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1. Introduction

Speech signals in the real world scenarios are often cor-
rupted by various types of degradations. The most common 
degradations include background noise, reverberation and 
speech from competing speaker(s). Degraded speech is 
poor, both in terms of perceptual quality and intelligibil-
ity. Poor perceptual quality leads to listener fatigue. Poor 
intelligibility leads to degraded performance in tasks like 
speech and speaker recognition. Degraded speech, there-
fore, needs to be processed for enhancing its perceptual 
quality and intelligibility. Several methods have been 
proposed in the literature for the enhancement of degraded 
speech. A majority of these methods can be grouped into 
spectral processing and temporal processing methods. In the 
spectral processing methods, degraded speech is processed 
in the frequency domain, for achieving enhancement. In 
the temporal processing methods, the processing is done 
in the time domain. The approach to speech enhancement 
varies considerably, depending on the type of degradation. 
For example, the type of processing for enhancing speech 
degraded by background noise (noisy speech) is  different 
from the method employed for enhancing speech degraded 
by reverberation (reverberant speech).

This paper provides an overview of some commonly 
used methods proposed for the enhancement of 
degraded speech. The rest of the paper is organized 
as follows: Section 2 presents a review of the methods 
for processing speech degraded by background noise. 
Section 3 discusses the enhancement techniques for 
speech degraded by reverberation. Methods for the 
enhancement of speech in multi-speaker environment 

are discussed in Section 4. Finally, the summary of the 
review has been provided in Section 5.

2.	 Enhancement	of	Noisy	Speech

Background noise is the most common factor that causes 
degradation of quality and intelligibility of speech. The 
term background noise refers to any unwanted signal that 
is added to the desired signal. Background noise can be 
stationary or nonstationary and is assumed to be uncor-
related and additive to the speech signal. Mathematically, 
speech degraded by background noise can be expressed 
as the sum of clean speech and background noise [1].

That is,

y(n) = s(n) + d(n) (1)

where y(n), s(n) and d(n) denote the noisy speech, 
clean speech and background noise, respectively. In the 
 frequency domain, it can be represented as

Y(k) = S(k) + D(k) (2)

where k is the index of frequency bin.

The problem of enhancing noisy speech received 
 considerable attention in the literature and a variety of 
methods have been proposed to overcome it. A majority of 
these methods may belong to one of these two categories: 
Spectral processing methods such as the spectral subtraction, 
minimum mean square error (MMSE) estimator, wavelet 
denoising methods and temporal processing methods such 
as linear prediction (LP) residual based methods.
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2.1	 Spectral	Processing	Methods

Spectral processing methods are the most popular 
 techniques for noise reduction, mainly because of their 
simplicity and effectiveness. Most of the spectral process-
ing techniques rely on the basis that the human speech 
perception is not sensitive to short-time phase [2]. This is 
exploited in these methods, where only the spectral mag-
nitude associated with the original signal is estimated. In 
case of noisy speech, the spectral processing methods can 
be grouped into nonparametric and statistical model-based 
methods [2]. Methods from the first category remove an 
estimate of the degradation from the noisy features, such as 
subtractive type algorithms and wavelet denoising. The sta-
tistical model based method such as MMSE estimator uses 
the parametric model of the signal generation process.

2.1.1 Spectral Subtraction

Spectral subtraction is historically one of the first 
algorithms proposed in the field of background noise 
reduction, which is still referenced today because of its 
minimal complexity and relative ease in implementa-
tion. Spectral subtraction is performed by subtracting 
the average magnitude of the noise spectrum from the 
spectrum of the noisy speech, to estimate the magnitude 
of the enhanced speech spectrum [1]. The estimate of the 
enhanced speech spectrum is obtained as [1]:

S k Y k D k� �( ) ( ) ( )= −  (3)

where D k( )  is the average magnitude of the noise  spectrum. 
The noise estimation is obtained on the assumption that 
the background noise is locally stationary, so that the noise 
characteristics computed during the speech pauses are a 
good approximation to the noise characteristics [2].

The enhanced spectrum obtained using the above rela-
tion may contain some negative values due to the errors 
in estimating the noise spectrum. The simplest solution 
is half-wave rectification of these values, to ensure a non 
negative magnitude spectrum. This nonlinear processing 
of negative values creates small, isolated peaks in the 
spectrum occurring at random frequency locations in 
each of the frames. Converted in the time domain, these 
peaks sound similar to the tones with frequencies that 
change randomly from frame to frame; that is, tones that 
are turned on and off at the analysis frame rate. This 
type of noise is commonly referred as musical noise [3]. 
The musical noise can be more annoying to the listeners 
than the original distortion caused by the background 
noise. Several modifications for the standard spectral 
subtraction method have been proposed to alleviate the 
speech distortion introduced by the spectral subtraction 
process [2].

Boll [1] proposed few modifications such as magnitude 
averaging, residual noise reduction and additional signal 
attenuation during non-speech activity, to reduce the effect 
of musical noise. Berouti et al. [3] suggested a method to 
reduce the musical noise by subtracting an overestimate of 
the noise spectrum, while preventing the resultant spectral 
components from going below a preset minimum value. 
The proposed technique has the following form [3]:
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where α is the over subtraction factor, which is a function 
of the noisy Signal to Noise Ratio (SNR) and calculated 
as [3]:

α α= − − ≤ ≤0

3
20

5 20SNR dB SNR dB,  (5)

where α0 is the desired value of α at 0 dB SNR. Here, SNR 
is computed as the ratio of the noisy speech power to the 
estimated noise power. In general, the higher the amount 
of over subtraction, more will be the attenuation of the 
stronger components with a low SNR. This prevents 
musical noise. However, too strong over subtraction will 
suppress too many components. Therefore, the value of 
α has to be carefully chosen, in order to prevent both the 
musical noise and signal distortion [3]. The introduction 
of spectral floor β prevents the subtraction of spectral 
components of the enhanced speech spectrum falling 
below the predefined lower value.

A frequency adaptive subtraction factor based approach is 
proposed in [4, 5]. The motivation is that, in general, noise 
may not affect the speech signal uniformly over the whole 
spectrum. Some frequencies are affected more severely 
than the others. Accordingly, Lockwood and Boudy [4] 
proposed the nonlinear spectral subtraction (NSS) 
method, based on the linear spectral subtraction proposed 
by Berouti et al. [3]. In NSS, the over subtraction factor 
is frequency dependent in each frame of speech. Larger 
values are subtracted at frequencies with low SNR levels 
and smaller values are subtracted at frequencies with high 
SNR levels. Kamath and Loizou [5] extended this concept 
and developed a multi-band spectral subtraction method 
that divides the speech spectrum into N nonoverlapping 
bands, and the over subtraction factor for each band is 
calculated independently. The individual frequency bands 
of the estimated noise spectrum are subtracted from the 
corresponding bands of the noisy speech spectrum. The 
performances of the above methods are not satisfactory 
in adverse environments, particularly when the SNR is 
very low. The reason is that in very low SNR conditions, 
it is still difficult to suppress noise without degrading 
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intelligibility, and without introducing residual noise and 
speech distortion.

