
Short paper: Rethinking Permissions for Mobile Web
Apps: Barriers and the Road Ahead

Chaitrali Amrutkar and Patrick Traynor
Converging Infrastructure Security (CISEC) Laboratory

Georgia Tech Information Security Center (GTISC)
Georgia Institute of Technology

chaitrali@gatech.edu, traynor@cc.gatech.edu

ABSTRACT
The distinction between mobile applications built for specific plat-
forms and that run in mobile browsers is increasingly being blurred.
As HTML5 becomes universally deployed and mobile web apps
directly take advantage of device features such as the camera, mi-
crophone and geolocation information, this difference will vanish
almost entirely. In spite of this increasing similarity, the permission
systems protecting mobile device resources for native1 and web
apps are dramatically different. In this position paper, we argue
that the increasing indistinguishability between such apps coupled
with the dynamic nature of mobile web apps calls for reconsidering
the current permission model for mobile web apps. We first discuss
factors associated with securing mobile web apps in comparison
to traditional apps. We then propose a mechanism that presents a
holistic view of the permissions required by a web app and pro-
vides a simple, single-stop permission management process. We
then briefly discuss issues surrounding the use and deployment of
this technique. In so doing, we argue that in the absence of an
in-cloud security model for mobile web apps, client side defenses
are limited. Our model can provide users with a better chance of
making informed security decisions and may also aid researchers
in assessing security of mobile web apps.

Categories and Subject Descriptors
D.4.6 [Operating Systems]: Security and Protection

Keywords
Mobile devices, web app security, permissions

1. MOTIVATION
The family of HTML5 technologies is set to dramatically change

the way in which applications are designed for mobile devices. In
particular, HTML5 provides direct support for features including

1By native, we mean built for a specific platform (e.g., Android,
iOS, etc), not necessarily that they contain compiled native exe-
cutable libraries or code.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SPSM’12, October 19, 2012, Raleigh, North Carolina, USA.
Copyright 2012 ACM 978-1-4503-1666-8/12/10...$15.00.

audio, video and geolocation information. While access to these
features has become a mainstay of “native” mobile apps, their in-
clusion in this standard makes it possible for mobile web apps to
provide many of the features currently implemented by their na-
tive counterparts. Direct support for these features within mobile
browsers will be transformative - whereas app makers have tradi-
tionally had to invest significant effort to develop software across
multiple platforms, HTML5 will allow developers to rely on the
mobile browser to deliver a single codebase and a unified user ex-
perience.

Mobile web browsers provide web apps with access to features
including cookies, Javascript, native code and Flash by default.
This may lead to granting more than necessary privileges to cer-
tain web apps. For example, a file-sharing app has access to Flash
by default but may not need it for proper functioning. Access to the
default browser features, potentially sensitive hardware (e.g., cam-
era, microphone) and data (e.g., GPS location, contact information)
require protection when provided to web apps. While support for
HTML5 features is currently limited in mobile web apps, desktop
browsers providing such features typically prompt users on a per-
use, per-site basis. Mobile browsers too have adopted the same per-
use, per-site permission model and thus, suffer from several weak-
nesses. The current permission model for mobile web apps does
not provide a holistic view into the permissions required by an app.
Providing a single interface containing every permission that may
be used by an app allows both users and security experts a better op-
portunity to assess the potential for malicious behavior by the app.
As an example, the Android manifest file and install-time warnings
have successfully served as the basis of a wide-range of malware-
detection tools [9,10,13–15,24,25]. However, we note that simply
extracting the underlying platform’s (such as Android) model and
mapping web apps’ requests directly to the platform APIs [20] is
not the best matching since the structure of mobile web apps and
native apps is different. We discuss several differences in the fac-
tors contributing to the security of native apps and web apps. We
then argue that there is a need to define permissions for web apps
separately while maintaining as much overlap with native app per-
missions as possible for user learnability and reducing developer
efforts. Finally, we argue that the dynamic nature of mobile web
apps necessitates a one-stop, easy-to-use permission model that can
allow users to access, modify or change the permissions granted to
individual web apps.

