compared to the original NIR channel, and
this may reflect on recognition performance of the predicted NIR channel.

2.3 Recognition Performance

To verify the recognition performance all testing iris images were segmented us-
ing the robust iris segmentation algorithm developed by Zuo and Schmid [18]. The
data were further encoded using an elaborated version of the Masek’s iris encoding
algorithm (see [17] for more details). Three similarity matrices ware formed and
analyzed: (1) true NIR imagery vs. true NIR imagery (viewed as the best achieved
performance); (2) true NIR vs. predicted NIR channel illustrate the promise of the
proposed predictive model); and (3) true NIR vs. R channel (viewed as the baseline
comparison).

The ROC curves for these experiments can be found in Fig. 2. The horizontal axis
is FAR (False Acceptance Rate) and the vertical axis is GAR (Genuine Acceptance
Rate). The average genuine scores, the average impostor scores, d-prime and the
Equal Error Rate (EER) are summarized in Table 2.

The achieved performance so far is approximately in the middle of the baseline
and the upper bound. The upper bound is not reachable because not all informa-
tion in NIR channel is predictable. However, in our future work, more sophisticated
prediction will be developed to release its full potential.
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Fig. 2 The performance
improvement due to the
proposed predictive model

Table 2 Performance of the three cross comparisons

Mean of
Genuine Scores

Mean of
Impostor Scores

d ′ EER

NIR vs. NIR 0.0671 0.4093 7.9266 0.0069

NIR vs. Predicted NIR 0.0967 0.3907 6.8603 0.0131

NIR vs. R 0.1300 0.4118 5.5570 0.0137

3 Short Wave Infrared Face Verification

Recognition of faces using different imaging modalities in the visible and infrared
spectrum has become an area of growing interest [12, 16]. Short wave infrared
(SWIR) imagery represents a viable alternative to visible imaging in the search for
a robust and practical identification system. Since SWIR and visible imagery cap-
ture intrinsically different characteristics of the observed faces, intuitively, a better
face description could be found by utilizing the complimentary information present
across the two spectra.

There are several benefits in using SWIR spectrum for face recognition: (a) the
external source of illumination is invisible to the human eye making it suitable for
covert applications; (b) it can be useful in a night-time environment. For example,
in Fig. 3(a) we can compare a face image (1) in the visible spectrum (controlled
vs. uncontrolled conditions), and (2) at different SWIR wavelengths captured either
at a day or night environment; (c) SWIR imagery can be combined with visible-
light imagery to generate a more complete image of the human face; and (d) facial
features that are not observed in the visible spectrum may be observable in SWIR
images, e.g., Fig. 3(b) illustrates the skin texture of a subject in the visible and SWIR
spectrum respectively.

In this work we study the problem of face verification across the SWIR spectrum.
We utilize several face recognition techniques using the West Virginia University
Multispectral database (WVUM). The database is composed of 30 subjects, and is
collected using visible, multispectral and SWIR cameras.
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Fig. 3 Face images of a subject: (a) in the visible spectrum captured at controlled or uncontrolled
conditions; (b) at different SWIR wavelengths. The advantages of SWIR over the visible spectrum
are: (1) in harsh environmental conditions characterized by unfavorable lighting and pronounced
shadows (such as a night environment) SWIR images are not affected; (2) Facial features—such as
texture—cannot be observed in the visible spectrum under uncontrolled conditions. However, they
are observable in SWIR images

Fig. 4 (a) Canon EOS 5D
Mark II ultra-high resolution
digital camera. (b) MS3100
multispectral camera.
(c) XenICS SWIR camera

3.1 SWIR Data Collection

Three different types of cameras have been used in this work, i.e. a Canon EOS
5D Mark II, a DuncanTech MS3100, and a XenICS Xeva InGaAs. These cameras
are described below and they cover the visible, NIR, and a significant range of the
SWIR spectrum:

Canon EOS 5D Mark II: This digital SLR camera (www.canon.com) has a 21.1-
megapixel full-frame CMOS sensor with DIGIC 4 Image Processor, and a vast ISO
Range of 100–6400. It has also Auto Lighting Optimizer and Peripheral Illumination
Correction that enhance its performance. In this work, the Canon (see Fig. 4(a)) is
used to obtain standard RGB, ultra-high resolution frontal pose face images.

http://www.canon.com
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XenIC: A XenIC XEVA-818 camera served as the imager for this study (see
Fig. 4(b)). The camera has an Indium Gallium Arsenide (InGaAs) 320 × 256 Fo-
cal Plane Array (FPA) with 30 µm pixel pitch, 98% pixel operability and three
stage thermoelectric cooling. The XEVA-818 has a relatively uniform spectral re-
sponse from 950–1700 nm wavelength (the Short Wavelength InfraRed (SWIR)
band) across which the InGaAs FPA has largely uniform quantum efficiency. Re-
sponse falls rapidly at wavelengths lower than 950 nm and near 1700 nm. In the
work of this section it is used for the visible-IR, and IR-IR (intra-wavelength) face
recognition comparative studies.