Due to this fact, several perceptual-based approaches are 
advocated, wherein instead of completely eliminating 
the musical noise and introducing distortion, the noise is 
masked taking advantage of the simultaneous masking 
properties of the auditory system [6, 7]. The masking effect 
means that a stronger signal can make a weaker signal occur-
ring simultaneously inaudible. If the noise signal is weaker 
than the speech signal in the same frequency band, then the 
noise signal is masked by the speech signal [6]. Therefore, we 
can use less noise subtraction to avoid unnecessary distor-
tion. Accordingly, instead of attempting to remove all noise 
from the signal, these algorithms attempt to attenuate the 
noise below the audible threshold [6, 7]. The methods that 
adopt the masking property of the human auditory system 
can reduce the effect of residual noise, but the drawback is 
the large computational effort associated with the subband 
decomposition and the additional discrete Fourier transform 
(DFT) analyzer required for psychoacoustic modeling. Even 
though several improvements have been proposed, spectral 
subtraction approach is still a subject of many researches 
on how to increase its performance in terms of minimizing 
the effect of musical noise and also on making it suitable for 
non-stationary environments.

2.1.2 MMSE Estimator

In spectral subtraction based  methods, there were no 
specific assumptions made about the distribution of the 
spectral components of either speech or noise. Ephraim and 
Malah [8] have proposed a system that utilizes the MMSE 
criteria using models for the distribution of the spectral 
components of speech and noise signals. The MMSE-
short time spectral amplitude (STSA) estimator for speech 
enhancement aims to minimize the mean square error 
between the short time spectral magnitude of the clean and 
enhanced speech signal. This method assumes that each of 
the Fourier expansion coefficients of the speech and of the 
noise process can be modeled as independent, zero-mean, 
Gaussian random variables [8]. In [9], to incorporate percep-
tually significant information into [8], the authors proposed 
a method to minimize the mean square error between the 
logarithm of the STSA of the clean and enhanced speech. 
This criterion of optimality gives good results in practice, 
with a noticeable reduction in musical noise.

The MMSE log-spectral amplitude (MMSE-LSA) 
 estimator for speech enhancement was also proposed 
by Ephraim and Malah in 1985 [9]. The aim of the 
authors, in their previous work on MMSE estimation of 
the STSA, was to enhance the speech by minimizing the 
error between the STSA of clean speech and enhanced 
speech. This optimality criterion does not consider any 
of the nonlinear characteristics observable in human 

perception [10]. To incorporate perceptually significant 
information into the algorithm, the authors proposed a 
method to minimize the mean square error between the 
logarithm of the STSA of the clean and enhanced speech. 
That is, the LSA estimator minimizes [2]

E Ae k e klog log−( ){ }2

 (6)

where Ak denotes the spectral speech amplitude, and Âk 
is its optimal estimator.

A fundamental assumption made in the MMSE 
 algorithms is that the real and imaginary parts of the 
clean DFT coefficients can be modeled by a Gaussian 
distribution. This Gaussian assumption might hold for 
the DFT coefficients of the noise, typically estimated 
using relatively short (20-30 ms) duration windows [2]. 
Based on this observation, a similar optimal MMSE-STSA 
estimator using non-Gaussian distributions is proposed. 
In particular, the Gamma [11] or the Laplacian [12] prob-
ability distributions are used to model the distributions 
of the real and imaginary parts of the DFT coefficients.

All MMSE-based methods need the estimate of the a 
priori SNR, the SNR of the kth spectral component of the 
clean speech signal. Since the knowledge of clean signal is 
seldom available in practical systems, a decision-directed 
estimation and maximum likelihood (ML) estimation are 
used to compute a priori SNR [8]. Cappe [13] provided a 
more detailed analysis on the decision-directed estima-
tion approach and proposed a lower limit to the estimate 
of the a priori SNR, in order to reduce the annoying 
musical tones. Cohen introduced causal and non-causal 
recursive estimators for the a priori SNR, which take 
into account the time-frequency correlation of speech 
signals [14]. The causal a priori SNR estimator is closely 
related to the decision-directed estimator. The non-causal 
a priori SNR estimator employs future spectral measure-
ments to predict better the spectral variances of clean 
speech. Experimental results show that the non-causal 
estimator yields a higher improvement in the segmental 
SNR and lower log-spectral distortion than the decision-
directed method and the causal estimator [14]. Even 
though several improvements have been made in MMSE 
estimator, the algorithms proposed by the Ephraim and 
Malah [8,9] are still considered the state of art algorithms 
for noisy speech enhancement.

2.1.3 Wavelet Denoising

Most of the speech enhancement algorithms are applied 
in the frequency domain, using short-time Fourier 
transform (STFT), which allows analyzing nonstationary 
speech signals. STFT provides a compromise between 
time resolution and frequency resolution. However, once 

Â
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the frame length is chosen, the time resolution is the same 
for all frequency components.

Some of the speech enhancement algorithms are developed 
using wavelet transform, which provides more flexible 
time-frequency representation of speech [15]. One popular 
technique for wavelet-based signal enhancement is the 
wavelet shrinkage algorithm [16]. Wavelet shrinkage is 
a simple denoising method based on the thresholding of 
the wavelet coefficients. The estimated threshold defines 
the limit between the wavelet coefficients of the noise and 
those of the target signal. However, it is not always possible 
to separate the components corresponding to the target sig-
nal from those of noise by simple thresholding. For noisy 
speech, energies of unvoiced segments are comparable 
to those of noise. Applying thresholding uniformly to all 
wavelet coefficients not only suppresses additional noise 
but also some speech components, like unvoiced ones [15]. 
Consequently, the perceptual quality of the filtered speech 
is affected. Therefore, the wavelet transform combined 
with other signal processing tools like Wiener filtering 
in the wavelet domain and wavelet filter bank have been 
proposed for speech enhancement [17]. More recently, a 
number of attempts have been made to use perceptually 
motivated wavelet decompositions, coupled with various 
thresholding and estimation techniques [18].

2.2	 Temporal	Processing	Methods

2.2.1 LP Residual Enhancement

Most of the studies on the speech enhancement discussed 
above focus on  enhancement, based on suppression of 
noise. These methods disturb the spectral balance in 
speech, resulting in unpleasant distortions in the enhanced 
speech. Yegnanarayana et al. proposed a noisy speech 
enhancement method by exploiting the characteristics of 
excitation source signal such as the LP residual [19]. The 
basic approach for speech enhancement is to identify 
the high SNR portions in the noisy speech signal, and 
enhance those portions relative to the low SNR portions, 
without causing significant distortion in the enhanced 
speech. The residual signal samples are multiplied with 
the weight function, and the modified residual is used 
to excite the time-varying all-pole filter derived from the 
given noisy speech, to generate the enhanced speech. In 
this method, enhancement is carried out by the following 
three steps [19]: (i) identification and enhancement of 
high SNR regions at the gross level; (ii) identification and 
enhancement of high SNR regions at the fine level; and, 
(iii) enhancement of spectral peaks over valleys.

In [20], a speech enhancement algorithm, similar to [19], has 
been proposed. It differs with the former residual weighting 
scheme in that the weights on the LP residuals have been 
derived, based on a constrained optimization criterion. 

Enhanced speech is obtained by exciting the  time-varying 
all-pole synthesis filter with the enhanced residual. In [21], 
the authors exploited the use of coherently added Hilbert 
envelope (HE) for LP residual reconstruction. Large ampli-
tude at the instant of strong excitation, a feature of HE, 
makes it a good indicator of glottal closure (GC), where 
an excitation pulse takes place. Therefore, applying HE to 
the LP residual as a weighting function has the effect of 
emphasizing the pulse train structure for voiced speech, 
which leads to an enhanced LP residual signal.