In this paper, we present a proof of concept mechanism that ad-
dresses some of these weaknesses and allows a subset of the An-
droid application security model to be easily expressed by remotely
stored mobile web apps. Our goal is to provide expert users with
a single interface that allows them to reason about the permissions
requested by mobile web apps similar to native apps. We start with

a clean slate with no permissions given to a web app by default.
We argue that developers should be required to declare permissions
needed for a web app up front including the permissions provided
by default in current browsers. We then discuss a hybrid approach
of install-time and run-time permission authorization. We propose
webifest, an XML file similar to the manifest in Android framework
that includes permission declarations and can be used to allow mo-
bile web apps to provide a concise declaration of the resources they
intend to use. We argue that encouraging mobile web app develop-
ers to request fewer privileges will reduce the attack surface.

We are careful to note that our proposed solution is not a tacit en-
dorsement of the Android permission model in particular. Specifi-
cally, we are not arguing that users fully pay attention to and under-
stand all Android permissions. Should a better model be found, we
would still argue that all mobile applications should be evaluatable
through a security interface providing a complete view of potential
behavior. Given its extensibility and the success with which secu-
rity experts have had using it to detect malicious applications, we
simply rely on the Android model to illustrate our point.

The remainder of this work provides a brief overview of our pro-
posed architecture and attempts to consider best practices for web-
ifests.

2. BACKGROUND
We discuss factors affecting security of mobile web apps and

compare the significance of the same factors in the security of na-
tive apps. Building on this analysis, we discuss the potential re-
quirements in defining a permission model for mobile web apps.

2.1 Security Factors
Web apps provide cross-platform functionality, reduce developer

effort and are easy to update. However, these useful properties also
make web apps difficult to secure. We discuss several factors that
contribute to the security of a web app and compare the security
consequences of each of the factors with those of native apps.

• Nature of permissions: Mobile web apps are more dynamic
in nature because web application providers can easily up-
date the server side code. This dynamic nature of web apps
allows frequent changes to the permissions required for ex-
ecution. In comparison, it is difficult to silently make such
changes to native apps. Current web browsers also do not
provide an interface to view all the permissions required by
a web app, unlike a native app.

• User effort: One of the primary protections for native apps is
the attacker has to lure the user into installing his app. It is
much easier for an attacker to lure a user into following a link
to the attacker’s web app through email or advertisements.

• Application markets: Native apps have some level of secu-
rity through app markets (such as Apple and Google) that
detect and remove malware. No such mechanism exists for
mobile web apps. Unless an online marketplace such as the
Chrome webstore [3] is formed for the mobile web, having a
centralized system for security analysis will not be possible.
Moreover, if such a system is developed, the dynamic nature
of web apps will require continuous monitoring to ensure se-
curity. Therefore, permission/capability detection during ap-
plication submission to the marketplace (e.g., the MSIL code
analysis performed on the Windows Phone Marketplace [6])
may not work well for mobile web apps.

• Identical app logic: It is not possible to ensure that all users
of the same web app receive an identical copy of the app

unlike native apps. Therefore, web apps can collect con-
textual data such as location more easily by asking different
permissions from different users. Due to all users possesing
an identical copy of a native app, user-rating systems in na-
tive application markets work well. These ratings allow an
average user to decide whether an app is good or bad. No
such protection exists for mobile web apps. Moreover, even
if a third-party entity such as Google independently discov-
ers that a particular mobile web app is bad, conveying this
information to the future visitors of the web app is difficult.

• Default permissions: Android native apps are provided with
no default permissions. Web apps running in a browser are
provided with permissions to access several browser resources
such as cookies (maintaining SOP), Flash, download code to
the device and run Javascript. Therefore, certain web apps
may end up with more privileges than required for their exe-
cution.

This is not a comprehensive list of all the factors associated with
the security of web and native apps. Other factors including secu-
rity of the underlying operating system [16], browser [7,8], identity
management using certificates also impact mobile web app secu-
rity. We have discussed the major factors that lead to differences in
the security of web and native apps.

