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Abstract

De novo protein structure prediction requires location of the lowest energy state of the polypeptide chain among a vast

set of possible conformations. Powerful approaches include conformational space annealing, in which search progres-

sively focuses on the most promising regions of conformational space, and genetic algorithms, in which features of

the best conformations thus far identified are recombined. We describe a new approach that combines the strengths

of these two approaches. Protein conformations are projected onto a discrete feature space which includes backbone

torsion angles, secondary structure, and beta pairings. For each of these there is one “native” value: the one found in

the native structure. We begin with a large number of conformations generated in independent Monte Carlo structure

prediction trajectories from Rosetta. Native values for each feature are predicted from the frequencies of feature value

occurrences and the energy distribution in conformations containing them. A second round of structure prediction

trajectories are then guided by the predicted native feature distributions. We show that native features can be predicted

at much higher than background rates, and that using the predicted feature distributions improves structure prediction

in a benchmark of 28 proteins. Our approach allows generation of successful models by recombining native-like parts

of first-round conformations. The advantages of our approach are that features from many different input structures

can be combined simultaneously without producing atomic clashes or otherwise physically unviable models, and that

the features being recombined have a relatively high chanceof being correct.



1 Introduction

Ab initio structure prediction remains a fundamental unsolved problem in computational biology. Since proteins fold

to their lowest free energy states, the challenge, given a sufficiently accurate energy function, is to locate the global

energy minimum. This is a difficult problem because the search space is very high-dimensional and riddled with local

minima. Indeed, locating the global minimum is the primary bottleneck to consistent and accurate structure prediction

using current methods such as Rosetta [1].

One promising approach is to build up a map of the energy landscape by carrying out an initial set of searches to

identify a large number of local energy minima, and then to utilize this information to guide a second set of searches

towards the regions of the landscape likely to contain the global minimum. Several methods have been proposed

to integrate information from a first round of sampling. On one end of the spectrum are methods that concentrate

resampling around low-scoring structures from initial sampling rounds. In conformation space annealing [2], a pool

of random starting structures is gradually refined by local search, with low energy structures giving rise to children

that eventually replace the higher energy starting structures. In [3], a Rosetta-based resampling method is presented

that operates by identifying “funnels” in conformation space and concentrating sampling on the low-energy funnels.

Similar resampling strategies have been developed for general-purpose global optimization. These include fitting a

smoothedresponse surfaceto the local minima already gathered [4] and using statistical methods to identify good

starting points for optimization [5]. Methods of this kind do not aim to guide search outside previously explored

regions, but rather to exploit the lowest-energy regions discovered through ordinary search. They will succeed when

near-native regions have already been explored and identified as native-like by the energy function, but not otherwise.

On the other end of the spectrum, genetic algorithm approaches [6, 7, 8] recombine features of successful structures

to create new structures. Although genetic algorithms do explore new regions of conformation space by feature

recombination, they do so in an undirected fashion—no attempt is made to identify those features most responsible

for the success of low-energy structures and to recombine these. A third class, generalized ensemble methods such as

multicanonical sampling [9], metadynamics [10], and the Wang-Landau algorithm [11], use initial samples to modify

the energy function to improve sampling of low-energy regions.

In this paper we present a method designed both to avoid the limitations of concentration-style methods by re-

combining structural features to explore new regions of conformation space and to avoid the limitations of genetic

algorithms by carefully selecting which features to recombine. Typically, no single local minimum computed in the

first round of search has all the native feature values, but many or all features assume their native values in at least

some of the models—for instance, in a beta sheet with three strands and hence two beta pairings, the proper registers

for the beta pairings may both be present in some models, but never together. If we can identify these native feature

values and recombine them, sampling can be improved. Related work [12] indicates that constraining a few native
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“linchpin” features can dramatically improve sampling. Wehypothesize that many native feature values can be iden-

tified using information derived from an initial round of Rosetta models, most significantly the enrichment of native

values in lower-energy models. We develop a statistical model that predicts the probability that each feature value is

native by incorporating a variety of statistics, both energy-based and otherwise, from the pool of initial-round models.

The output of the predictor is a distribution over features that corrects inefficiencies in the distribution sampled by

plain Rosetta search. In the resampling round, we use this improved distribution to guide Rosetta search. In contrast

to generalized ensemble methods, the energy function is notmodified in the resampling round; instead, the sampling

distribution is modified directly by means offragment repicking, which involves changing the fragment pool available

to Rosetta, andstochastic constraintsto enforce beta sheet topology. Our resampling method explicitly promotes

feature recombination by independent enrichment of nativefeature values, producing strings of native feature values

never observed together in the initial round.

2 Methods and Materials

Our resampling algorithm has three steps (Figure 1(a)). In the first, “discretization” step, we project an initial set

of Rosetta models for the target protein from conformation space into a discretized feature space. In the second,

“prediction” step, we use the energies and frequencies associated with the different feature values in the initial set

of models to estimate the probability that each is native. Inthe third, “resampling” step, we use the predicted native

feature probabilities to guide Rosetta structure prediction calculations.