3. Enhancement of Reverberant Speech

Reverberation affects the quality of speech, in which 
delayed copies of the speech waveform, called echoes 
are added to the direct speech. Mathematically, this can 
be expressed as convolution of the speech signal, with 
room impulse response [22]. That is,

z(n) = s(n) ∗ h(n), (7)

where s(n) represents the clean speech, h(n) denotes the 
room impulse response and * symbolizes the convolution 
operation. The reverberation is completely  characterized 
by the speaker to receiver room impulse response. This 
can be divided into three segments: Direct sound, early 
reflections and late reflections. The first sound that is 
received without reflection is the direct sound. A little 
later, the sounds which were reflected off one or more 
surfaces will be received. These reflected sounds are 
separated from the direct sound, in both time and direc-
tion [23]. The reflected sounds form a sound component 
usually called early reverberation. Early reverberation is 
actually perceived to reinforce the direct sound and is, 
therefore, considered useful to speech intelligibility. Late 
reverberation results from the reflections that arrive with 
larger delays, after the arrival of the direct sound. They 
are perceived either as separate echoes or as reverberation 
and impairing speech intelligibility [23].

Various methods for improving the performance in 
 reverberant environments have been proposed. These 
methods may also be broadly grouped into temporal 
processing and spectral processing methods. The temporal 
processing methods obtain the enhancement by processing 
the reverberant speech in time or cepstral domain and spec-
tral domain processing is accomplished in the frequency 
domain. Besides these categories, there are several multi-
stage algorithms that have been proposed, which process 
degraded signal in both time and frequency domains.

3.1	 Spectral	Processing	Methods

The spectral enhancement methods achieve  dereverberation 
by modifying the short-time magnitude spectrum of the 
reverberant speech. Initially, Flanagan et al. [24] pro-
posed a spectral based two microphone approach for 
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processing reverberant speech. The speech signal from 
each microphone was separated into several subbands. In 
each frequency band, the spectral amplitudes of the two 
signals were compared and the maximum amplitude was 
selected as the contribution for the reconstructed speech. 
This method exploits the periodic nature of the spectral 
distortion of speech caused by simple echo. The two 
microphones spaced at different locations have echoes of 
different delays and nulls appear at regular but different 
intervals in the spectra of the microphone outputs. An 
algorithm proposed by Allen et al. [25] first filters the two 
individual microphone signals into the frequency band 
and then the filtered outputs are compensated for the 
delay differences and added. For each band, the correla-
tion between the two microphone signals is computed. 
These correlations are used as a gain factor for that band, to 
suppress the spectral bands with low correlations, in order 
to remove the reverberation effects. This is done based on 
the assumption that bands with high levels of coherence 
contain a strong direct component, whereas bands with 
low levels of coherence mainly contain reverberation.

Another form of spectral processing method is proposed 
in [26], using the harmonic structure of speech, based on 
pitch estimation. In the proposed method, the harmonic 
part of the speech was extracted by adaptive filtering. 
Averaging the ratio of DFT of the harmonic part of speech 
and that of the reverberant part, a dereverberation filter 
was calculated, which reduced reverberation in both 
voiced and unvoiced speech segments. The technique is 
suitable when sufficient number of training utterances 
are available and the room impulse response does not 
change significantly.

Recently, a spectral subtraction based spectral process-
ing technique has been developed, to suppress late 
reverberation effect [23,27]. In spectral subtraction based 
methods, the impulse response of the room h(n) can be 
split as shown below:

h n
h n
h n

n N
N n N
otherwise

i( )
( )
( )=

≤ ≤
+ ≤ ≤









1

1

1

0

0
1

for
for  (8)

where Ni is the length of the impulse response and N1 
is the threshold, which is chosen such that ha(n) consists 
of the direct signal and a few early reflections, and hl 
(n) consists of all late reflections. The threshold N1 can 
be chosen, depending on the application or subjective 
preference [23].

The spectral subtraction method is developed based 
on the fact that the early and late impulse components 
are approximately uncorrelated in the time domain. 
Therefore, the late reverberant signal can be treated as 

an additive noise, and thus can be eliminated through 
spectral subtraction [27]. Accordingly, the short-time 
power spectral density (PSD) of the reverberant speech 
signal Szz (l, k) is expressed as [27]:

Szz(l, k) = Sza(l, k) + Szl (l, k) (9)

where Sza (l, k) and Szl (l, k) are the PSD of the early and 
late reverberant components, respectively. Indices l and k 
refer to the time frame and frequency bin, respectively.

Lebart et al. [27] introduced a single channel speech derever-
beration method, based on spectral subtraction, to reduce 
this effect. The method estimates the power spectrum of 
the reverberation, based on a statistical model of late rever-
beration, and then subtracts it from the power spectrum of 
the reverberant speech. In [27], the authors assumed that 
reverberation time is frequency independent and that the 
energy related to the direct sound could be ignored. Hence, 
the authors assume that the signal to reverberation ratio 
(SRR) of the observed signal is smaller than 0 dB, which 
limits the use of the proposed solution to a situation in 
which the source-microphone distance is larger than the 
critical distance. This issue has been addressed in [23], 
where the room impulse response model was generalized 
by considering the direct component and the reflections 
separately. A novel estimator was derived, which had an 
advantage over the late reverberant power spectral density 
estimator proposed by Lebart, if the source-microphone 
distance was smaller than the critical distance [23].

One of the main problems in spectral subtraction is the 
nonlinear processing distortion, for example, the musical 
noise caused by over-subtraction of the reverberation. This 
distortion degrades the quality of the processed speech. 
However, there are some well known methods like spec-
tral floor factor, a priori SRR estimation techniques avail-
able to reduce this nonlinear distortion to a certain level.

3.2	 Temporal	Processing	Methods

3.2.1 Inverse Filtering

Reducing reverberation through inverse filtering is one 
of the most common approaches.

The basic idea is to pass the reverberant signal through a 
second filter, which inverts the reverberation process and 
recovers the original signal. This can be written as

s(n)*h(n)*g(n) = s(n) (10)

where g(n) is the inverse filter impulse response and ŝ 
(n) is the delayed replica of s(n).

There are several well known inverse filtering meth-
ods to dereverberate the original signal [22,28,29]. The 
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challenge in the inverse filtering method is to find 
the inverse impulse response g(n). The perfect recon-
struction of the original signal exists only if the room 
impulse response function is a minimum phase filter, 
whose poles and zeros are all inside the unit circle. But 
in practical case, most room transfer functions are non 
minimum phase, due to the late energy in the room 
impulse response and, therefore, inverse filtering based 
techniques have limited scope in practice [22].

3.2.2 Cepstral Filtering

Oppenhiem et al. [30] proposed a single microphone 
dereverberation approach, using the cepstral filtering 
technique in which speech is considered as slowly vary-
ing in the cepstral domain, with its cepstral components 
concentrated around the cepstral origin. Whereas, the 
acoustic impulse response is characterized by the pulses 
with rapid ripples concentrated far away from the cep-
stral origin [30]. The complex cepstrum of reverberant 
speech z(n) can be represented as

Cz(n) = Cs(n) + Ch(n) (11)

where Ch(n) is the complex cepstrum of the reverberant 
impulse response and Cs(n) is the complex cepstrum of 
the speech signal. Therefore, the dereverberation can 
be achieved by removing the cepstral components cor-
responding to the impulse response by applying low 
time lifter in cepstral domain. Also discussed in [30] 
was an alternative approach, where a cepstral filtering 
procedure using a comb filter is considered for reducing 
the reverberation effect.