DuncanTech MS3100: This camera (see Fig. 4(c)) incorporates three CCD and
three band-pass prisms behind the lens to simultaneously capture four different
wavelength bands (no explicit image registration or alignment across multiple chan-
nels is necessary). The IR and Red (R) sensors of the multispectral camera are two
separate Sony ICX205AL sensors whose spectral response ranges from 400 nm to
1000 nm. The Green (G) and the Blue (B) channels are recorded on the same Sony
RGBICX205 RGB sensor, with a blue response from 400 nm to 550 nm, and a green
response from 400 nm to 650 nm. Note that the IR and Red sensor outputs an image
of size 1392 × 1040. The G and the B images are recorded on a RGB Bayer pattern
sensor and are, therefore, one-third the resolution of the other images. Then G/B
images are extracted and scaled (linear interpolation) to have the same resolution as
the IR and R images.

These cameras were used to acquire the WVU Multispectral database that is com-
posed of three datasets, i.e. visible, multispectral, and SWIR. The purpose of acquir-
ing such a database was to capture face images under different spectra in order to
benefit from the information variability provided by different modalities, and study
the recognition performance of different techniques. The live face capture setups
we used are illustrated in Fig. 5(a) and (b). The database was collected over two
sessions spanning one month. In total, 30 subjects participated, 22 male and eight
female.

Each session of the Visible dataset has 15 frontal face images for each subject,
resulting in 450 images in total. In each session of the Multispectral dataset, we ac-
quired face images at three different poses, i.e. full frontal, and left/right at +/−67.5
degrees. For each pose and with a single shot we captured four images that are as-
sociated with the Green/Blue, Red, IR, and RGB/Color-IR (combined) component
respectively (360 images in total). For the SWIR Dataset, we acquired face images
at three different poses, i.e. full frontal, and left/right at +/−67.5 degrees. For each
pose, we obtained images with and without employing a band-pass filter, viz. a set
of hardware/lenses that were placed in front of the camera before each shot. The
wavelength range covered starts from 900 nm, and goes up to 1700 nm, using filters
that are 100 nm wide and centered at 950,1050, . . . ,1650 nm. Thus, nine samples
per pose (no filter, and 950–1650 nm/100 nm) have been acquired, resulting in 810
images in total (27 samples/session×30 subjects).
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Fig. 5 Image capture setups.
(a) Visible Spectrum: the live
subject-capture setup using
the Canon digital camera
(taken from US Department
of US State Department,
Bureau of Consular Affairs).
More details have been added
by the authors. (b) Visible-IR
Spectrum: live
subject-capture setup using
the XenICS and MS3100
cameras

3.2 Methodology

Preprocessing and Normalization We employed the Viola & Jones face detec-
tion algorithm to the original data. It is used to localize the spatial extent of the face
and determine its boundary. In the next step, a geometric normalization scheme is
applied to images acquired after detection. The normalization scheme compensates
for slight perturbations in the frontal pose, and it is composed of eye detection and
affine transformation [15]. Eye detection is based on a template matching algorithm
where the eye coordinates are obtained. Then the canonical faces are constructed
by applying affine transformation. Eventually, all faces are warped to the same di-
mension of 300 × 300. Then, photometric normalization is employed by a simple
contrast and brightness adjustment.

Matching Experiments We employed two face recognition methods, i.e. Linear
Discriminant Analysis (LDA) and Principal Components Analysis (PCA) with k-
nearest neighbor (k-NN). PCA was used only in the IR-IR fusion study where we
have only one sample per subject for each session.

By using the visible and IR datasets of WVU Multispectral database, three differ-
ent types of face verification experiments have been performed: (1) Visible-Visible,
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(2) Visible-IR, and (3) IR-IR. The first experimental scenario is a high quality vs.
high quality study for the purpose of establishing a baseline for comparison. In
the second experiment we compare the infrared subset of the MS3100 camera, and
the SWIR subset of the XenICS camera, with their high resolution counterparts
acquired in the visible spectrum. The goal here is to investigate the possibility of
matching SWIR images to visible images. In the third experiment we analyze intra-
wavelength matching.