2.1 Discretization

The discretization step significantly reduces the search space while preserving essential structural information. A

“feature” is a structural property that can take on one of a discrete set of values. Conformations are represented by

strings of feature values. Our features fall into three classes: torsion features, secondary structure features, and beta

sheet features, with the latter class further subdivided into three subclasses.

Torsion features are residue-specific. In order to discretize the possible torsion angles for each residue, we divide

the Ramachandran plot into four regions, referred to as “A,”“B,” “E,” and “G” (Figure 1(b)) roughly corresponding

to clusters in thePDB. A fifth label, “O,” indicates a cis peptide bond and does not depend onφ or ψ. Labels were

chosen to correspond to those used in related work [12].

Secondary structure features are also associated with single residues. They take values in the standard alphabet

“E,” “H,” and “L,” indicating sheet, helix, and loop.

The beta structure of a protein conformation can be parsed atthree different levels, illustrated for protein 1di2

in Figure 1(c). At the top level is a single topology feature.The native topology (depicted on the left) includes

2



Figure 1: Feature space representation of protein structures.(a) Flow-chart outline of the new resampling method.
Each model from the initial round of Rosetta search (shown inthe leftmost oval) corresponds after discretization to a
string of feature values (shown here as strings of letters representing torsion feature values). The colored grid below
represents frequencies of torsion feature values among feature strings from the initial round. Here, residues 49–64
of protein 1dcj are depicted (blue, frequencies near 0%; green, frequencies near 50%; red, frequencies near 100%).
Each column represents the distribution over a single feature. A black outline indicates the native feature value. The
grid in the lower right depicts the predicted native probabilities, which are used as targets in the resampling round of
search. Rare feature values at residues 56, 69, 61, and 62 areenriched over the initial round. (b) Torsion feature values
represent discrete regions of the Ramachandran plot. (c) Beta topology, pairing, and contact features. At the top level
is a single topology feature, with each value a possible topology. One such topology consists of several pairings, each
of which has an associated pairing feature. Pairing AB of thenative topology is shown in the middle level. The values
of the pairing feature are all possible registers. Each register is associated with a set of contact features, shown in
the bottom level. In this example, 1di2, the native registerhas two bulge-free regions, each associated with a contact
feature circled in gray. The values of a contact feature are all possible contacts within the region. Contact features
differ from other types in that multiple values might be native. The contacts present in the native structure are circled
in blue. To constrain the native register, one native constraint must be chosen from each contact feature.
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a beta sheet with three strands, strand A running from residue 19 to residue 25, strand B running from residue 33

to residue 39, and strand C running from residue 43 to residue48. Strands A and B pair, as do strands B and C,

so this topology has two associated pairing features, AB andBC. Pairing feature AB is examined in detail. The

possible values for a pairing feature are registers, definedas sets of beta contacts, each denoted by a pair(i, j) of

residue numbers. The possible registers for pairing AB include, from left to right,{(18, 40), (19, 39), . . . , (27, 31)},

{(20, 40), (21, 39), . . . , (27, 33)}, and{(18, 40), (19, 39), . . . , (22, 36), (24, 35), . . . , (27, 32)}. The third register has

a beta bulge at residue 23. The beta contacts in these registers extend slightly outside the areas designated strand

in the native structure, because they include all beta contacts ever observed in the initial sampling round. Each

register brings with it one or more contact features, one foreach bulge-free region in the register. The number of

such features is therefore one greater than the number of bulges in the register. The chart shows the two contact

features associated with register{(18, 40), (19, 39), . . . , (22, 36), (24, 35), . . . , (27, 32)}, one with possible values

{(18, 40), (19, 39), (20, 38), (21, 37), (22, 36)}, and one with possible values{(24, 35), (25, 34), (26, 33), (27, 32)}.

In order to constrain this register, two beta contact constraints must be chosen to be enforced, one from each of these

two contact features.

Beta features are hierarchical; each pairing feature is associated with the topology value from which it derives, and

each contact feature is associated with the register from which it derives. If two different topologies both contain the

same pairing, a copy of the pairing feature is created for each. This distinction is important for the prediction step, in

which the predicted distribution over registers may dependon the topology. However, due to the partially independent

energetic contributions of different features, models with a non-native topology that nonetheless includes a native

strand pairing can in fact be informative about the correct register for that pairing; if a given register is energetically

favorable even in models with incorrect global topology, itis more likely to be the native register. Therefore, in

predicting which register is the native value for a pairing feature, we collect energy and feature frequency statistics

both for models within the parent topology and for all modelswith the pairing. Beta contact features also give rise to

these two classes of statistics.

We denote theith feature for a given protein byXi, and its possible values byx1

i , x
2

i , . . . , x
mi

i , with one of these,

denoted byx∗i , being the native one. A single model is represented by a string (x1, x2, . . . , xk) of values, one for each

feature from(X1, X2, . . . , Xk).