The cepstral filtering has been successfully applied to the 
enhancement of speech degraded by simple echoes [30]. 
Typically, frame based processing is used to calculate 
the cepstrum of a signal. Since reverberation effects are 
generally much longer than typical frame lengths, the 
current frame does not contain all the reverberation 
effects of the frame, while it also contains reverberation 
effects from previous frames. Besides, the cepstrum of 
the clean speech signal Cs (n) and the cepstrum of the 
acoustic impulse response Ch (n) typically have a large 
overlap, resulting in signal distortion when using low 
time filtering. By using an exponential windowing pro-
cedure and cepstral averaging in order to identify the 
room impulse response h(n) before inverse filtering, a 
significant improvement is possible [31]. However, in 
practice, single-microphone cepstrum based techniques 
for dereverberation have a limited performance.

3.2.3 Temporal Envelope Filtering

Various single microphone algorithms are proposed 
using modulation transfer function (MTF) of speech [32]. 

According to this method the envelope of the  reverberant 
speech can be approximated by the convolution of the 
clean speech signal, with the envelope of an acoustic 
impulse response. Therefore, the problem of enhance-
ment reduces to the deconvolution of the room response 
envelope and the reconstruction of the speech signal. 
These methods do not require the impulse response 
of an environment to be measured [34]. For example, 
Langhans and Strube [33] proposed an enhancement 
method, where they appropriately filtered the envelope 
signals in critical frequency bands based on STFT and 
linear prediction [34]. They used theoretically derived 
inverse MTF as high pass filtering to reduce the effect 
of reverberation. Similarly, Aveandano and Herman-
sky [32] attempted to recover the energy envelope of 
the original speech by applying theoretically derived 
inverse MTF and an optimum filter trained from clean 
and reverberant speech [34]. To realize this approach, 
it is assumed that the carrier signal of the speech and 
the impulse response are white noise. However, these 
assumptions are not accurate with regard to real speech 
and reverberation [34]. Therefore, this approach has not 
yet achieved high quality dereverberation.

3.2.4 LP Residual Enhancement

Yegnanarayana and Murthy developed a reverberant 
speech enhancement system by manipulating excitation 
source information based on the residual characteristics 
of speech [35]. Manipulation of the residual signal is more 
appropriate than the manipulation of speech signal, espe-
cially for short segments, as the residual signal samples 
are generally less correlated than the speech samples. 
On the other hand, for manipulation of the speech signal 
directly, the choice of the size and shape of the window 
may affect the results significantly. The processing method 
involves identifying and manipulating the linear predic-
tion residual signal in different regions of the reverberant 
speech signal, namely, regions in which there is high SRR, 
low SRR and reverberant component only. Generally, 
there will be changes in the excitation characteristics both 
at the fine and gross levels, during speech production. 
The fine level changes may be from closed phase to open 
phase in a pitch period and the gross level changes may 
be from silence to voiced excitation. The weight function 
for the excitation source signal is derived at two different 
levels, namely, gross and fine levels to obtain the enhanced 
signal. The gross level weight function is derived to iden-
tify the high SRR and low SRR regions of the reverberant 
speech and the fine level weight function is derived to 
enhance the instants of significant excitation of original 
signal. In [35], gross level identification is done using the 
entropy of the distribution of the samples in the LP resid-
ual signal and fine level identification is done using the 
normalized prediction error. The authors also observed 
that there was a reduction in the flatness of the spectral 
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envelope, owing to reverberation. Thus, the LP coefficients 
are manipulated to increase the spectral flatness. Finally, 
the enhanced speech signal is resynthesized from the 
processed LP residual signal and the coefficients. In [36], 
the authors proposed a multi-channel speech enhance-
ment technique by exploiting the features of the excitation 
source in speech production. The Hilbert envelope (HE) 
of LP residual was used to derive the information of the 
strength of excitation. A weight function was derived 
by coherently combining the delay compensated HEs of 
the LP residual signals from the different microphones. 
The enhanced speech was again obtained by exciting the 
time-varying all-pole filter with the LP residual modified 
by the weight function.

In [37], the authors presented a spatiotemporal averaging 
method for the enhancement of reverberant speech. The 
basis was that the waveform of the LP residual between 
adjacent larynx-cycles varied slowly, so that each such 
cycle could be replaced by an average of itself and its 
nearest neighboring cycle. The averaging resulted in 
the suppression of spurious peaks in the LP residual, 
caused by room reverberation. Finally, a speech signal 
with reduced reverberation was synthesized with the 
enhanced LP residual.

Most of the LP residual techniques rely on the impor-
tant assumption that the calculated LP coefficients 
of the all-pole filter are unaffected by the multi-path 
reflections of the room. Gaubitch and Naylor showed 
that this assumption holds only in a spatially averaged 
sense, and that it cannot be guaranteed at a single point 
in space for a given room [38]. Recently, Gaubitch et al. 
used statistical room acoustic theory for the analysis 
of the auto regressive (AR) modeling of reverberant 
speech [39]. They investigated and showed that proper 
calculation of the LP coefficients, i.e., using spatially 
averaged LP coefficients, improved the quality of LP 
residual enhancement techniques.

3.3	 Multi-Stage	Algorithms

During the last decade, several multi-stage algorithms 
were proposed for the enhancement of reverberant 
speech. In [26], Nakatani and Miyoshi proposed a sys-
tem capable of blind dereverberation of one microphone 
speech, by employing the harmonic structure of speech. 
In this system, a sinusoidal representation was used to 
approximate the direct sound in the reverberant environ-
ments and adaptive harmonic filters were first employed 
to estimate the voiced clean speech from the reverberant 
speech signal. This estimation was then used to derive 
a dereverberation filter. This method, however, requires 
accurate estimation of the fundamental frequency from 
the reverberant speech. Wu and Wang [40] proposed a 
two-stage model to enhance reverberant speech. In the 

first stage, an inverse filter of the room impulse response 
was estimated, to increase the SRR by maximizing the 
kurtosis of the LP residual. In the second stage, long term 
reverberation effects were removed using the spectral 
subtraction approach. In [41], a hybrid dereverberation 
method was proposed, which combined correlation based 
blind deconvolution and modified spectral subtraction 
to suppress the tail of reverberation and improve the 
processed speech quality. Inverse filtering reduced the 
early reflection that constitutes most of the power of 
the reverberation. Then, the modified spectral  subtraction 
suppressed the tail of the inverse-filtered speech.

4.	 Enhancement	of	Multi-speaker	Speech

A source of degradation, which is more difficult to handle 
owing to the speech of a competing speaker, is popularly 
known as cocktail party effect. This case is difficult for 
enhancement because the degrading signal too has the 
characteristics of speech, which makes it difficult to 
distinguish it from the desired signal. This is primarily 
because: (i) The pitch and formants of different talkers 
may cross or overlap (ii) The number of talkers is usu-
ally not known, and (iii) Each talker’s amplitudes vary 
within the utterance.

