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Abstract

De novo protein structure prediction requires locatiorheflowest energy state of the polypeptide chain among a vast
set of possible conformations. Powerful approaches ircthformational space annealing, in which search progres-
sively focuses on the most promising regions of confornmatiepace, and genetic algorithms, in which features of
the best conformations thus far identified are recombined.déécribe a new approach that combines the strengths
of these two approaches. Protein conformations are peajemito a discrete feature space which includes backbone
torsion angles, secondary structure, and beta pairingsedeah of these there is one “native” value: the one found in
the native structure. We begin with a large number of con&dions generated in independent Monte Carlo structure
prediction trajectories from Rosetta. Native values fatefeature are predicted from the frequencies of featurgeval
occurrences and the energy distribution in conformatiamgaining them. A second round of structure prediction
trajectories are then guided by the predicted native featistributions. We show that native features can be predlict

at much higher than background rates, and that using thécpeddeature distributions improves structure predittio

in a benchmark of 28 proteins. Our approach allows generafisuccessful models by recombining native-like parts
of first-round conformations. The advantages of our apgraae that features from many different input structures
can be combined simultaneously without producing aton@stabs or otherwise physically unviable models, and that

the features being recombined have a relatively high chahlseing correct.



1 Introduction

Ab initio structure prediction remains a fundamental umedIproblem in computational biology. Since proteins fold
to their lowest free energy states, the challenge, giverffismtly accurate energy function, is to locate the global
energy minimum. This is a difficult problem because the deapace is very high-dimensional and riddled with local
minima. Indeed, locating the global minimum is the primapytleneck to consistent and accurate structure prediction
using current methods such as Rosetta [1].

One promising approach is to build up a map of the energy Eapmsby carrying out an initial set of searches to
identify a large number of local energy minima, and then tlizetthis information to guide a second set of searches
towards the regions of the landscape likely to contain tlobdagl minimum. Several methods have been proposed
to integrate information from a first round of sampling. Oreand of the spectrum are methods that concentrate
resampling around low-scoring structures from initial géing rounds. In conformation space annealing [2], a pool
of random starting structures is gradually refined by loealrsh, with low energy structures giving rise to children
that eventually replace the higher energy starting strestuln [3], a Rosetta-based resampling method is presented
that operates by identifying “funnels” in conformation spaand concentrating sampling on the low-energy funnels.
Similar resampling strategies have been developed forrgeparpose global optimization. These include fitting a
smoothedesponse surfact the local minima already gathered [4] and using sta#ticethods to identify good
starting points for optimization [5]. Methods of this kine ¢hot aim to guide search outside previously explored
regions, but rather to exploit the lowest-energy regiossaliered through ordinary search. They will succeed when
near-native regions have already been explored and id=h#§i native-like by the energy function, but not otherwise.
On the other end of the spectrum, genetic algorithm appesaf@) 7, 8] recombine features of successful structures
to create new structures. Although genetic algorithms daogg new regions of conformation space by feature
recombination, they do so in an undirected fashion—no gitésnmade to identify those features most responsible
for the success of low-energy structures and to recombasethA third class, generalized ensemble methods such as
multicanonical sampling [9], metadynamics [10], and theng/dandau algorithm [11], use initial samples to modify
the energy function to improve sampling of low-energy regio

In this paper we present a method designed both to avoidrfitations of concentration-style methods by re-
combining structural features to explore new regions off@enation space and to avoid the limitations of genetic
algorithms by carefully selecting which features to recorab Typically, no single local minimum computed in the
first round of search has all the native feature values, buiyrnoa all features assume their native values in at least
some of the models—for instance, in a beta sheet with thrardd and hence two beta pairings, the proper registers
for the beta pairings may both be present in some models,dwatrtogether. If we can identify these native feature

values and recombine them, sampling can be improved. Rleledek [12] indicates that constraining a few native



“linchpin” features can dramatically improve sampling. YWgothesize that many native feature values can be iden-
tified using information derived from an initial round of R models, most significantly the enrichment of native
values in lower-energy models. We develop a statisticalehticht predicts the probability that each feature value is
native by incorporating a variety of statistics, both eyebgsed and otherwise, from the pool of initial-round medel
The output of the predictor is a distribution over featuiteat tcorrects inefficiencies in the distribution sampled by
plain Rosetta search. In the resampling round, we use thisowed distribution to guide Rosetta search. In contrast
to generalized ensemble methods, the energy function isodified in the resampling round; instead, the sampling
distribution is modified directly by means fsthgment repickingwhich involves changing the fragment pool available
to Rosetta, andtochastic constraintto enforce beta sheet topology. Our resampling method @ttplpromotes
feature recombination by independent enrichment of nd¢ig&ure values, producing strings of native feature values

never observed together in the initial round.