2.2 Native feature value prediction

In the second, prediction step of our method, we attempt to predict the native value of each feature using statistics,

or “properties,” collected from an initial population of models generated by Rosetta. These statistics include the

frequencies of different feature values and the energies ofmodels which contain them.
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Since the energy of a structure is a sum of physically local interactions, we hypothesized that native feature val-

ues would generally be associated with lower energies even when paired with non-native features. In order to take

advantage of this association, the predictor incorporatestwo energy statistics associated with a feature value:minE is

the minimum energy over all models with that feature value and lowE is the 10th percentile energy of models with

that feature value. The expected value oflowE does not depend on the sample size, so this is a fairer measurethan

minEof energy for promising feature values which are sampled rarely and hence do not have a chance to appear in a

low energy structure. Sampling frequency in the initial setof models is also informative about native feature values.

The frequency of feature values for a featureXi, denotedPsamp(Xi), can be regarded as an initial belief about which

of {x1

i , x
2

i , . . . , x
mi

i } is native; if a torsion or secondary structure feature valueis sampled by Rosetta inp proportion

of models, it has aboutp chance of being native (as illustrated in the central bars ofFigure 2(b) in the next section).

The predictor therefore incorporates sampling frequency as a predictive statistic. In addition to energy and frequency

statistics, each feature class also brings with it one or more additional class-specific feature value properties. Many

of these address common modeling pathologies. For topologies, contact order [13] proves very useful in this regard.

Rosetta sampling is biased toward short-range pairings, asthese are easier to form, and inclusion of the contact order

gives the predictor the ability to reduce this bias.

Our native feature value predictor takes the form of a modified logistic regression model, parametrized by a weight

vectorβ with terms for each feature value property and each pairwisecombination of properties (in order to take

joint effects into account). The input to the predictor, fora feature valuexj
i of featureXi, is a vector of properties

[

minE(xj
i ), lowE(xj

i ), Psamp(x
j
i ), . . .

]

computed from those first-round models that haveXi = xj
i . The output of the

predictor is a new probabilityPpred(x
j
i ). In advance of making predictions for any new target proteins, the predictor

must be trained offline. This need only be done once. Afterward, the same predictor is used for all future targets. We

use a training set of Rosetta models for28 small alpha/beta proteins. For testing purposes, we employleave-one-out

training to train a separate predictor for each protein in the benchmark from data for the other proteins. Each of the

five classes of features (torsion, secondary structure, topology, pairing, and contact) has a different set of associated

statistics, so we train a different native feature value predictor for each class. The weight vectorβ is fitted to the

training data by maximizing an objective function measuring the estimated effectiveness of the output of the native

feature value predictor when used for Rosetta sampling. Themaximization is performed with the standard BFGS

variant of Newton’s method [14].

Brief descriptions of all of the feature value properties weuse for native feature prediction are given in Table I,

along with the predictive power of each by itself, as measured by the information gain per residue of a predictor

including each property individually. The information gain of a predictorP ′

pred for a particular feature type is estimated
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by

IG(P ′

pred) =
1

#res

n
∑

i=1

log
2
(P ′

pred(x
∗

i )/Psamp(x
∗

i )),

where #res is the number of residues in the protein. Information gain is calculated with respect to the baseline predictor

Psamp.

Rosetta’s prior beliefsPsamp(its feature sampling rates) are largely derived from the fragments, which are chosen

using secondary structure predictors like Psipred [15], JUFO [16], and SAM [17] that only make use of sequence

information. Native feature value prediction can be regarded as updating Rosetta’s prior beliefs by incorporating

energy information to arrive at a more useful belief distribution. Details about the exact mathematical form of the

native feature value predictor and the fitted weight vectorsfor each feature class can be found in the supplementary

material (Section 5.1).

2.3 Resampling

In the third step, we use the predicted native feature valuesto guide a new round of Rosetta model generation. We

use two approaches to guide Rosetta trajectories using the predicted feature values: (1) local secondary structure and

torsional feature values are favored by selecting fragments for Rosetta model building that are enriched in predicted

native feature values, and (2) predicted beta contact features are favored by enforcing the predicted non-local pairings

using Rosetta broken chain folding [18].

An interesting and important question which must be resolved first is the ideal target sampling frequenciesPresamp

for different feature values given the predicted probabilitiesPpred that each is native. The optimal strategy can be

determined by solving a constrained optimization problem (details in Section 5.2 of the supplementary material) .

Optimal strategies lie on a spectrum between two extremes. If only a single sample is permitted, the optimal strategy

is to deterministically choose the single best guess for thenative string—for each feature, the single value most likely

to be native is chosen. If, on the other hand, sufficient samples are permitted to try every possible feature string at least

once, the optimal strategy is to spread sampling as evenly aspossible. The tension between concentration (placing

all bets on the best guess) and diversification (spreading bets equally among all guesses) represents a typical tradeoff

in resampling methods. For intermediate numbers of samples, neither extreme is very successful. The concentration

strategy samples the same string over and over, so will very likely never find the native. The diversification strategy

succeeds eventually, but requires enormous numbers of samples. The strategy of settingPresampequal toPpred, similar

in spirit to sampling from an approximation of the Boltzmanndistribution, interpolates between these extremes by

minimizing the expected log number of samples required to sample a single native string (proof in Section 5.2 of

the supplementary material). For intermediate numbers of samples, it is far more successful than diversification.