Several approaches have been proposed in the literature to 
process speech degraded by speech of competing speaker. 
Most of these methods may be broadly grouped into three 
categories – blind source separation (BSS) using indepen-
dent component analysis (ICA), computational auditory 
scene analysis (CASA), and speech-specific approaches 
(SSA). Here, the first two categories are well known to 
the speech processing community. Speech processing 
in a multi-speaker environment is also attempted by the 
speech processing community, with an aim to use avail-
able speech-specific knowledge, like short time spectrum 
analysis, gross characteristics of excitation (voiced and 
unvoiced features), cepstrum, fundamental frequency, 
segmentation and masking, in time-frequency planes for 
separation. We group them as speech-specific approaches. 
Depending on the number of microphones used for col-
lecting speech, these methods may be further classified 
into single and multi-channel cases. In single channel 
case, speech is collected over a single microphone, and the 
objective is to process multi-speaker speech to emphasize 
desired speaker’s speech. This approach is more com-
monly termed as co-channel speaker separation [42]. In 
multi-channel case, speech is collected simultaneously 
over several (two or more) spatially distributed micro-
phones. Signals from all the microphones are processed 
to enhance the speech of one or more speakers. Separation 
of speech signals can be done effectively, if the speech 
signals are collected simultaneously over two or more 
microphones. This is mainly because multi-channel meth-
ods exploit the spatial diversity resulting from the fact that 
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desired and undesired speakers are in practice, located 
at different points in space. Similar to noisy speech and 
reverberant speech, these methods can also be grouped 
into temporal and spectral processing methods.

4.1	 Spectral	Processing	Methods

4.1.1 Speech-Specific Approaches

Initial work in co-channel speaker separation evolved 
from speech enhancement algorithms designed for sepa-
rating voiced speech from background noise, given a pitch 
estimate from the  target talker. Pearson [42] proposed a 
harmonic selection method for co-channel speech separa-
tion. In this method, first the spectral peaks are identified 
from the windowed mixed speech spectrum. The peaks 
are accumulated in a table that is used to construct a 
histogram. The pitch (F0) of a first speaker is determined 
from the histogram and the F0 of the second speaker is 
obtained by removing the harmonics belonging to the 
first speaker from the peak table and repeating the histo-
gram calculation for remaining peaks. The speech of each 
speaker is then resynthesized by taking inverse discrete 
Fourier transform (IDFT) of separated pitch and harmon-
ics. Morgan et al. [43] proposed a harmonic enhancement 
and suppression algorithm for separating the two speak-
ers. The idea was to recover the stronger speaker’s speech 
by enhancing his/her harmonics and formants, given a 
multi resolution pitch estimate. The weaker speaker’s 
speech is then obtained from the residual signal created, 
when the harmonics and formants of the stronger talker 
are suppressed. When there are more than two talkers in 
the co-channel signal, only the stronger speaker can be 
separated, and the separation is predicated on the basis 
that the speaker is always stronger and voiced.

Sinusoidal modeling of speech is also suggested to obtain 
the co-channel speaker separation [44]. The enhance-
ment is achieved by synthesizing a waveform from the 
sine waves of desired speaker with the help of a priori 
sine wave frequencies or a priori pitch contour and least 
square estimation technique. The basic requirement of 
all these methods is that the voices to be separated must 
be periodic. Generally the separation of unvoiced speech 
is more difficult, as compared to voiced speech. This is 
mainly because of two reasons. Firstly, unvoiced speech 
lacks harmonic structure and is often acoustically noise-
like. Secondly, the energy of unvoiced speech is usually 
much weaker than that of voiced speech. However, by 
the nature of speech production, most of the speech 
produced is of the voiced type, and, hence, nearly all the 
information is perceived from the voiced sounds itself.

4.1.2 CASA Methods

While speech enhancement using signal processing meth-
ods with satisfactory performance remains a challenge, the 

natural ability to enhance sounds of interest selectively 
by the human auditory system inspired researchers to 
approach this issue in a different way. In 1990, Bregman 
proposed the concept of auditory scene analysis (ASA) to 
segregate acoustic signal into streams, which correspond 
to different sources [45]. A typical ASA system generally 
consists of two main stages: Segmentation (analysis) and 
grouping (synthesis). In the first stage, the mixture sound 
is segmented into the time-frequency cells. Segmentation 
is performed using either the STFT or the gammatone 
filter bank [46]. The segments are then grouped, based on 
the cues that are mainly onset and  offset, on harmonicity, 
and on position cues [47]. This ASA account has inspired 
a series of computational ASA (CASA) systems for sound 
segregation [46]. A main advantage of CASA is that it 
does not make strong assumptions about interference. 
Generally, a typical CASA system contains four stages: 
peripheral analysis, feature extraction, segmentation, and 
grouping [47]. The peripheral processing decomposes the 
auditory scene into a time-frequency (T-F) representation 
via bandpass filtering and time windowing. The second 
stage extracts auditory features corresponding to ASA 
cues. In segmentation and grouping, the system generates 
segments for both target and interference, and groups the 
segments originating from the target into a target stream. 
Finally, the waveform of the segregated target is synthe-
sized from the target stream [47]. The techniques based on 
CASA suffer from two problems. First, these techniques 
are not able to separate unvoiced segments and almost 
in all reported results, one or both underlying signals 
are fully voiced [48]. Second, the vocal-tract related filter 
characteristics are not included in the discriminative cues 
for separation. In other words, in CASA techniques, the 
role of the excitation signal is more important than the 
vocal tract shape [49].

4.2	 Temporal	Processing	Methods

4.2.1 LP Residual Enhancement

A method for processing speech from a multi-speaker 
environment, using excitation source information, is 
proposed by the authors in [50]. The speech of each 
speaker is enhanced with respect to the speech of the 
other, by performing the relative emphasis of speech 
signal around each instant of significant excitation of the 
desired speaker. The relative emphasis is achieved by 
giving a larger weight to the LP residual samples in the 
region, around the instants of significant excitation, and 
lower weight to the samples in the other regions [50].

The temporal processing approach proposed in [50] 
 composes of following steps: (i) Identification of instants of 
significant excitation for determining the short high energy 
regions corresponding to each speaker, (ii) Classification of 
extracted instants into two speaker classes, (iii)  Weighting 

[Downloaded free from http://www.tr.ietejournals.org on Tuesday, November 16, 2010, IP: 130.95.72.90]



145IETE TECHNICAL REVIEW  |  VoL 26  |  ISSUE 2  |  MAR-APR 2009

Krishnamoorthy P and Prasanna S R M: Processing of Degraded Speech

the LP residual to enhance the excitation characteristics 
of desired speaker, and (iv) Synthesizing the enhanced 
speech by exciting the time-varying all-pole filter with the 
LP residual modified by the weight function. The HE of 
LP residual is used as a representation for the sequence 
of impulses corresponding to the instants of significant 
excitation of the vocal tract system [50]. When these 
sequences are added coherently, using the knowledge of 
the time-delay of each speaker, the strengths of the excita-
tion of the desired speaker are enhanced, relative to the 
strengths of excitation of other speakers. From the coher-
ently added sequence of impulses, a weight function is 
derived, which is used to derive a modified excitation 
signal. This modified excitation signal is used to synthesize 
speech using the vocal-tract system characteristics derived 
from the degraded speech.