2 Methodsand Materials

Our resampling algorithm has three steps (Figure 1(a)) hénfirst, “discretization” step, we project an initial set
of Rosetta models for the target protein from conformatipace into a discretized feature space. In the second,
“prediction” step, we use the energies and frequenciescaged with the different feature values in the initial set
of models to estimate the probability that each is nativethinthird, “resampling” step, we use the predicted native

feature probabilities to guide Rosetta structure preafictialculations.

2.1 Discretization

The discretization step significantly reduces the seareleespvhile preserving essential structural information. A
“feature” is a structural property that can take on one ofsztmite set of values. Conformations are represented by
strings of feature values. Our features fall into threesgas torsion features, secondary structure features, etad b
sheet features, with the latter class further subdividegltiree subclasses.

Torsion features are residue-specific. In order to distedtie possible torsion angles for each residue, we divide
the Ramachandran plot into four regions, referred to as“B,” “E,” and “G” (Figure 1(b)) roughly corresponding
to clusters in thd®DB. A fifth label, “O,” indicates a cis peptide bond and does nepehd ony or ). Labels were
chosen to correspond to those used in related work [12].

Secondary structure features are also associated witle siegjdues. They take values in the standard alphabet
“E,”“H,” and “L,” indicating sheet, helix, and loop.

The beta structure of a protein conformation can be parséureg different levels, illustrated for protein 1di2

in Figure 1(c). At the top level is a single topology featurEhe native topology (depicted on the left) includes
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Figure 1: Feature space representation of protein structurés. Flow-chart outline of the new resampling method.
Each model from the initial round of Rosetta search (showthéneftmost oval) corresponds after discretization to a
string of feature values (shown here as strings of lettgggesenting torsion feature values). The colored grid below
represents frequencies of torsion feature values amongréestrings from the initial round. Here, residues 49—64
of protein 1dcj are depicted (blue, frequencies near 0%emgrequencies near 50%; red, frequencies near 100%).
Each column represents the distribution over a single featy black outline indicates the native feature value. The
grid in the lower right depicts the predicted native probfes, which are used as targets in the resampling round of
search. Rare feature values at residues 56, 69, 61, and 68rarked over the initial round. (b) Torsion feature values
represent discrete regions of the Ramachandran plot. (e)tBpology, pairing, and contact features. At the top level
is a single topology feature, with each value a possibleltgpo One such topology consists of several pairings, each
of which has an associated pairing feature. Pairing AB ofihte/e topology is shown in the middle level. The values
of the pairing feature are all possible registers. Eachstegis associated with a set of contact features, shown in
the bottom level. In this example, 1di2, the native regibes two bulge-free regions, each associated with a contact
feature circled in gray. The values of a contact feature hneoasible contacts within the region. Contact features
differ from other types in that multiple values might be matiThe contacts present in the native structure are circled
in blue. To constrain the native register, one native cairstmust be chosen from each contact feature.



a beta sheet with three strands, strand A running from resi@uto residue 25, strand B running from residue 33
to residue 39, and strand C running from residue 43 to resi@ueStrands A and B pair, as do strands B and C,
so this topology has two associated pairing features, ABB@dPairing feature AB is examined in detail. The
possible values for a pairing feature are registers, defisesets of beta contacts, each denoted by a(paiy of
residue numbers. The possible registers for pairing ABuitke] from left to right{(18, 40), (19, 39), ..., (27,31)},
{(20,40), (21, 39),...,(27,33)}, and{(18, 40), (19, 39), ..., (22, 36), (24, 35), ..., (27, 32) }. The third register has