For instance, 77 distinct beta topologies for 1ctf appear with non-zero probability inPsamp, with the native topology

6



Feature value properties

Torsion meta-feature Accuracy IG
Psamp Rosetta sampling rate 88.9%
lowE 10

th percentile energy of models with the feature value 76.4% 0.016
minE minimum energy of models with the feature value 87.7% 0.040
frag rate of occurence of the feature value in the fragments 86.2%0.039
loop indicates either an E or O torsion feature value
Ppred output of nativeness predictor 91.1% 0.081

Secondary structure meta-feature Accuracy IG
Psamp Rosetta sampling rate 87.2%
lowE 10

th percentile energy of models with the feature value 72.8% 0.018
minE minimum energy of models with the feature value 86.2% 0.023

psipred secondary structure prediction from Psipred 87.7% 0.034
jufo secondary structure prediction from JUFO 80.9% 0.010

Ppred output of nativeness predictor 91.8% 0.055

Topology meta-feature Accuracy IG
Psamp Rosetta sampling rate 21.4%
lowE 10

th percentile energy of models with the feature value 21.4% 0.032
minE minimum energy of models with the feature value 46.4% 0.023

co approximate contact order of a structure with the given topology
Ppred output of nativeness predictor 60.7% 0.036

Register meta-feature Accuracy IG
Psamp Rosetta sampling rate 54.0%
lowE 10

th percentile energy of models with the feature value 44.7% 0.065
minE minimum energy of models with the feature value 61.2% 0.057
bulge indicates the presence of at least one beta bulge in the register
Ppred output of nativeness predictor 57.6% 0.066

Contact meta-feature Accuracy IG
Psamp Rosetta sampling rate 85.4%
lowE 10

th percentile energy of models with the feature value 68.9% 0.002
edgedist distance (in residue numbers) of a contact from either end ofa pairing
oddpleat indicates an anomaly in the pleating pattern

Ppred output of nativeness predictor 88.3% 0.005

Table I: Properties used by the predictor, organized by feature class. A native feature value is correctly identified
by a property if the property is higher (or lower, in the case of energy properties) for the native feature value than
for any other values of the associated feature. The “Accuracy” column indicates the percentage of features from our
benchmark whose native values were correctly identified by each property. Accuracy values have been omitted for
properties that are only informative in conjunction with others and so have no predictive value on their own.Ppred,
the output of the native feature value predictor, is included here for comparison. Predictors were trained using leave-
one-out training on the benchmark set of 28 proteins. Accuracy measures were computed on the left-out protein and
averaged across the set. The “IG” column indicates the average information gain for a predictorP ′

pred based only
on Psamp and the indicated property, versus the baseline predictorPsamp, in units of bits per residue—total gain for
features in each class for a given protein is divided by the number of residues in the protein. Results are averaged
across proteins in our benchmark. Note that information gain can be large even for properties which do not yield
accuracy increases if rare native feature values are often substantially enriched. The information gain given forPpred

is the gain when all properties are included in the predictor.
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sampled at rate0.55%. A diversification strategy would place equal weight on all77 topologies, resulting in a native

sampling rate of1/77 = 1.3%, a 2.4-fold increase in sampling efficiency. By contrast,Ppred places a probability of

73.7% on the native topology, a135.2-fold increase. Clearly far fewer samples will be required to find the native

structure if we usePresamp= Ppred. In 1acf,Psampcontains1233 distinct topologies and places probability7.5% on the

native one; diversification results in a92.7-fold decrease in sampling efficiency, while settingPresamp= Ppred results

in a5.3-fold increase to39.5%.

2.3.1 Stochastic constraints

In order to effect a desired feature distribution, models are generated using different sets of beta contact constraints.

Each Rosetta search trajectory for the target protein begins with a random draw of constraints. First a topology is

drawn from the topology distribution inPpred, then registers are drawn for each of the pairings that compose that

topology, and finally the contacts to enforce are chosen for each register.

A residue–residue beta contact can be enforced by means of a rigid-body transformation constraint between the

two residues [18] with an attendant chainbreak introduced in a nearby loop to allow for chain mobility. In general,b+1

constraints will be required to constrain a register withb bulges, one in each bulge-free segment.

Values are drawn fromPpred independently for each feature in order to promote feature recombination.

2.3.2 Fragment repicking

Rosetta sampling rates for torsion features are closely correlated with rates of occurrence of those features in the set

of fragments used for Rosetta sampling. We can therefore change Rosetta sampling rates significantly by repicking

fragments. IfPpred is our target distribution, with marginal distributionPpred(Xi) for each torsion featureXi, then we

repick fragment files in such a way that the rate of occurrenceof each value for featureXi in the fragment file closely

matches the rate given byPpred(Xi). The fragment files are picked using a simple greedy quota-satisfaction method.