4.2.2 Cepstral Processing

Stubbs and Summerfield [51]  compared the harmonic 
selection procedure suggested by Parsons [42], with the 
cepstral transformation of speech. The cepstral transfor-
mation maps the spectral envelope to a region near the 
origin of the cepstral domain, and maps the harmonic 
excitation to a position well separated from the origin. 
For voiced speech, the harmonic excitation was simply 
an impulse with cepstrum quefrency equal to the pitch 
period. If the pitch peak in the cepstrum was attenu-
ated, the harmonic excitation was reduced. The success 
of this filtering operation usually requires one voice to 
be stronger than the interfering voice. Therefore, speech 
separation not only depends on the processing method 
used but also on the nature of the degraded signal. The 
more separated the pitch and harmonics of each talker, 
the better the results to be expected.

4.3 BSS and ICA Methods

Recently, blind source separation (BSS) by independent 
component analysis (ICA) has received great attention. 
Blind separation of instantaneous mixture is achieved by 
the ICA, which aims at decomposing the multivariate data 
into a linear sum of independent components [52]. The goal 
in BSS is to recover a set of independent sources, given 
only a set of sensor observations that are generated from 
the individual source signals, through an unknown linear 
mixing process [53]. In BSS research, there are two impor-
tant problems that are generally considered: Instantaneous 
BSS and convolutive BSS. In the case of instantaneous BSS, 
signals are mixed instantaneously. However, in a practical 
environment, signals are always mixed in a convolutive 
manner, because of the reverberation effects.

The BSS technique in speech signal separation was first 
attempted by Cardoso [54] and Jutten [55], using the 
principle of statistical independence of the sources [53]. 

Blind separation of multiple speakers was attempted 
where the coefficients of the finite impulse response 
(FIR) filters were used to represent the linear mixing of 
the sources. These algorithms were based on the higher 
order statistics of the signal’s mutual independence 
measure among the independent components. Later, 
numerous approaches have been presented using ICA in 
BSS for speech separation [56-58]. Even though a variety 
of algorithms have been proposed, all ICA algorithms 
are fundamentally similar. The main difference between 
the different ICA algorithms is the numerical algorithm 
used for measuring the signal independence. The basic 
ICA approach uses the following linear model [59]:

X = AS (12)

where the vector S represents m independent sources, 
the matrix A represents the linear mixing of the sources, 
and the vector X is composed of m observed signals. 
The idea of the ICA is to recover the original sources by 
assuming that they are statistically independent. The 
independence assumption means that the joint PDF is 
the product of the densities for all sources.

P s p si
i

( ) ( )=∏  (13)

where p(si) is the PDF of source i and P(S) is the joint 
probability density function.

BSS using ICA achieves near perfect reconstruction of 
independent sources, in case of synthetic mixture of 
speech signals. However, when applied to a mixture 
of speech signals collected from real acoustic environ-
ments, the performance degrades severally due to the 
effect of reverberation and background noise.

Several methods have been proposed and are being 
 proposed in the framework of BSS using ICA, to improve 
the performance in real acoustic environments [60]. In 
spite of these sustained efforts, the performance is still 
not satisfactory and there is a belief that using more a 
priori information about speech may help to improve 
the performance.

ICA based algorithms for separation of speech signal 
have been developed in the domains of both time and fre-
quency. The time domain approach achieves good sepa-
ration results, once the algorithm converges. However, 
these methods suffer from a large computational load, 
to compute convolution of long filters. The frequency 
domain BSS has a great advantage that the convolution in 
the time domain becomes multiplication in the frequency 
domain and it can be easily implemented using FFT with 
less number of computations. However, the problems 
with frequency domain approach are indeterminacy of 
scaling and permutation.
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5. Summary and Conclusion

In this paper a brief review of various temporal and spectral 
processing approaches for the enhancement of degraded 
speech has been made. The review has mainly focused 
from the temporal and spectral processing perspective. 
Various temporal and spectral processing approaches for 
the enhancement of noisy speech, reverberant speech and 
multi-speaker speech have been discussed.

As it can be observed from the above discussion, the 
underlying principle of processing degraded speech is 
different in each domain of processing. Considering STFT 
based spectral processing, the focus of most of the spectral 
processing methods for speech enhancement is on the 
estimation (i.e., spectral characteristics of background 
noise, late reverberation, interfering speaker) and sup-
pression of the degradation rather than enhancement of 
the characteristics of the speech signal. Information about 
the degradation needs to be continuously estimated, 
particularly in non-stationary environments wherein 
degradation characteristics are constantly changing. 
Alternatively, the temporal processing methods that use 
the characteristics of excitation source information pri-
marily aim at emphasizing the high SNR/SRR regions of 
degraded speech signal. Therefore, no explicit knowledge 
of characteristics of degradation is required.

The limitation of the temporal processing methods is that 
the level of removal of degradation achieved may not 
be significant, as in the case of spectral based methods. 
These two approaches may, therefore, be effectively com-
bined by exploiting their merits and aiming to minimize 
the demerits. For instance, in case of noisy speech, the 
difficulty in estimating degradation in the highly non-
stationary environment for spectral processing may be 
carried out by using the gross weight function derived 
from the temporal processing as a voice activity detector 
to identify nonspeech regions. Similarly, in the case of 
reverberant speech, the temporal processing methods 
enhance the speech-specific features of high SRR regions 
in the temporal domain. The spectral subtraction based 
spectral processing methods reduce the late reverbera-
tion by estimating and subtracting the late reverberant 
spectrum from the degraded speech spectrum. The 
combination of these methods effectively enhances 
reverberant speech at high SRR regions and eliminates 
late reverberation. Further, each domain of processing 
uses independent speech-specific features for processing; 
that is, excitation source features for temporal process-
ing and vocal-tract based spectral features for spectral 
processing. Thus, it may be possible to combine these two 
processing approaches for exploiting their independent 
nature of processing degraded speech.

Therefore, in general, the combination of temporal 

and spectral processing methods may lead to speech 
 enhancement methods that are more effective and robust, 
when compared to any one of them. In future, combined 
TSP methods can be developed, which may result in 
improved performance, as compared to the individual 
temporal or spectral processing methods.

References

1. S. Boll, “Suppression of acoustic noise in speech using spectral 
subtraction,” IEEE Trans. Acoust., Speech, Signal process., vol. 
ASSP-27, pp. 113-20, Apr. 1979.

2. P. C. Loizou, Speech Enhancement: Theory and Practice, 1st ed. Boca 
Raton, FL.: CRC, 2007.

3. M. Berouti, R. Schwartz, and J. Makhoul, “Enhancement of speech 
corrupted by acoustic noise,” in Proc. IEEE Int. Conf. Acoust., 
Speech, Signal process., Apr. 1979, pp. 208-11.

4. P. Lockwood, and J. Boudy, “Experiments with a nonlinear spectral 
subtractor (NSS), Hidden Markov Models and the projection, for 
robust speech recognition in cars,” Speech Communication, vol. 11, 
no. 2-3, pp. 215-28, 1992.

5. S. Kamath, and P. Loizou, “A multi-band spectral subtraction 
method for enhancing speech corrupted by colored noise,” in Proc. 
IEEE Int. Conf. Acoust., Speech, Signal process., Orlando, USA, 
May 2002.

6. Ming-Chan You, Cheng-Yi Mao, and Jeen-Shing Wang, 
“Recursive Parametric Spectral Subtraction Algorithm for Speech 
Enhancement,” Communications in Computer and Information 
Sciences, vol. 2, pp. 826-35, 2007.