2.2 Reflection
The comparison between native and web apps shows that addi-

tional security factors need to be considered while designing per-
mission systems for managing access requests from mobile web
apps. However, we also observe that following wide adoption of
HTML5, both native and web apps on mobile platforms will re-
quest access to similar user sensitive data and hardware. There-
fore, we choose an approach that will build upon the permission
model for native apps and also provide additional features required
by mobile web apps.

We anticipate more requests to sensitive information from a mo-
bile web app as compared to a desktop web app. This is because a
mobile device can provide contextual information such as location
unlike desktop. Current desktop and mobile browsers request run-
time permissions for each feature requested by a web app. Desktop
browsers such as Safari allow permissions to be stored for a spe-
cific time duration. Other browsers such as Chrome desktop store
the location permission given to a website forever unless the user
revokes it. However, current browsers do not allow a user to view
all the permissions used by a web app nor do they allow a user to
easily access, modify or revoke permissions.

The lack of a centralized authority such as an app market in-
creases the probability of malicious web apps on the mobile plat-
form. We argue that mobile web app users should be able to easily
revoke or selectively grant permissions without being overwhelmed
with warnings and thus suffering from warning fatigue.

3. PROPOSED ARCHITECTURE
Goal: We want to provide expert users with a single interface that
allows them to reason about the permissions requested by mobile
web apps similar to native apps.

We use the Android system as an example and argue that our
central idea can be applied to any mobile platform. Our proposed
model provides a user consent permission system that gives full
view of the required permissions, alerts the user when a web app
asks for dangerous permissions and also allows easy revocation of
permissions granted to individual web apps. We propose that a web

app developer declares all the required permissions to the browser
using an XML file similar to the Manifest file in Android. In ad-
dition to specifying how to access a particular phone feature, our
model requires a web developer to define what he wishes to access
in the form of permission. For example, when a web developer
uses the HTML5 Geolocation API to access location, he should
specify that the app would require the corresponding permission
ACCESS_COARSE_LOCATION as defined in the Android frame-
work.

Permission categorization: We propose a design where the set of
permissions given to a web application by default is null. There-
fore, to access resources such as Flash, a web developer will have
to request permission. This behavior is significantly different than
the behavior of current browsers where a website rendered in the
browser runs with full browser-privileges and only requests user
permission for access to features such as location. We note that
we always allow web apps access to the core platform technologies
defined in the browser technologies for HTML52 [17] and do not
consider them in the permission system. The motivation behind re-
quiring developers to explicitly request access to default browser
features such as Flash is to encourage web developers to request
least privilege. However, the current per-use, per-site permission
model would generate multiple warnings every time a user accesses
a web app if universally implemented features such as cookies have
to be authorized. This may lead to warning fatigue [4, 12, 19, 22]
and careless clickthrough.

We propose classifying permissions required by mobile web apps
into two categories, normal and dangerous. We argue that a web
app connected to the Internet should not be allowed access to per-
missions corresponding to the signatureOrSystem category [1]
in the Android permission system. We also note that permissions
in the signature category [1] loosely correspond to the already
implemented Same Origin Policy in browsers. Out of the 75 nor-
mal or dangerous [18] permissions provided by the Android frame-
work, warnings are generated only for the dangerous permissions
at install-time. We argue that permissions required by web apps
should also be treated in a similar fashion. However, we note that
the set of permissions for web apps falling under the normal and
dangerous categories would differ from the ones defined in the An-
droid framework and not all of the permissions for native apps on
Android would be relevant to web apps. For example, permissions
such as BROADCAST_SMS and
BROADCAST_PACKAGE_REMOVED are not relevant for web
apps. Additionally, permissions such as INTERNET are crucial for
a web app to work unless it is working in offline mode. Therefore,
we envision that the number of permissions that a web app can re-
quest would be much lower than 75. Even if the browser produces
run-time warnings for time-of-use dangerous permissions, we en-
vision that the number of warnings would be limited.