The fragment-picking method of distribution enforcement has several important advantages over the stochastic

torsion constraint method used in our previous work [19]. First, it provides more fragments for rare native features,

increasing the likelihood that one of them will be near the native geometry. Second, and most significantly, it sidesteps

some of the inadequacies of the independence model. When themarginal distributions inPpred are matched, correla-

tions between nearby torsion features come along for free within the fragments. Rather than a combination of helical

and strand residues, fragments will generally consist of all helical or all strand residues.
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3 Results and Discussion

As described in detail in the Methods section, our approach has three steps. First, an initial set of Rosetta models are

projected onto a discrete feature space to reduce the dimensionality of the sampling problem. Second, we estimate

the probability that each feature value (secondary structure type, torsion angle bin, beta strand pairing, etc.) is present

in the native structure. Third, we use these native feature probability distributions to guide another round of Rosetta

structure prediction calculations into the regions of the energy landscape most likely to contain the native structure.

Each step in the approach can be evaluated independently. The first step is trivial since the feature values (torsion

bins, beta contacts, etc) can be computed directly from the input structures. In the next two sections we evaluate (1) the

extent to which native feature values can be predicted, and (2) the use of these predictions to improve conformational

sampling close to the native structure. All results are froma benchmark set of 28 proteins ranging in size from 51

to 128 residues. The benchmark PDBs were chosen from a set in common use for Rosetta benchmarking in order

to allow comparison of these methods to other Rosetta developments, such as recent work on linchpin features [12].

PDBs were selected to contain a variety of beta topologies, since beta sheet features are central to our method; our

tests (discussed below) indicate that predictor weights are not heavily dependent on the choice of training set. In order

to avoid testing on training data, we trained 28 separate sets of topology, pairing, contact, and torsion predictors, one

for each test protein, from training models for the other 27 proteins.

3.1 Native feature value prediction accuracy

As discussed in Section 2.2, native torsion angle and secondary structure features are generally sampled with high fre-

quency in standard Rosetta structure prediction runs. Combining sampling frequency with energy statistics associated

with the feature values and the other feature value properties described in Table I yields quite accurate predictions of

native feature values.

Since our goal in this paper is to use the predicted native feature value distributions to improve Rosetta sampling, it

is most instructive to compare the probabilities predictedfor native feature values with the frequencies observed forthe

native feature values in standard Rosetta runs: if the former are significantly greater than the latter, it should be possible

to improve structure prediction by using the predicted frequencies to guide sampling. Contours of the cumulative

distribution function (CDF) ofPpred conditioned onPsamp for native feature values are shown in Figure 2(a,b,c) for

torsion, topology, and pairing features. Smoothed CDFs were fitted using kernel density estimation on features from

the 28-protein benchmark, with leave-one-out training ofPpred. These plots demonstrate thatPpred is greater than

Psampfor a majority of native feature values, particularly at lower values ofPsamp, where the potential sampling gains

are greatest. Potential sampling improvements are most evident for topology features. The height of the 0.7-level at

Psamp= 0 shows that30% of native topologies withPsamp≈ 0 havePpred higher than about 0.75.
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Figure 2: Predictor accuracy.(a) Contours of the smoothed cumulative distribution function (CDF) ofPpred condi-
tioned onPsampfor native torsion feature values. Examining the vertical strip above a valuef of Psampgives a portrait
of the distribution ofPpred among those native feature valuesx∗ with Psamp(x

∗) nearf ; Ppred(x
∗) can be expected to

be less than the level labeledp for a fractionp of native torsion feature values withPsamp(x
∗) = f . For instance, the

median value ofPpred for feature values withPsamp(x
∗) = f lies at the level labeled0.5, and 20% of feature values with

Psamp(x
∗) = f will havePpred(x

∗) less than the level labeled 0.2. (b) Contours of the cdf for native topologies. The fit
is noisy due to limited training data (one native topology per protein). (c) Contours of the cdf for native registers. (d)
Number of native feature values for 1acf identified by several different feature value properties. Red arrow: number of
native feature values identified byPsamp. Blue arrow:minE. Purple arrow:Ppred. Yellow arrow: native. Each column
of the histogram shows the number of 1acf models from a pool of20000 generated by Rosetta that had the indicated
number of native torsion feature values. (e) Secondary structure predictor accuracy on 28-protein benchmark.
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Figure 3:Sampling efficiency gain.Predicted gain in sampling efficiency (ratio between the likelihood of the native
feature string underPpred and underPsamp) by protein for (a) torsion features and (b) beta pairing features. Gain is
given on a log scale. In (b), gray bars indicate sampling efficiency gain due to topology resampling and clear hashed
bars indicate gain due to register resampling. The registerbars begin where the topology bars end and occasionally go
in the opposite direction, in which case gray and hashed overlap.

As illustrated for protein 1acf in Figure 2(d), our native feature value predictor typically improves not only over

the initial feature value frequencies, but also over predictions using energy information alone—the feature value for

whichPpred is highest is more likely to be native than the feature value for which individual properties are highest (or

lowest, in the case of energy-based properties). By incorporating multiple properties using fitted weights, the native

feature value predictorPpred performs better than any individual property.