7. N. Virag, “Single channel speech enhancement based on masking 
properties of the human auditory system,” IEEE Trans. Speech 
Audio process., vol. 7, pp. 126-37, Mar. 1999.

8. Y. Ephraim, and D. Malah, “Speech enhancement using a minimum-
mean square error short-time spectral amplitude estimator,” IEEE 
Trans. Acoust., Speech, Signal process., vol. ASSP-32, pp. 1109-21, 
Dec. 1984.

9. Y. Ephraim, and D. Malah, “Speech enhancement using a minimum 
mean square error log-spectral amplitude estimator,” IEEE Trans. 
Acoust., Speech, Signal process., vol. ASSP-33, pp. 443-5, Apr. 1985.

10. B. J. Shannon, “Speech recognition and enhancement using 
autocorrelation domain processing,” Ph.D. dissertation, School of 
engineering, Griffith University, Brisbane, Australia, Aug. 2006.

11. M. Marzinzik, and B. Kollmeier, “Speech pause detection for noise 
spectrum estimation by tracking power envelope dynamics,” IEEE 
Trans. Speech Audio process., vol. 10, pp. 109-18, Feb. 2002.

12. B. Chen, and P. C. Loizou, “A Laplacian-based MMSE estimator for 
speech enhancement,” Speech Communication, vol. 49, pp. 134-43, 
Feb. 2007.

13. O. Cappe, “Elimination of the musical noise phenomenon with the 
Ephraim and Malah noise suppressor,” IEEE Trans. Speech Audio 
process., vol. 2, pp. 345-9, Apr. 1994.

14. I. Cohen, “Speech enhancement using super-Gaussian speech 
models and noncausal a priori SNR estimation,” Speech 
Communication, vol. 47, pp. 336-50, Nov. 2005.

15. H. Tasmaz, and E. Ercelebi, “Speech enhancement based on 
undecimated wavelet packet-perceptual filterbanks and MMSE-
STSA estimation in various noise environments,” Digital Signal 
process., vol. 18, no. 5, pp. 797-812, Sep. 2008.

16. D. Donoho, “De-noising by soft-thresholding,” IEEE Trans. 
Information Theory, vol. 41, no. 3, pp. 613-27, May 1995.

17. M. K. Hasan, S. Salahuddin, and M. R. Khan, “Reducing signal-
bias from mad estimated noise level for dct speech enhancement,” 
Signal Process., vol. 84, no. 1, pp. 151-62, 2004.

18. J.-H. Chang, S. Gazor, N. S. Kim, and S. K. Mitra, “Multiple 
statistical models for soft decision in noisy speech enhancement,” 
Pattern Recognition, vol. 40, pp. 1123-34, Mar. 2007.

[Downloaded free from http://www.tr.ietejournals.org on Tuesday, November 16, 2010, IP: 130.95.72.90]



147IETE TECHNICAL REVIEW  |  VoL 26  |  ISSUE 2  |  MAR-APR 2009

Krishnamoorthy P and Prasanna S R M: Processing of Degraded Speech

19. B. Yegnanarayana, C. Avendano, H. Hermansky, and P. Satyanarayana 
Murthy, “Speech enhancement using linear prediction residual,” 
Speech Communication, vol. 28, pp. 25-42, May 1999.

20. W. Jin, and M. S. Scordilis, “Speech enhancement by residual 
domain constrained optimization,” Speech Communication, vol. 48, 
pp. 1349-64, Oct. 2006.

21. B. Yegnanarayana, S. R. Mahadeva Prasanna, and K. S. Rao, “Speech 
enhancement using excitation source information,” in Proc. IEEE 
Int. Conf. Acoust., Speech, Signal process., vol. 1, Orlando, USA, 
2002, pp. I-541-4.

22. S. Neely, and J. Allen, “Invertibility of a room impulse response,” 
J. Acoust. Soc. Am., vol. 66, pp. 165-9, 1979.

23. E. Habets, “Single-and multi-microphone speech dereverberation 
using spectral enhancement,” Ph.D. dissertation, Technische 
Universiteit Eindhoven, The Netherlands, Jun. 2007, http://
alexandria.tue.nl/extra2/200710970.pdf.

24. J. Flanagan, and R. Lummis, “Signal processing to reduce multipath 
distortion in small rooms,” J. Acoust. Soc. Am., vol. 47, pp. 1475-81, 
1970.

25. J. Allen, D. Berkley, and J. Blauert, “Multimicrophone signal-
processing technique to remove room reverberation from speech 
signals,” J. Acoust. Soc. Am., vol. 62, pp. 912-5, 1977.

26. T. Nakatani, and M. Miyoshi, “Blind dereverberation of single 
channel speech signal based on harmonic structure,” in Proc. IEEE 
Int. Conf. Acoust., Speech, Signal process., vol. 1, Hong Kong, China 
PR, Apr. 2003, pp. 92-5.

27. K. Lebart, and J. Boucher, “A new method based on spectral 
subtraction for speech dereverberation,” Acta Acoustica, vol. 87, 
pp. 359-66, 2001.

28. M. Miyoshi, and Y. Kaneda, “Inverse filtering of room acoustics,” 
IEEE Trans. Acoust., Speech, Signal process., vol. ASSP-36, 
pp. 145-52, Feb. 1988.

29. B. Gillespie, H. Malvar, and D. Florencio, “Speech dereverberation 
via maximum-kurtosis subband adaptive filltering,” in Proc. IEEE 
Int. Conf. Acoust., Speech, Signal process., vol. 6, Salt Lake City, 
USA, 2001, pp. 3701-4.

30. A. Oppenheim, R. Schafer, and J. T.G. Stockham, “Nonlinear 
filtering of multiplied and convolved signals,” Proc. IEEE, vol. 56, 
pp. 1264-91, Aug. 1968.

31. M. Tohyama, R. Lyon, and T. Koike, “Source waveform recovery in 
a reverberant space by cepstrum dereverberation,” in Proc. IEEE 
Int. Conf. Acoust., Speech, Signal process., vol. 1, Minneapolis, 
USA, Apr. 1993, pp. 157-60.

32. C. Avendano, and H. Hermansky, “Study on the dereverberation of 
speech based on temporal envelope filtering,” in Proc. Fourth Int. 
Conf. Spoken Language, vol. 2, Oct. 1996, pp. 889-92.

33. T. Langhans, and H. W. Strube, “Speech enhancement by nonlinear 
multiband envelope filtering,” in Proc. IEEE Int. Conf. Acoust., 
Speech, Signal process., vol. 1, May 1982, pp. 156-9.

34. Masashi Unoki, Masakazu Furukawa, Keigo Sakata, and Masato 
Akagi, “An improved method based on the MTF concept for 
restoring the power envelope from a reverberant signal,” J. 
Acoustical Science and Technology, vol. 25, no. 4, pp. 232-42, 2004.

35. B. Yegnanarayana, and P. Satyanarayana Murthy, “Enhancement of 
reverberant speech using LP residual signal,” IEEE Trans. Speech 
Audio process., vol. 8, pp. 267-81, May 2000.

36. B. Yegnanarayana, S. R. M. Prasanna, R. Duraiswami, and D. Zotkin, 
“Processing of reverberant speech for time-delay estimation,” IEEE 
Trans. Speech Audio process., vol. 13, pp. 1110-8, Nov. 2005.