We propose categorizing permissions based on whether a per-
mission will provide access to a user’s private data. Normal permis-
sions would be the ones that are crucial for the basic functionality of
a web app. Examples of a normal permission are INTERNET, AC-
CESS_WEBSTORAGE etc. Examples of dangerous permissions
would be CAMERA, CALL_PHONE and RECORD_AUDIO. The
normal permissions will be granted by the browser without user
consent while a warning will be generated when a web app requests
access to a dangerous permission.

Managing webifests: We propose a webifest, an XML file that can
2The HTML5 core platform technologies are HTML, CSS, DOM
and Javascript.

be used by web developers to define all the permissions required by
an app. The browser intercepts all webifest files sent by the website
in the top-level address bar. For example, consider the following
webifest:

<webifest domain=foo.com>
<permission=INTERNET, ACCESS_COOKIES,
CAMERA, ACCESS_COARSE_LOCATION>
</webifest>

This webifest indicates that a web app from the domain .foo.com/
is requesting permissions to access the Internet, cookies, camera
and coarse location.

When a web app is loaded, the browser intercepts the webifest
file only if it is sent over an HTTPS connection. This is to avoid
a man-in-the-middle attacker changing the permissions requested
by a website. The browser then searches existing webifests for one
that matches the domain of the new webifest. If an old webifest
does not exist, the browser parses the permissions in the webifest
into the normal and dangerous categories. The browser provides
normal permissions to the web app without user consent.

Instead of generating an install-time warning for all the danger-
ous permissions at once similar to native apps, the browser then
uses the run-time warning model. When a web app requires a dan-
gerous permission, the browser generates a warning and the user
has to approve the permission. Note that the browser does not store
the approval when user consents through a warning message. How-
ever, the browser provides an interface for the user to selectively ap-
prove, store or revoke permissions by using an interface users are
already familiar with. We propose extending the interface provided
by browsers to access SSL certificate information to accommodate
permissions. For example, consider the Chrome mobile browser
shown in Figure 1. Clicking on the lock icon in Chrome mobile
opens a dialogue that provides identity information of a website.
A Chrome mobile browser running our proposed model will also
provide an interface to store or revoke any of the permissions re-
quested by a web app. When the browser intercepts a webifest, it
generates a list of permissions requested by the web app. This list
contains both the normal and dangerous permissions and the sta-
tus information of whether they have been approved. Once a user
‘stores’ a permission, the browser retains the consent and the user is
not asked to approve permissions on subsequent visits to the same
web app until the webifest is either revoked by the user or modified
by the corresponding web app.

If a browser finds an older webifest for the same ‘domain’ as
that of a newly received webifest, the browser compares the values
of the ‘Permissions and Domain’ attributes of the old and the new
webifest. If the attributes are the same, the browser simply ignores
the new webifest. Otherwise, the browser generates a warning for
the user about a new webifest sent by the web app and displays
the additional permissions required. If the user authorizes the new
webifest, the browser stores the new one and discards the old copy.
The browser still requires run-time approval of additional permis-
sions if any in the new webifest. If a user rejects the new webifest,
the web app continues to execute with the permissions in the old
webifest until the user deletes the webifest.

We note that our proposal is only for a website requesting per-
missions of the underlying system. However, we observe that in
addition to requesting necessary permissions, a website can also
register web-intents with the browser using the webifest file, simi-
lar to the manifest file in native apps.

Storing webifests: We propose that a webifest for each web app
should be stored using the HTML5 web storage [23]. Web stor-

View Permissions

View Certificate Info

Permissions

Your location
fine (GPS) location

Hardware controls
take pictures and videos

Your cookies
read cookies, write cookies

Network communication
full internet access

https://www.foo.com https://www.foo.comuser clicks
on the lock

Figure 1: User interface for permission management of mobile web apps. Left: When a user clicks on the lock icon, the browser
shows this interface to interact with permissions and certificates. Right: The browser provides an interface to view the status of
the permissions requested by www.foo.com (domain in the address bar). The user has not stored hardware controls permissions,
whereas he has stored the location, cookies and Internet access permissions. The cookie and Internet permissions are normal per-
missions granted without user consent. The location and hardware control permissions require explicit user consent. The user can
easily revoke a permission by unchecking the box next to it.

age supports ‘local storage’ which is similar to persistent cookies.
When a browser intercepts a webifest, the webifest file is stored in
the local storage allocated to the corresponding web app’s domain.
The browser also maintains the status of user approval on all the
permissions. Javascript is not allowed access to a webifest unlike
other local storage objects.