In order to compare the accuracy of our native feature value predictor methodology against a standard benchmark,

we specialized to secondary-structure prediction and trained a secondary structure predictor for comparison against

Psipred [15], a standard sequence-based predictor, with accuracy defined as the fraction of residues for which the native

value was given the highest probability. Psipred’s prediction was used as a feature value property in this predictor, so

training could have recapitulated Psipred by placing all weight on this property to the exclusion of all others. Instead,

it distributed weight between Psipred,Psamp, and various energy terms. Mean prediction accuracy is 88.4% on our

benchmark set, as compared to 84.5% for Psipred (Figure 2(e)), echoing previous results indicating that low-resolution

tertiary structure prediction can inform secondary structure prediction [20].

The total improvement in sampling usingPpred compared toPsampcan be measured using thesampling efficiency,

the chance of producing an all-native feature string in a single Rosetta search trajectory. Under the assumption that

features are independent, this can be estimated as the product of the probabilities of all native feature values. The ratio
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between the sampling efficiency ofPpred and ofPsamp is also an estimate of the ratio between the number of samples

required to find a native conformation under ordinary Rosetta sampling and under resampling withPpred. Its logarithm

to base 2 is an estimate of the total information gain ofPpred overPsamp for a single protein. The ratio of sampling

efficiencies, estimated with leave-one-out training, is shown on a log scale for torsion features in Figure 3(a) and for

topology and pairing features in Figure 3(b). The fully native torsion feature string had a median11.3 times higher

probability inPpred than inPsamp; for seven proteins, the native string was more than100 times as likely, implying that

100 times fewer samples would be required. These expected efficiency gains for torsion features are rough estimates,

since some native torsion feature values are in fact highly correlated. The efficiency increases for beta topology

features are more realistic, since there is only one topology feature per protein and hence no correlation effect. The

hashed bars in Figure 3(b) indicate the additional expectedefficiency gain from resampling of pairing features. The

median sampling rate of native topologies underPsamp was7.4%; underPpred, it was47.7%. Ppred further placed a

median 2.25-fold higher joint probability on the co-occurence of all the native registers within the native topology.

For several proteins, there were enough native values givenlower probability byPpred to outweigh the gains on

other features; these are the ones for which the predicted sampling efficiency in Figure 3 is negative. The aggressive-

ness of our predictor training means a few cases like this areinevitable. The size of the gains in other cases comes at

the expense of a few failures.

As a rough measure of the effect of different data sets on sampling efficiency, we performed 100 trials of dividing

the benchmark in half and training torsion feature predictors on each half for testing on the other. Because this

decreases training data significantly, some loss in predictor accuracy is to be expected; however, the change was not

dramatic. Compared to leave-one-out training, total log sampling efficiency decreased by an average 10.3%, with a

standard deviation of 12.1% of the mean. By inspection, predictor weights were very similar between the predictors

trained on each half of the data set.

3.2 Resampling

For each of the 28 benchmark proteins, ranging in size from 51to 128 residues, we generated 20000 first-round

models. Fragments for each protein were repicked accordingto the output distribution of the torsion predictor. We

then generated a resampled set of 10000 new models using the repicked fragments and stochastic beta constraints

drawn from the output distributions of the topology, pairing, and contact predictors. We refer to this data set as

frag+beta. At the same time, we generated acontrolset of 10000 regular Rosetta models for each protein. In order to

pick apart the contributions of the repicked fragments and the stochastic constraints, we also generated data sets with

repicked fragment files only (frag) and stochastic beta sheet constraints only (beta). Each Rosetta model takes on the

order of one hour of CPU time to compute, so results were approximately normalized for CPU time by normalizing
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for number of samples (the discretization and prediction steps take a negligible amount of CPU time).

Rosetta predictions were generated according to methods similar to those used by Rosetta for CASP [21]. For each

sampling round, we clustered the lowest-energy 10% of models and used as predictions the minimum-energy models

from each of the five largest clusters. We noted both the RMSD of the first prediction (from the largest cluster) and the

best (lowest RMSD) prediction. Because the energy functionis not always accurate, we also noted the first percentile

RMSD (1% RMSD), which measures the RMSD of the best conformations produced in a sampling round even if they

are not identifiable by energy.

Full results of the resampling rounds are given in Table II. The RMSD of the first prediction improved by an

average 1.77̊A (from 6.52Å to 4.75Å), a significant decrease. A sign test on the null hypothesisthat the RMSD of

the first prediction does not improve under resampling yielded a p-value of 0.018. The RMSD of the best prediction

improved by an average 0.42Å (from 4.13Å to 3.71Å). The predicted sampling efficiency gain, shown in Figure 3,

which measures the success of the predictors in identifyingnative feature values, was, as expected, a strong indicator

of resampling success. For the 22 of 28 target proteins in which sampling gains were greater than0.5 for both the

torsion feature and beta sheet feature predictors, the RMSDof the first prediction improved by an average 2.23Å; for

the remaining 6 targets, the improvement was a negligible 0.06Å. This result serves as confirmation that increased

sampling of native features does indeed lead to lower RMSDs.However, for certain targets (such as 1mkyA) with

high predicted gains in sampling efficiency, resampling yielded higher-RMSD predictions. This suggests room for

improvement in the Rosetta broken chain folding protocol.