3.3 Results

SWIR Face Verification Table 3 presents the results for all experiments in terms
of Equal Error Rate (EER). The first and second experiment utilized ten images for
training, while only one image was available for training in experiment three. In
regards to testing, experiment one utilized three images, while only one image was
available for testing in experiments two and three.

For experiment one (Visible-Visible), LDA achieves an EER of 11.78% which
fairly consistent with the literature. In experiment two, we compare visible to
SWIR wavelengths, starting at 950 nm and ranging to 1550 nm in 200 nm inter-
vals. The overall trend for experiment two illustrates that as wavelength increases,
performance degrades. This degradation in performance is more specific at high
SWIR wavelengths. Experiment three investigates intra-wavelength matching. Per-
formance is consistently better than the inter-wavelength matching but follows a
similar trend, i.e., as wavelength increases performance degrades.

The main question here is why for both inter- and intra-wavelength match-
ing the appearance based face recognition algorithms employed (i.e., LDA and
PCA) demonstrate degrading performance as wavelength increases. As illustrated
in Fig. 3, at longer wavelengths (i.e., above 1350 nm) human faces—with respect to
intensity and texture—are vastly different when imaged under shorter wavelengths.

Table 3 Equal Error Rate (EER%) for all Verification experiments utilizing LDA (all inter-
wavelength scores) and PCA (IR intra-wavelength scores). Nofilter corresponds to images taken
in absence of IR cut-filters with the XenIC camera

Session Two

Visible MS3100 Nofilter 950 nm 1150 nm 1350 nm 1550 nm

Session
O

ne

Visible 11.78 15.60 38.30 29.00 31.74 45.63 48.60

MS3100 13.33

Nofilter 19.22

950 nm 13.68

1150 nm 19.96

1350 nm 20.15

1550 nm 23.23



30 Ascertaining Human Identity in Night Environments 461

This difference is specifically noted in skin pigmentation, viz., the longer the wave-
length, the darker the pigmentation. Similarly, facial hair at longer wavelengths
becomes bleach white (see Figs. 3, 4). To help compensate for these differences
we have employed the contrast limited adaptive histogram equalization (CLAHE)
method [11] that performed better that other photometric normalization techniques
(e.g., histogram equalization) [1]. In this work a reduction in EER was observed
when using Identity Tools G81 for both inter- and intra-wavelength matching. In
the same work we also concluded that match score fusion, an alternative to image
normalization, can help reduce error rates at longer wavelengths.

4 Gait Curves for Human Recognition in a Night-Time
Environment

The solution presented in this chapter concerns the extraction of gait curves for hu-
man gait identification. Gait curves are, in essence, a spatio-temporal representation
of silhouette shape dynamics and were inspired from previous work by Wang et al.
[14]. Thus, this approach is representative of the model-free variety. The primary ad-
vantage of a model-free approach is simplicity, as features are strictly derived from
silhouette shape dynamics. However, silhouette distortions such as clothing changes
are consistently an area of concern as they can impact the overall shape dynamics.
Evaluation of the data was performed on the CASIA Night Gait Dataset.2

4.1 Methodology

Preprocessing and Silhouette Extraction Thermal imagery differs significantly
from that of the visible spectrum. Lower contrasts and resolutions are common, and
pixel variation between the subject and background may be small. This is especially
the case for the CASIA Night Gait Dataset. Thus, prior to attempting silhouette ex-
traction, the intensity values of the kth input image Ik are adjusted such that 1% of
the pixel values are saturated at the extrema of 0 and 1 respectively, resulting in im-
age Iadj. Background subtraction is then used to create a difference image in time.
Background noise and additional anomalies are removed through a series of thresh-
old filters and morphological operations. The resulting binary image is denoted by
S = {si,j } where i = 1,2, . . . , nh, j = 1,2, . . . , nw , nh is the height of the image
and nw is the width of the image.

Idiff = abs(Iadj − I0), (1)

S =
{

1, Idiff > 0,

0, Idiff ≤ 0.
(2)

1http://www.l1id.com/.
2Website: http://www.cbsr.ia.ac.cn/english/Gait%20Databases.asp.

http://www.l1id.com/
http://www.cbsr.ia.ac.cn/english/Gait%20Databases.asp
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Spatio-temporal Feature Extraction As a silhouette traverses across the view-
ing plane, key markers can be collected at each frame. In this scheme, the markers
of interest lie in identification of the coronal plane of a silhouette. Treating the co-
ordinates of S as a matrix, let Smin represent the minimum row entry whose value
is one. This entry represents the top of the head, and is fairly consistent across gait
sequences. The column that this entry occurs in is designated as the identifier for
the coronal plane, which divides a silhouette into halves.