Managing access requests: When a web app requests access to
a phone feature such as camera, the browser searches for the cor-
responding webifest. The browser verifies whether the user has
already granted the requested permission and if granted, allows ac-
cess without user intervention. If a webifest corresponding to a
web app does not exist or the user did not store consent to access
the resource requested by the web app, the browser does not allow
access. If the permissions required by a web app change, the web
app is expected to send a new webifest with the modified permis-
sions in the HTTP response header.

Revocation: Revoking permissions from individual web apps is
straightforward. To revoke all the permissions, a user can simply
delete the corresponding webifest from the local storage of an app.
Alternatively, the user’s browser is required to provide an interface
that allows the user to revoke all permissions using the in-browser
interface. A user can also selectively revoke permissions granted to
individual web apps using the in-browser interface shown in Fig-
ure 1. Current mobile browsers do not provide an interface to clear
access granted to individual websites. For example, in the An-
droid, Dolphin, Firefox Mobile and Opera Mini browsers, a user
is required to revoke location access from all web apps at once.
This browser behavior precludes a user from revoking permissions
granted to only one app if he has provided location authorization
to multiple web apps such as Yelp and Google maps. Existing
browsers will need modifications to support the proposed revoca-
tion procedure.

Conditions: We require that a browser supporting our initial model
allow only the domain displayed in the address bar of a web app

(top-level domain) to save a webifest. Secondly, a cross-domain
element embedded in the web app is prohibited from requesting
access to hardware or data.

The reasons for allowing only the top-level domain of a web app
to save a webifest are the following: a web app may contain cross-
domain embedded elements such as advertisements in iframes. If
a browser processes the webifest received in the HTTP response
header of such an element, there are two ways of obtaining user
authorization for the permissions requested by the embedded ele-
ment. The browser can create separate authorization warnings for
the webifest received from each domain or the browser can com-
bine the permissions requested by all domains and create one warn-
ing listing all the permissions and the respective domains. The for-
mer can overwhelm the user and latter may provide a false sense
of security. In the latter scenario, a user may perceive the set of
permissions listed in the long warning as the permissions required
by the top-level web app to execute. Prohibiting embedded ele-
ments from saving webifests can address these issues. Therefore,
a browser supporting our model ignores webifests received from
embedded elements in a web app.

The second condition of disallowing a cross-domain embedded
element to request access to hardware or data follows as a conse-
quence of enforcing the first condition. Since our model requires a
webifest for every ‘domain’ to be able to access a resource, if the
browser ignores webifests received from embedded elements, the
corresponding domains are unable to access resources.

Consider a web app at foo.com that saves a webifest in the
browser when the user visits the web app. Later, if an iframe from
foo.com is embedded in another web app accessed by the user,
foo.com may try to access resources using the already existing
webifest. To avoid this, we require that the browser ignore access
requests made by cross-domain elements embedded in the top-level
web app. Cross-domain embedded elements only have access to
the Internet. We explore the consequences of these conditions in
the discussion section.

Size and content: The expected memory overhead in integrating
the proposed model in current browsers would be insubstantial due
to the small size of webifest files.

Current web apps in mobile browsers do not require all the in-
formation provided in the manifest file for native apps for their ex-
ecution. In addition to declaring required permissions, the manifest
file in a native app describes application components such as activi-
ties and broadcast receivers, declares permissions required by other
apps in order to access the app, the libraries that the app is linked
against and the minimum level of the Android API required by the
app [2]. Most of this additional information is required since a na-
tive app code resides on the device and is always available. This is
not true for web apps. For example, at present there is no mecha-
nism that enables a web app to handle an intent created by a native
app or the Android system. Whether such a mechanism is possible
is an interesting project beyond the scope of this work. Since the
compelling need for current mobile web apps is effectively han-
dling permissions, we chose a lightweight manifest file.