We can distinguish the contributions from fragment repicking and stochastic beta sheet constraints by examining

the histogram of 1% RMSD over all targets for the various resampling methods (Figure 4). The modes of the distribu-

tions suggest the advances infrag (red) andbeta(blue) are cumulative infrag+beta(purple); each component pushes

the lower limit of achievable RMSDs a bit further.

There were several clear cases where resampling recombinedfeatures to explore previously inaccessible regions

of conformation space near the native structure. In the caseof 1bq9, the native conformation has three beta pairings,

each of which was present in the initial round of Rosetta search—one in96.9% of models, one in3.9%, and one

in 0.5%—but all three were never present together in the same model.The minimum observed RMSD among the

20000 initial round models was 2.81Å. In the resampling round, all three native pairings were present together in61

of the 10000 models, a rate of0.6%, and the minimum RMSD was 2.05Å. Other proteins showed similar evidence of

exploration in new, near-native regions. The minimum RMSD achieved in the resampling round was 1.14Å for 1opd,

as compared to 2.51̊A in the controls. The minimum RMSD for 1acf improved from 4.84 to 3.41; for 1ctf, from 3.15̊A

to 2.39Å; and for 1n0u, from 2.71̊A to 1.98Å.

Features chosen for enrichment by the native feature value predictors are those associated with lower energies, so

resampling should generally result in lower energies. The1st percentile energy (1% energy) of thecontrol, frag, and
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Benchmark results

RMSD of first pred. RMSD of best pred. 1% RMSD 1% Energy
Cont Resamp Cont Resamp Cont Resamp Cont Frag Resamp

1di2 6.03 4.26 1.50 3.58 2.65 2.16 -138.68 -138.80 -132.45
1dtj 10.37 2.79 2.47 2.08 2.93 2.09 -144.73 -149.70 -145.95
1dcj 5.22 2.50 4.99 2.50 4.13 2.44 -131.90 -134.96 -122.43

1ogw 4.67 3.46 3.06 3.21 3.11 3.14 -152.25 -152.97 -146.72
2reb 1.33 1.27 0.74 1.07 1.23 2.04 -134.20 -134.89 -125.89
2tif 4.18 3.98 4.05 3.98 3.15 3.68 -118.01 -114.54 -105.25

1n0u 10.56 3.73 3.14 3.73 3.76 3.11 -129.61 -132.85 -127.63
1hz6A 3.15 3.50 3.12 2.53 2.41 2.08 -132.58 -135.33 -127.00

1mkyA 5.08 6.21 3.64 4.88 3.75 4.04 -152.32 -155.47 -145.47
1a19A 3.60 11.34 3.60 11.16 3.47 5.99 -176.04 -179.58 -168.98

1a68 15.01 7.76 8.80 6.94 6.37 6.80 -170.08 -177.38 -169.37
1acf 11.18 4.11 11.18 2.40 6.75 4.38 -233.91 -241.46 -222.27
1aiu 1.60 1.50 1.60 1.50 1.72 1.62 -208.86 -215.75 -205.03

1bm8 12.13 13.53 5.27 5.00 5.61 5.48 -197.36 -203.51 -189.84
1cc8A 3.94 4.63 2.52 3.52 2.73 2.60 -138.04 -139.63 -124.08
1bq9A 5.83 7.78 3.58 3.17 4.77 3.77 -83.03 -84.54 -82.59

1ctf 8.97 4.13 6.08 2.67 4.20 3.03 -141.52 -144.24 -135.21
1ig5A 3.73 2.82 3.73 2.71 3.01 2.32 -156.67 -159.15 -157.16
1iibA 10.12 4.66 3.54 4.56 3.19 3.54 -203.45 -204.30 -190.95
2ci2I 9.42 6.65 6.50 6.34 4.51 5.44 -123.48 -127.99 -111.98
2chf 3.96 3.06 3.08 3.06 3.59 3.00 -264.57 -266.76 -251.24
1opd 4.27 3.08 3.82 1.52 3.65 2.36 -166.97 -171.71 -165.78
1pgx 3.10 3.66 0.867 1.71 1.61 1.34 -118.16 -118.70 -111.27

1scjB 2.66 6.36 2.61 6.06 2.89 3.41 -132.38 -136.47 -124.93
1tig 11.66 4.17 11.14 3.06 3.91 3.04 -179.02 -179.10 -167.46
1ubi 9.23 3.81 3.27 3.56 3.02 2.75 -141.45 -143.57 -138.16

