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Abstract

We address the closed-set problem of speaker iden-
tification by presenting a novel sparse representation
classification algorithm. We propose to develop an
overcomplete dictionary using the GMM mean super-
vector kernel for all the training utterances. A given
test utterance corresponds to only a small fraction of
the whole training database. We therefore propose to
represent a given test utterance as a linear combina-
tion of all the training utterances, thereby generating
a naturally sparse representation. Using this sparsity,
the unknown vector of coefficients is computed via l1-
minimization which is also the sparsest solution [12].
Ideally, the vector of coefficients so obtained has non-
zero entries representing the class index of the given
test utterance. Experiments have been conducted on the
standard TIMIT [14] database and a comparison with
the state-of-art speaker identification algorithms yields
a favorable performance index for the proposed algo-
rithm.

1. Introduction

With increasing security concerns, automatic person
identification has emerged as an active research area
over last two decades. Human speech is a natural way of
recognizing a person and therefore Automatic Speaker
Recognition (ASR) systems have been widely deployed
for secured authentication. Conventional speaker recog-
nition algorithms make use of acoustic features to de-
velop probabilistic speaker models and utilize an ad-
equate statistical distance metric for the classification
purpose. Gaussian Mixture Models (GMM) have been
typically used to develop probabilistic model for each
speaker in a given database [17]. The large scale ac-
ceptance of the GMMs as the standard in the ASR can
be credited to a number of factors such as the high ac-
curacy, the ability to scale training algorithms for large
data sets and the probabilistic framework. A speech sig-

nal is naturally characterized by continuous changes in
the spectral domain, consequently a number of Gaus-
sian components (typically of the order of 64) are nec-
essary to model the speaker-dependent features over the
length of an utterance. The collection of these Gaussian
components results in the complete Gaussian mixture
model.
A more efficient approach is to develop a Universal

Background Model (UBM) using utterances from a set
of speakers and adapt this universal model with respect
to a particular speaker using Maximum-A-Posteriori
(MAP) adaptation [18]. This state-of-art approach is
commonly referred to as the GMM-UBM. There are
several benefits in using this approach that have ac-
counted for significant performance improvements in
the GMM-based classification. For instance, when
training data is not available for the adaptation of com-
ponents in the UBM, the speaker values revert to those
in the UBM to provide a more robust speaker model.
In contrast, when ample training data is available for a
given GMM component, the values approach those of
the ML estimate.
Recently an intriguing variation in the GMM-UBM

approach has enabled representation of a speaker as
a point in a high dimensional space i.e. the speaker
space [4]. The main idea is to concatenate the means
of the GMM components to form a so-called GMM
mean supervector [4]. In this way, a variable-length
utterance can be represented as a fixed-length feature
vector in the feature space and therefore the problem of
speaker recognition can be tackled as a general problem
of pattern recognition. One technique that has received
significant focus in pattern recognition literature is the
Support Vector Machine (SVM). The discriminative na-
ture of the SVM has been successfully applied to a vari-
ety of pattern recognition tasks. An SVM is basically a
two-class classifier that fits a separating hyperplane be-
tween the two classes (assuming linear separability). In
recent years, the SVM-based classification has become
a major focus in the task of speaker identification and
verification [4].
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Typically, in pattern recognition problems, it is be-
lieved that high-dimensional data vectors are redun-
dant measurements of an underlying source. The ob-
jective of manifold learning is therefore to uncover
this “underlying source” by a suitable transformation
of high-dimensional measurements to low-dimensional
data vectors. The main objective is to find a basis func-
tion for this transformation, which could distinguish-
ably represent patterns in the feature space. A num-
ber of approaches have been reported in the literature
for dimensionality reduction. These approaches have
been broadly classified in two categories namely gen-
erative/reconstructive and discriminative methods. Re-
constructive approaches (such as Principal Component
Analysis or the PCA [19]), are reported to be robust
for noisy data, these methods essentially exploit the re-
dundancy in the original data to produce representations
with sufficient reconstruction property. Formally, given
an input x and label y, the generative classifiers learn
a model of the joint probability p(x, y) and classify us-
ing p(y|x), which is determined using the Bayes’ rule.
The discriminative approaches (such as Linear Discrim-
inant Analysis or the LDA [3]), on the other hand, are
known to yield better results in “clean” conditions [13]
owing to the flexible decision boundaries. The optimal
decision boundaries are determined using the posterior
p(y|x) directly from the data and are consequently more
sensitive to outliers. In the speaker recognition com-
munity there is a growing interest for the exploration
of these manifold learning methods. The PCA for in-
stance, has shown some good results in this regard and
is usually referred to as Eignevoice approach [15], [16].
Working on the same lines, the concept of Fishervoice,
based on the LDA approach, has recently been proposed
to address the problem of semi-supervised speaker clus-
tering [10].