4. DISCUSSION
The goal of the proposed model is not necessarily to ensure that

average users make better security decisions, but instead to pro-
vide an interface for expert users to be able to assess the potential
behavior of web apps. If a security expert is unable to evaluate
whether a web app is malicious, how can an average user be ex-
pected to do the same? Nevertheless, we believe that maintaining
significant overlap between the permission models for native and
web apps will help average users in making informed security de-
cisions. More importantly, security experts will be able to use the
proposed model to design tools similar to the malware detection
tools for native apps [9, 10, 13–15, 24, 25].

There are other efforts in the area of permission management for
mobile web apps such as Mozilla’s WebAPI [5]. However,WebAPI
aims at providing consistent APIs that will work in all web browsers
and our motivation is designing a permission model for mobile web
apps that increases security and user control. Another related effort
in restricting the capabilities of web apps is the Content Security
Policy (CSP) [21]. CSP enables the authors of a web app restrict
from where the application can load resources, whereas our pro-
posal deals with restricting web apps’ access to the resources on a
user’s device. We discuss the advantages and disadvantages of the
proposed model.

Pros: Although the normal permissions are granted without user
intervention, their use will enable developers to request least priv-
ilege. For example, the default Android mobile and Opera Mini
browsers support Flash and videos can be played easily in the browser
without user consent. However, a word to PDF converter web
app may not require Flash support. Requiring a web developer to
ask for Flash permission explicitly may reduce overprivileged web
apps.

The simple update and revocation procedure for permissions granted
to web apps maintains the highly dynamic nature of web apps while
allowing the user to revoke permissions easily at will. For example,
if a security expert wants to disable cookies for a suspicious look-
ing webpage, he can do so using the selective permission revocation
model (desktop browsers have a similar functionality for cookies).
The user will not have to disable cookies across all webapps in this
case, a provision currently available in mobile web browsers. An
average user on the other hand will not have to worry about ba-
sic details of browser management due to the normal permissions
being provided by the browser without user consent.

Providing a similar user interface for permission management as

that of the native apps facilitates user learnability of the proposed
web app permission model. Moreover, striving for maximum over-
lap between the permissions defined for native and web apps may
reduce the effort required to secure mobile apps (native and web)
and also reduce developer effort.

Cons: Prohibiting a cross-domain embedded element such as iframe
from storing webifests may break the logic of certain mobile web
apps. However, we argue that due to the constrained nature of mo-
bile browsers, the complexity of mobile web apps is lower. There-
fore, the number of cross-domain embedded elements in mobile
web apps is expected to be minimal. We plan to investigate mod-
els allowing a cross-domain embedded element to access resources.
One such method would be to fall back to the per-use, per-website
model currently used in browsers. For example, if a non-Google
web app includes a Google map, the browser can generate an au-
thorization request for location access when a user wants to interact
with the map and never provide the interface to store the permis-
sion. Another potential technique would be to fetch a webifest file
when a user interacts with a cross-domain embedded element. For
example, if a non-Google web app includes a Google map, when a
user wishes to interact with the map by clicking on it, the browser
fetches the webifest file for the map and generates an authorization
request to access the resources required by Google maps, again
with no storing facility.

Our model mandates explicit authorization for cookies and ig-
nores webifests sent by embedded elements. This prevents third-
party cookies in a webpage from tracking a user across sessions.
However, due to the universal usage of cookies, not allowing cook-
ies from other domain excluding the top-level domain in the ad-
dress bar may break several websites. Whether our model should
allow cookies for embedded elements is a topic for future work.