5croA 6.36 4.22 2.92 3.37 3.26 2.96 -110.43 -111.41 -107.56
4ubpA 5.20 4.10 4.92 4.10 4.26 4.41 -198.71 -201.91 -195.62
Mean 6.52 4.75 4.13 3.71 3.56 3.32 -156.37 -159.17 -149.94

Table II: Results from a 28 protein benchmark. The results inthe initial four columns show the RMSD of the first and
best-of-five predictions for control (control) and resampled (Presamp) populations. Top five predictions were made by
selecting the lowest-energy structures from the five largest clusters. In resampling, fragments were repicked according
to the output of the torsion predictor. Beta topology, registers, and contacts were stochastically constrained according
to the output of the beta sheet feature predictors. The results in the next two columns show first percentile RMSD
for control and resampled populations. The final three columns show first percentile energy for these populations, in
addition to models generated using repicked fragments but no beta constraints.
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Figure 4: Histogram of1st percentile RMSD for a benchmark set of 28 alpha/beta proteins among models generated
by fragment repicking (“frag”), beta topology resampling (“beta”) and both (“frag+beta”), compared with a control
set with no constraints.

Presampdata sets are given inTable II. As expected, 1% energy is lower for26 of 28 proteins infrag than incontrol,

with a mean difference of−2.53. However, 1% energy is higher inPresamp than incontrol, with a mean difference

of 6.70. This suggests that Rosetta has a difficult time reaching lowenergies in broken-chain folding, even while

achieving lower RMSDs, and further suggests room for improvement in the broken-chain folding protocol.

4 Conclusion

We have developed a new method for improving structure prediction methods like Rosetta by using information ex-

tracted from the discretized feature-space representation of an initial set of generated models to guide a new “re-

sampling” round of search. The discretization step dramatically reduces the search space while preserving essential

structural information, as in the reduction of conformation space to principal components of structural variation [22].

The prediction and resampling steps interpolate between the extremes of concentration-style methods, which exploit

promising regions already explored, and genetic algorithms, which recombine structural features in an unguided fash-

ion to explore new regions. There is also a close kinship between resampling methods and generalized ensemble

methods such as multicanonical sampling [9] and the Wang-Landau algorithm [11], which use an initial round of sam-

pling to modify the energy function in a subsequent round in order to yield a more advantageous sampling distribution

(other methods such as metadynamics[10] use progressive modifications). However, the connection between energy

and sampling distribution in Rosetta is complex; even if theenergy function perfectly reflected physical free energy,

Rosetta would not draw conformations from the Boltzmann distribution due to a non-uniform proposal distribution.
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Rather than adjust the energy function, we directly adjust the sampling distribution over features. In contrast to gener-

alized ensemble methods, which perturb this distribution away from the canonical ensemble, we train a native feature

value predictor to correct for the difference between the observed Rosetta sampling distribution and an estimate of the

desired, canonical one.

In experiments, the predictive distributionPpred showed significantly improved accuracy over the Rosetta sam-

pling ratePsamp for all feature classes, though most significantly for beta topology. Resampling was quite successful

on targets for which the lowest-energy models in the initialround were far from the lowest-RMSD models, suggest-

ing our methods are resistant to energy function inaccuracies (details in Section 5.3 of the supplementary material).

Several proteins also demonstrated clear evidence of recombining native feature values never observed together in the

initial round in order to explore new regions of conformation space closer to the native. These results suggest the

present method sits in a happy medium between conformation-space resampling methods, which focus on previously

seen low-energy regions, and genetic algorithms, in which new feature combinations are explored in an unguided

fashion. However, its relative advantages in practice mustbe tested by future side-by-side comparisons. The only

similar Rosetta-based method [3] operates in a regime of many fewer samples than our method, so current results are

incomparable.

Average improvements over plain Rosetta were significant. Our primary success measures, the RMSD of the first

and best-of-five predictions, improved by an average 1.77Å and 0.42̊A, respectively. These results, though strong,

may not reach the potential suggested by the accuracy of the native feature value predictors. Some targets with

very high predicted gains in sampling efficiency showed moderate or nonexistent improvements under resampling.

Improvements in the Rosetta broken chain folding protocol would likely have a significant effect on our method.

Although in this paper we concentrate our efforts on ab initio modeling, the application of our resampling method

to homology modeling would be straightforward. The principle is very much the same—from an initial pool of can-

didate conformations, perhaps derived from a set of different templates, native-like feature values would be identified

using predictors and enriched in a subsequent resampling round. Native feature value predictors for homology mod-

eling might take into account feature value properties relating to template information, for instance the proportion of

templates which have the feature value. New feature types specific to homology modeling might also be developed.

One particularly promising possibility is to create a set oflocal alignment features, one for each residue (or gap-free

block of residues). The alignment feature for a residue would take values in the possible template residues to which the

target residue might be aligned. An initial sampling round in which models are generated for many possible alignments

would give energy information that could be used in a predictor to identify the correct alignment. More generally, the

core principle of our resampling work—that statistics derived from an initial sampling round are informative about

local structural features—has the potential to be a powerful and broadly applicable tool in protein structure prediction.
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