Following calculation of the coronal plane coordinates the left and rightmost
pixel locations of the outermost silhouette contour are obtained for each row in the
silhouette. That is, for the pth row where p ∈ [Smin, Smax] these pixels are denoted
as gleft

p and g
right
p , respectively. Subtraction of the column position of the coronal to

these point sets yields a space normalized contour, denoted as the gait curve, Gk , for
the kth frame in the sequence. Thus, the evolution of the gait curve across several
frames can be regarded as a spatio-temporal feature for shape based analysis.

The next step regards representation of a set of gait curves as a discrimina-
tory feature. An arbitrary function, F(G1,G2, . . . ,GN) whose input is a set of
gait curves, can manipulate this information to produce an output encompassing
the shape dynamics of a particular video sequence. The Procrustes meanshape [7,
13] is a mathematically elegant measure of representing and evaluating shape set
similarity and is chosen to represent F(G). This measure is particularly attractive
because subsequent distance comparisons are invariant to translation, rotation and
scale. In order to use this measure, the dimension for all Gk’s must be normalized
such that they are equal. The set is also vectorized by conversion from spatial coor-
dinates to the complex plane. Subtraction of the vector mean aligns each gait curve
at the origin.

zk = Re(Gk) + j Im(Gk); (3)

z̄ =
k∑

i=1

zi

k
; (4)

uk = zk − z̄; (5)

u = [u1,u2, . . . ,uN ]; (6)

Su =
N∑

j=1

(uj uT
j )

(uT
j uj )

. (7)

Following the series of K frames, a series of K vectorized gait curves are cre-
ated. Extracting the first eigenvector of scatter matrix Su results in the averaged gait
curve, denoted as Ḡ. Examples for three different subjects are found in Fig. 6. The
procrustes distance between any two shape representations, (Ḡ1, Ḡ2), is then

d(Ḡ1, Ḡ2) = 1 − |ḠT
1 Ḡ2|2

‖Ḡ1‖2‖Ḡ2‖2
, (8)

where, the smaller the resulting value, the similar the shapes.
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Fig. 6 Primary eigenvector of scatter matrix Su for three different gait curves

Table 4 Experimental results on CASIA night gait dataset

EXP Type Probe
Size

Gallery
Size

Match Score
(Rank = 1)

Match Score
(Rank = 3)

Match Score
(Rank = 5)

A Normal vs. Normal 612 612 91.00% 96.01% 97.70%

B Normal vs. Bag 612 306 25.50% 41.20% 49.30%

C Normal vs. Slow 612 306 65.40% 78.40% 80.70%

D Normal vs. Fast 612 306 69.90% 80.40% 85.30%

E Slow vs. Slow 306 306 85.00% 92.20% 94.10%

F Fast vs. Fast 306 306 79.10% 85.90% 88.90%

G Bag vs. Bag 306 306 81.00% 86.90% 89.20%

H All Sequences 1530 1530 88.40% 93.30% 95.20%

4.2 Experiments and Results

Classification of Human Gait The objective of this experiment is to illustrate the
performance of gait curve matching as a function of walk type. A probe (test) set is
compared against a gallery (training) set. Since the CASIA dataset offers scenarios
where subjects walk at normal pace, fast pace, slow pace, and with a bag, there
are four distinct test sets. A fifth set is used to represent the combination of all
data. Evaluation by comparing differing sets of pace aids is illustrating the effects
of walking speed and silhouette distortion. Also, for the experiments that evaluate
similar or all paces, the matching probe sequence is left out of the gallery. These
results are summarized in Table 4.

4.3 Discussion

As previously stated, the experiments reflect the effectiveness of the algorithm based
on variability in walking type. From Table 4, the results show that speed has a pro-
found impact on classification. The classification rates for rank-1 is significantly
more accurate for similar speeds than those that differ. Noting these results, the
functionality of this algorithm can be concluded to be optimal when the gallery is
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diverse enough to include multiple paces. This can be verified directly by observ-
ing the results of experiment H, as well as through noting that experiments E, F
and G performed better than their C, D, and B counterparts despite only having one
training sample to match against. In more recent work, the variability caused due to
backpacks has been significantly mitigated resulting in improved performance for
Experiment B [4].