If a web application does not support webifests, a browser sup-
porting webifests can default to the current model of processing
permissions based on per-use, per-website. Although this approach
maintains backward compatibility, it defeats the purpose of our
model. We assert that a browser should support the same permis-
sion model for all the elements of a web app irrespective of their
domain. If the top-level web app supports webifests, the browser
should use the webifest model for all the elements. Otherwise, the
browser should use the per-use, per-website model.

Adopting the proposed model will require collaborative efforts
from web developers and browser vendors. Finally, storing the
webifests file may be tricky since implementing local storage fea-
tures in a browser may pose information leakage or information
spoofing risks [23].

Security comparison with native apps: The notion of security
in the proposed model is similar to that of the permissions model
for native apps. The model does not protect users against mali-
cious apps that can access sensitive data as a result of user au-
thorization. The level of security depends on a user’s knowledge
about permissions and the consequences of authorizing a web app
to access sensitive information. Moreover, the model cannot pro-
vide the guarantee that a web application would request the least
privileges required for its execution. Researchers have previously
shown that native app developers attempt to obtain least privilege
for their applications, but fall short due to API documentation er-
rors and lack of developer understanding [14]. We expect the same
effort from mobile web app developers. We also note that devel-
opers that change the permissions required by their app too often
might turn away users. Since the browser does not store a permis-
sion unless explicitly approved by the user and also alerts the user

when a new webifest is detected, multiple changes in webifests may
make the user suspicious or annoyed.

Research questions: Several research questions present themselves:

• Normal versus dangerous permissions, where to draw the line? We
based our initial proposal of categorization on whether a web app
requests permissions to access a user’s private data. Are there
other possible categorization procedures that can further reduce
warnings?

• If the set of normal permissions is large, would it be problematic
to grant normal permissions without user consent?

• Would users and developers understand the new model easily?

• Can a mechanism other than local storage be used to maintain
webifests? Using local storage requires creating a special excep-
tion for preventing Javascript from accessing webifests.

• Is warning fatigue possible for the proposed model? If the total
number of permissions available for web apps on a platform is
limited, the probability of warning fatigue would be curtailed.

Looking forward: Due to the availability of contextual informa-
tion, we envision widespread use of HTML5 to access user’s data
on a mobile device. We have taken the first step towards rethinking
the permission system for mobile web apps. An alternative permis-
sion model would be adopting the install-time all-or-nothing model
defined in Android native apps. Yet another client-side solution for
the permission management problem would be defining in-browser
policies to limit a user’s access to potentially malicious websites
and also block a website’s access to sensitive features such as con-
tact lists. Although this approach is possible for corporate phones,
it would be difficult to implement on personal phones of average
users. Moreover, restricting functionality can result in poor user ex-
perience. To avoid pushing security decisions to the user, multiple
security tools such as Zozzle [11] can be executed in the browser
to protect the user from malicious web apps. However, due to the
hardware limitations of mobile devices, this approach will entail
severe performance penalties and will not be practical. Finally, if
a mobile web app store similar to the Chrome webstore is avail-
able in the future, providing centralized security measures would
be possible.

Our proposed model provides more control to the user, but also
redirects more security decisions to the user. Offloading security
decisions to a user is not the best idea. However, we imagine that
in the absence of a proxy like setting or an umbrella webstore, client
side defenses on mobile devices would be limited.

Acknowledgments
We would like to thank Italo Dacosta for his insightful feedback.
This work was supported in part by the US National Science Foun-
dation (CNS-0916047, CAREER CNS-0952959). Any opinions,
findings, conclusions or recommendations expressed in this pub-
lication are those of the authors and do not necessarily reflect the
views of the National Science Foundation.

5. REFERENCES
[1] Android permission categories. http://developer.android.com/

guide/topics/manifest/permission-element.html.
[2] The AndroidManifest.xml File. http://developer.android.com/

guide/topics/manifest/manifest-intro.html.
[3] The Chrome Webstore.

https://chrome.google.com/webstore/category/home.
[4] W3C: Web Security Context: User Interface Guidelines.

http://www.w3.org/TR/wsc-ui/, August 2010.
[5] Mozilla WebAPI. https://wiki.mozilla.org/WebAPI, July 2012.
[6] How To Determine Application Capabilities. http://msdn.microsoft.

com/en-us/library/gg180730(v=vs.92).aspx, April 2012.
[7] C. Amrutkar, K. Singh, and P. Traynor. On the Disparity of Display Security in

Mobile and Traditional Web Browsers. Technical report, GT-CS-11-02,
Georgia Institute of Technology, 2011.