In this research we present a novel speaker identifi-
cation algorithm in the context of sparse representation
[1]. We propose to utilize the concept of the GMM
mean supervector to develop an overcomplete dictio-
nary using training utterances from all the speakers.
The fixed-length GMM mean supervector of a given
test utterance from an unknown speaker is represented
as a linear combination of this overcomplete dictio-
nary. This representation is naturally sparse since the
test utterance corresponds to only a small fraction of the
whole training database. Using this sparsity, we pro-
posed to solve the inverse problem using the l1-norm
minimization as it is shown to be the sparsest solu-
tion [12]. The vector of coefficients thus obtained will
have non-zero entries corresponding to the class of the
test utterance. The proposed algorithm is evaluated on
a subset of the widely available TIMIT speech corpus

[14]. Comparative analysis with the state-of-art speaker
recognition algorithms yields a fairly comparable per-
formance index for the proposed algorithm. To the best
of our knowledge, it is for the first time that sparse
representation classification is used for the problem of
speaker identification.
The rest of the paper is organized as follows: Section

2 presents the proposed algorithm, followed by close-
set speaker identification experiments in Section 3. The
paper is concluded in Section 4.

2. Sparse Representation for Speaker Iden-
tification

Sparse or parsimonious representation of signals is
regarded as a major research area in the paradigm of
statistical signal processing. Most of the signals of prac-
tical interest are compressible in nature. For example,
audio signals are compressible in localized Fourier do-
main and digital images are compressible in Discrete
Cosine Transform (DCT) and wavelet domains. Recent
research in the area of compressive sampling has shown
that if the optimal representation of a signal is suffi-
ciently sparse when linearly represented with respect
to an overcomplete dictionary (also referred to as mea-
surement matrix), it can be efficiently computed using
convex optimization [5, 6, 7, 8, 11, 12].
The main objective of the compressive sensing the-

ory is to achieve computational efficiency for informa-
tion processing using the parsimonious representation
of signals. From this perspective, the compressive sens-
ing theory basically tries to avoid the Shannon-Nyquist
bound by sampling at a much lower rate and still safely
recovering the original information [5]. Although the
compressive sensing paradigm is not intended for clas-
sification purpose, the sparse representation of a signal
with respect to a basis remains implicitly discrimina-
tive in nature. It selects only those basis vector which
most compactly represents the signal and reject the oth-
ers [20].
We exploit this discriminative nature of sparse repre-

sentation to propose a novel speaker identification algo-
rithm. The proposed algorithm incorporates the GMM
mean supervector kernel approach [4] to represent the
utterances as feature vectors of a fixed dimension.
We now present the basic framework of the proposed

speaker identification algorithm. Let us assume that we
have k distinct classes and ni utterances are available
for training from the ith class. Each variable-length
training utterance is mapped to a fixed-dimension fea-
ture vector using the GMM mean supervector kernel
[4]. Let the resultant feature vector be designated as
vi,j such that vi,j ∈ R

m. Here i is the index of
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the class, i = 1, 2, . . . , k and j is the index of the
training utterance, j = 1, 2, . . . , ni. All this training
data from the ith class is placed in a matrix Ai such
that Ai = [vi,1,vi,2, . . . . . . ,vi,ni

] ∈ R
m×ni . Let

y ∈ R
m be the GMM mean supervector for a test ut-

terance from the ith speaker. A fundamental concept
in pattern recognition indicates that patterns from the
same class lie on a linear subspace [2], therefore if y

belongs to the ith class and the training samples from
the ith class are sufficient, y will approximately lie in
the linear span of the columns of Ai:

y = αi,1vi,1 + αi,2vi,2 + · · ·+ αi,ni
vi,ni

(1)

where αi,j are real scalar quantities. Since identity
i of the test sample y is unknown we develop a global
dictionary matrix A for all k classes by concatenating
Ai, i = 1, 2, . . . , k as follows:

A = [A1, A2, . . . , Ak] ∈ R
m×nik (2)

The test pattern y can now be represented as a linear
combination of all n training samples (n = ni × k):

y = Ax (3)

where

x = [0, · · · , 0, αi,1, αi,2, · · · , αi,ni
, 0, · · · , 0]T ∈ R

n

(4)
is an unknown vector of coefficients. Note that from
equation 3 and our earlier discussion it is straight for-
ward to note that only those entries of x that are non-
zero, correspond to the class of y [20]. This means
that if we are able to solve equation 3 for x we can
actually find the class of the test pattern y. Recent re-
search in compressive sensing and sparse representation
[6, 7, 8, 11, 12] has shown that the sparsity of the solu-
tion of equation 3, enables us to solve the problem using
the l1-norm minimization:

(l1) : x̂1 = argmin ‖x‖
1

;Ax = y (5)

Once we have estimated x̂1, ideally it should have
nonzero entries corresponding to the class of y and now
deciding the class of y is a simple matter of locating in-
dices of the non-zero entries in x̂1. However due to
noise and modeling limitations x̂1 is commonly cor-
rupted by some small nonzero entries belonging to dif-
ferent classes. To resolve this problem we define an
operator δi for each class i so that δi(x̂1) gives us a
vector ∈ R

n where the only nonzero entries are from
the ith class. This process is repeated k times for each
class. Now for a given class i we can approximate

ŷi = Aδi(x̂1) and assign the test pattern to the class
with the minimum residual between y and ŷi.

min
︸︷︷︸

i

ri(y) = ‖y −Aδi(x̂1)‖2 (6)

3 Experimental Evaluation

The TIMIT corpus is a collection of phonetically bal-
anced sentences sampled at 16 kHz (8 kHz bandwidth),
consisting of 10 utterances from 630 speakers across 8
dialect regions in the USA [14]. Extensive experiments
were conducted on a randomly selected subset of the
TIMIT database consisting of 114 speakers. For our ex-
periments we used 8 utterances per speaker for training
(5 SX and 3 SI sentences) while 2 utterances (2 SA sen-
tences) constituted the testing set. Refer to [14], [17]
for further details.

Approach Recognition Accuracy
GMM 92.98%

GMM-UBM 96.93%
GMM-SVM 97.80%

Sparse Representation 98.24%

Table 1. Experimental Results for the
TIMIT database

At the feature extraction stage, GMM mean super-
vector approach [4] (consisting of 64 mixtures) is used
to generate fixed-length feature vectors from variable
length utterances. In all experiments a pre-emphasis
filter with coefficient 0.97 was applied to the sam-
pled waveform and features were extracted from each
25ms frame and generated every 10ms, all frames
were windowed using the Hamming window function.
Comparative analysis is performed using three state-
of-the-art approaches i.e. the GMM [17], the GMM-
UBM [18] and the GMM-SVM [4] speaker identifica-
tion algorithms. For the implementation of the GMM
and GMM-UBM systems the Hidden Markov Model
ToolKit (HTK version 3.4.1) [21], was configured to
model a single-state HMM with the standard MLLR
(Maximum Likelihood Linear Regression) and MAP
(Maximum-A-Posteriori) adaptation scripts to adapt the
UBM accordingly for the GMM-UBM models and
GMM-SVM supervectors. For the GMM-SVM the
SVM-KM toolbox [9] was used to implement the one-
against-all SVM classifier.
Results are shown in Table 1. The proposed sparse

representation identification algorithm achieves 98.24%
recognition accuracy which is better than all the con-
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testing approaches. The conventional GMM [17] ap-
proach for instance, attains 92.98% recognition which
lags 5.26% as compared to the proposed approach. The
state-of-art GMM UBM [18] approach yields a compa-
rable identification success of 96.93%. Recently pro-
posed GMM-SVM system [4] also attains a good per-
formance with 97.80% recognition.

4 Conclusion

With the recent development in the paradigm of
speaker recognition, variable-length utterances can be
represented as fixed length features in a high dimen-
sional feature space. The task of speaker identifica-
tion can now therefore be viewed as a traditional pat-
tern classification problem. Motivated with these stud-
ies, we propose a novel speaker identification algorithm
based on sparse representation. Noting that a given test
utterance from a particular speaker corresponds to only
a fraction of the whole training database, we proposed
to develop an overcomplete dictionary of all training
utterances. A given test utterance is thus represented
as a linear combination of all training utterances giv-
ing rise to a naturally sparse representation. The in-
verse problem is solved using the l1-minimization (as
it is the sparsest solution). Consequently the vector
of coefficients is also sparse with non-zero entries cor-
responding to the class of the unknown speaker. The
proposed algorithm is evaluated on the standard TIMIT
database and comparative analysis is performed with
the state-of-art speaker identification approaches. The
proposed sparse representation classification algorithm
has shown good performance index and is favorably
comparable with all approaches.
Although the initial investigations for the proposed

algorithm are quite good, the TIMIT database however
characterizes ideal acquisition environment and does
not depict key robustness issues (e.g. reverberant noise
and session variability). Good performance index un-
der clean conditions is encouraging enough to extend
the proposed approach for robust speaker recognition
addressing more challenging databases.
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