37. N. Gaubitch, and P. Naylor, “Spatiotemporal averagingmethod 
for enhancement of reverberant speech,” in Proc. 15th Inter. Conf. 
Digital Signal process., Cardiff, Wales, UK, Jul. 2007, pp. 607-10.

38. N. Gaubitch, P. Naylor, and D. Ward, “On the use of linear 
prediction for dereverberation of speech,” in Proc. Int. Workshop 
Acoust., Echo Noise Control, Sep. 2003.

39. N. D. Gaubitch, D. B. Ward, and P. A. Naylor, “Statistical analysis of 
the autoregressive modeling of reverberant speech,” J. Acoust. Soc. 
Am., vol. 120, pp. 4031-9, Dec. 2006.

40. M. Wu, and D. Wang, “A two-stage algorithm for one-microphone 
reverberant speech enhancement,” IEEE Trans. Audio, Speech, 
Language process., vol. 14, pp. 774-84, May 2006.

41. K. Furuya, and A. Kataoka, “Robust speech dereverberation using 
multichannel blind deconvolution with spectral subtraction,” 
IEEE Trans. Audio, Speech, Language process., vol. 15, pp. 1579-91,
Jul. 2007.

42. T. Parsons, “Separation of speech from interfering speech by means 
of harmonic selection,” J. Acoust. Soc. Am., vol. 60, pp. 911-8, Oct. 
1976.

43. D. Morgan, E. George, L. Lee, and S. Kay, “Cochannel speaker 
separation by harmonic enhancement and suppression,” IEEE 
Trans. Speech Audio process., vol. 5, pp. 407-24, Sep. 1997.

44. T. Quatieri, and R. Danisewicz, “An approach to co-channel talker 
interference suppression using a sinusoidal model for speech,” IEEE 
Trans. Acoust., Speech, Signal process., vol. ASSP-38, pp. 56-69,
Jan. 1990.

45. A. S. Bregman, Auditory scene analysis. Cambridge, MA: MIT Press, 
1990.

46. D. Wang, and G. J. Brown, Computational Auditory Scene Analysis: 
Principles, Algorithms, and Applications. Wiley-IEEE Press, 2006.

47. G. Hu, and D. Wang, “An auditory scene analysis approach to monaural 
speech segregation,” in Topics in Acoustic Echo and Noise Control, I. H. 
E. and S. G, Eds. Springer, Heidelberg, 2006, pp. 485-515.

48. G. Hu, and D. Wang, “Monaural speech segregation based on pitch 
tracking and amplitude modulation,” IEEE Trans. Neural Networks, 
vol. 15, no. 5, pp. 1135-50, Sep. 2004.

49. M. H. Radfar, R. M. Dansereau, and A. Sayadiyan, “A maximum 
likelihood estimation of vocal-tract-related filter characteristics 
for single channel speech separation,” EURASIP J. Audio Speech 
Music process., vol. 2007, Article ID 84186, 15 pages, 2007. 
doi:10.1155/2007/84186.

50. B. Yegnanarayana, S. R. M. Prasanna, and M. Mathew, “Enhancement 
of speech in multispeaker environment,” in Proc. European Conf. 
Speech process., Technology, Geneva, Switzerland, 2003, pp. 581-4.

51. R. J. Stubbs, and Q. Summerfield, “Algorithms for separating the 
speech of interfering talkers: Evaluations with voiced sentences, 
and normal-hearing and hearing-impaired listeners,” J. Acoust. Soc. 
Am., vol. 87, no. 1, pp. 359-72, 1990.

52. P. Comon, “Independent component analysis, a new concept?” 
Signal process., vol. 36, no. 3, pp. 287-314, 1994.

53. J. Cardoso, “Blind signal separation: Statistical principles,” Proc. 
IEEE, vol. 86, pp. 2009-25, 1998.

54. J.-F. Cardoso, “Eigen-structure of the fourth-order cumulant tensor 
with application to the blind source separation problem,” in Proc. 
IEEE Int. Conf. Acoust., Speech, Signal process., vol. 5, Apr. 1990, 
pp. 2655-8.

55. C. Jutten, and J. Herault, “Blind separation of sources, part 1: An 
adaptive algorithm based on neuromimetic architecture,” Signal 
process., vol. 24, no. 1, pp. 1-10, 1991.

56. F. Asano, S. Ikeda, M. Ogawa, H. Asoh, and N. Kitawaki, “Combined 
approach of array processing and independent component analysis 
for blind separation of acoustic signals,” IEEE Trans. Speech Audio 
process., vol. 11, no. 3, pp. 204-15, May 2003.

57. Z. Koldovsky, and P. Tichavsky, “Time-domain blind audio source 
separation using advanced ICA methods,” in Proc. INTERSPEECH 
2007, Antwerp, Belgium, Aug. 2007, pp. 27-31.

58. N. Das, A. Routray, and P. K. Dash, “ICA methods for blind 
source separation of instantaneous mixtures: A case study,” Neural 
Information process. Letters and Reviews, vol. 11, no. 11, pp. 225-46, 
Nov. 2007.

59. A. Hyv¨arinen, and E. Oja, “Independent component analysis: 
algorithms and applications,” Neural Networks, vol. 13, no. 4-5,
pp. 411-30, 2000.

60. S. Araki, R. Mukai, S. Makino, T. Nishikawa, and H. Saruwatari, 
“The fundamental limitation of frequency domain blind source 
separation for convolutive mixtures of speech,” IEEE Trans. Speech 
Audio process., vol. 11, no. 2, pp. 109-16, Mar. 2003.

[Downloaded free from http://www.tr.ietejournals.org on Tuesday, November 16, 2010, IP: 130.95.72.90]



148 IETE TECHNICAL REVIEW  |  VoL 26  |  ISSUE 2  |  MAR-APR 2009

Krishnamoorthy P and Prasanna S R M: Processing of Degraded Speech

AUTHORS
P. Krishnamoorthy was born in Tamil Nadu, India, in 
1980. He received the B.E. degree in electrical and 
electronics engineering from Thiagarajar College of 
Engineering, Madurai, India, in 2001 and the M.Tech. 
degree in applied electronics from P.S.G.College 
of Technology, Coimbatore, India, in 2003. He is 
currently pursuing the Ph.D. degree in electronics and 

communication engineering at Indian Institute of Technology Guwahati, 
India.

His research interests are in digital signal processing and speech and audio 
processing.

E-mail: pkm@iitg.ernet.in

S. R. Mahadeva Prasanna was born in India in 1971. 
He received the B.E. degree in electronics engineering 
from Sri Siddartha Institute of Technology, Bangalore 
University, Bangalore, India, in 1994, the M.Tech. 
degree in industrial electronics from the National 
Institute of Technology, Surathkal, India, in 1997, and 
the Ph.D. degree in computer science and engineering 

from the Indian Institute of Technology Madras, Chennai, India, in 2004. 
He is currently an Associate Professor in the Department of Electronics 
and Communication Engineering, Indian Institute of Technology, Guwahati. 

His research interests are in speech and signal processing, application of AI 
tools for pattern recognition tasks in speech, and signal processing.

E-mail: prasanna@iitg.ernet.in

DoI: 10.4103/0256-4602.49103; Paper No TR 50_08; Copyright © 2009 by the IETE

[Downloaded free from http://www.tr.ietejournals.org on Tuesday, November 16, 2010, IP: 130.95.72.90]