[8] C. Amrutkar, P. C. van Oorschot, and P. Traynor. Measuring SSL Indicators on
Mobile Browsers: Extended Life, or End of the Road? In Proceedings of the
Information Security Conference (ISC), 2012.

[9] S. Chakradeo, B. Reaves, P. Traynor, and W. Enck. MAST: Triage for
Market-scale Mobile Malware Analysis. Technical Report GT-CS-12-01,
College of Computing, Georgia Institute of Technology, 2012.

[10] E. Chin, A. P. Felt, K. Greenwood, and D. Wagner. Analyzing inter-application
communication in Android. In Proceedings of the International Conference on
Mobile Systems, Applications, and Services (MobiSys), 2011.

[11] C. Curtsinger, B. Livshits, B. Zorn, and C. Seifert. Zozzle: fast and precise
in-browser javascript malware detection. In Proceedings of the 20th USENIX
conference on Security, 2011.

[12] S. Egelman, L. F. Cranor, and J. Hong. You’ve been warned: an empirical
study of the effectiveness of web browser phishing warnings. In Proceedings
of the 26th annual SIGCHI conference on Human factors in computing
systems, 2008.

[13] W. Enck, M. Ongtang, and P. McDaniel. On Lightweight Mobile Phone
Application Certification. In Proceedings of the ACM Conference on
Computer and Communications Security, 2009.

[14] A. P. Felt, E. Chin, S. Hanna, D. Song, and D. Wagner. Android permissions
demystified. In Proceedings of the 18th ACM conference on Computer and
communications security, 2011.

[15] A. P. Felt, K. Greenwood, and D. Wagner. The effectiveness of application
permissions. In Proceedings of the 2nd USENIX conference on Web
application development, 2011.

[16] M. Grace, Z. Zhou, Yajin Wang, and X. Jiang. Systematic Detection of
Capability Leaks in Stock Android Smartphones. In Proceedings of the
Network and Distributed System Security Symposium (NDSS), 2012.

[17] HTML5 contributors. The Web platform: Browser technologies.
http://platform.html5.org/.

[18] S. Lekies and M. Johns. Lightweight integrity protection for web
storage-driven content caching. In In IEEE Oakland Web 2.0 Security and
Privacy (W2SP), 2012.

[19] Security News Portal. Symbian – Just Because it’s Signed Doesn’t Mean it
Isn’t Spying on You. http://www.securitynewsportal.com/
securitynews/article.php?TITLE=Just_because_its_
Signed_doesnt_mean_it_isnt_spying_on_you, 2007.

[20] K. Singh. Can Mobile learn from the Web? In Proceedings of the Workshop on
Web 2.0 Security and Privacy (W2SP), 2012.

[21] B. Sterne and A. Barth. Content Security Policy 1.1.
https://dvcs.w3.org/hg/content-security-policy/
raw-file/tip/csp-specification.dev.html.

[22] D. Stewart and I. Martin. Intended and Unintended Consequences of Warning
Messages: A Review and Synthesis of Empirical Research. 1994.

[23] W3C. Web storage. http://dev.w3.org/html5/webstorage.
[24] W. Zhou, Y. Zhou, X. Jiang, and P. Ning. DroidMOSS: Detecting Repackaged

Smartphone Applications in Third-Party Android Marketplaces. In
Proceedings of the 2nd ACM Conference on Data and Application Security
and Privacy, 2012.

[25] Y. Zhou, Z. Wang, W. Zhou, and X. Jiang. Hey, You, Get off of My Market:
Detecting Malicious Apps in Official and Alternative Android Markets. In
Proceedings of the Network and Distributed System Security Symposium,
2012.