5 Soft Biometrics—Body Measurement

For problems such as identification under night-time environments or identification
at a distance, most of the traditional hard biometrics such as fingerprints, face, and
iris may not be readily available. Further, under such challenging situations, the
video or image sequence from a single modality will typically be corrupted by var-
ious sources of noise, such as atmospheric noise, weather, and uneven ambient illu-
mination. In such environments, extraction of traditional primary biometrics (such
as facial features and iris-based features) from one imaging source could be very
challenging. One approach to the problem is the use of multispectral signals from
certain biometric traits such as face and iris to improve our ability to identify people
under such night-time environments. A major part of this chapter has been devoted
to this approach.

A complementary approach could be to exploit potential secondary or soft bio-
metric traits [6] that could be automatically extracted from such typically poor qual-
ity video or images. Thus, metrological features (such as human body shape, anthro-
pometric measurements, and geometrical features that can be extracted from these
measurements) and other soft biometrics (such as gait, age, gender, weight, skin tex-
ture, etc.), provide a first approach to initial categorization and grouping of people
in such videos. This could be used for a quick appraisal of the individual, and per-
haps eliminate unlikely candidates. Depending on the application, the soft biometric
features could also provide us with an easier and cheaper method to handle subjects
at a relatively far distance.

Key challenges in the use of static soft biometrics such as body size and body
geometry in automated human identification or human grouping include:

(1) Automated extraction of the measurements from an image or from a video se-
quence;

(2) Handling of missing body parts and errors in the automated extraction;
(3) Human modeling and prediction using the extracted body measurements;
(4) Generating robust and discriminative features from the extracted measurements.

An important step in addressing the above problems is to identify possi-
ble similarities between body part dimensions, or measurements, for instance,
based on the pair-wise correlation between them. Towards this end, we per-
formed a brief experiment using the CAESAR anthropometric dataset. The CAE-
SAR (Civilian American and European Surface Anthropometry Resource) dataset
(http://store.sae.org/caesar/) contains anthropometric measurements on 2,400 U.S.

http://store.sae.org/caesar/
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& Canadian and 2,000 European civilians (both men and women), ages 18–65. The
dataset contains both 3D surface points and 1D measurements, including 40 tradi-
tional measurements, manually acquired using a measuring tape and a caliper. Our
work on soft biometrics is based on 1D measurements obtained from the 2,400 US
and Canadian civilians.

We used 45 human body measurements or attributes (including gender and
weight) from the dataset, and computed the pair-wise correlation coefficient be-
tween them. Using the correlation coefficients, we generate the correlation graph,
which captures a form of similarity relationships between the sizes and dimensions
of different human body parts. A node in the correlation graph corresponds to a
body measurement or attribute, while an edge between two nodes implies that the
corresponding measurements represented by the nodes are correlated (up to a cer-
tain threshold on the correlation coefficient). Figure 7 shows the correlation graph
between some of the measurements in the CAESAR dataset. As can be observed
from the figure, the measurements generally fall into two basic groups: the 2D
groups containing mainly circumferences of certain body parts, and the 1D groups
that contain mainly one-dimensional measurements, such as lengths and heights. It
is surprising that the simple correlation measure is able to partition the measure-
ments into various groups with a physical meaning. An interesting on-going work is
the characterization of the correlation graph using methods of information network
analysis, such as centrality and betweenness measures [5, 9]. We have successfully

Fig. 7 Grouping of human body measurements based on their correlation graph
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used the measurements to predict certain soft biometrics, such as weight and gender,
to a high accuracy. We are currently investigating how the relationships between the
measurements, for instance, as captured in the figure, can be used to address the
above key challenges.

6 Summary

In this chapter we presented a preliminary study on the problem of ascertaining
identity in night-time environments, and highlighted a new set of challenges that
current technology does not fully address. In particular, we showed how different
biometric modalities operate on different sub-bands of the visible and IR spectra. In
Sect. 2 we looked at the challenges associated with cross-spectral iris matching, and
demonstrated the feasibility of matching irides imaged under the visible spectrum to
irides imaged under the traditional NIR spectrum. In Sect. 3 we studied the perfor-
mance of multispectral face recognition utilizing only various bands from the SWIR
spectra. Our results indicate that as spectral wavelength increases recognition per-
formance degrades. It is often the case that hard biometrics such as iris or face may
not be readily available in a night-time environment as a result of image noise or
subject stand-off distance. Thus, in Sect. 4 we presented a gait analysis as a supple-
mentary modality for identity verification under such operating environments. Our
results indicate that subject velocity has a profound impact on identification rate.
Finally, in Sect. 5 we described the utilization of complementary information such
as soft biometrics.
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