a beta bulge at residue 23. The beta contacts in these msgistend slightly outside the areas designated strand
in the native structure, because they include all beta ctsaver observed in the initial sampling round. Each
register brings with it one or more contact features, oneerh bulge-free region in the register. The number of
such features is therefore one greater than the number gébunh the register. The chart shows the two contact
features associated with registgl8, 40), (19,39), ..., (22, 36), (24, 35), ..., (27,32)}, one with possible values
{(18,40), (19, 39), (20, 38), (21, 37), (22, 36)}, and one with possible valud$24, 35), (25, 34), (26, 33), (27, 32)}.

In order to constrain this register, two beta contact camsts must be chosen to be enforced, one from each of these
two contact features.

Beta features are hierarchical; each pairing feature ccésed with the topology value from which it derives, and
each contact feature is associated with the register frorohathderives. If two different topologies both contain the
same pairing, a copy of the pairing feature is created fon.e@his distinction is important for the prediction step, in
which the predicted distribution over registers may depmmthe topology. However, due to the partially independent
energetic contributions of different features, modelshvéitnon-native topology that nonetheless includes a native
strand pairing can in fact be informative about the corregtster for that pairing; if a given register is energetical
favorable even in models with incorrect global topologyisitmore likely to be the native register. Therefore, in
predicting which register is the native value for a pairiegttire, we collect energy and feature frequency statistics
both for models within the parent topology and for all modeith the pairing. Beta contact features also give rise to
these two classes of statistics.

We denote the'" feature for a given protein b¥;, and its possible values by}, 22, . .., 2", with one of these,
denoted by}, being the native one. A single model is represented bym@ostri , 22, . . ., xi) of values, one for each

feature from( X1, Xo, ..., Xx).

2.2 Nativefeature value prediction

In the second, prediction step of our method, we attemptédipt the native value of each feature using statistics,
or “properties,” collected from an initial population of wels generated by Rosetta. These statistics include the

frequencies of different feature values and the energiesoofels which contain them.



Since the energy of a structure is a sum of physically lodaractions, we hypothesized that native feature val-
ues would generally be associated with lower energies evemwaired with non-native features. In order to take
advantage of this association, the predictor incorpotate€nergy statistics associated with a feature vahieEis
the minimum energy over all models with that feature valué lawE is the 10th percentile energy of models with
that feature value. The expected valud@mfE does not depend on the sample size, so this is a fairer meihisure
minE of energy for promising feature values which are sampleelyand hence do not have a chance to appear in a
low energy structure. Sampling frequency in the initialafenodels is also informative about native feature values.
The frequency of feature values for a feattfg denotedPsamd X ), can be regarded as an initial belief about which
of {z},z%,...,z""} is native; if a torsion or secondary structure feature vadisampled by Rosetta jmproportion
of models, it has abouyt chance of being native (as illustrated in the central bafSigdire 2(b) in the next section).
The predictor therefore incorporates sampling frequesa predictive statistic. In addition to energy and freqyenc
statistics, each feature class also brings with it one orenadditional class-specific feature value properties. Many
of these address common modeling pathologies. For topedpgontact order [13] proves very useful in this regard.
Rosetta sampling is biased toward short-range pairingbea® are easier to form, and inclusion of the contact order
gives the predictor the ability to reduce this bias.

Our native feature value predictor takes the form of a madlifigistic regression model, parametrized by a weight
vector 3 with terms for each feature value property and each pairaaebination of properties (in order to take
joint effects into account). The input to the predictor, fofeature value;{ of featureX;, is a vector of properties
[minE(x-Z), lowE(z7), Psamd?), .. } computed from those first-round models that haye= 27. The output of the
predictor is a new probabilitf’pred(x{). In advance of making predictions for any new target pratetine predictor
must be trained offline. This need only be done once. Aftesiwilie same predictor is used for all future targets. We
use a training set of Rosetta models 28rsmall alpha/beta proteins. For testing purposes, we enipéwe-one-out
training to train a separate predictor for each protein entienchmark from data for the other proteins. Each of the
five classes of features (torsion, secondary structureldagp, pairing, and contact) has a different set of assediat
statistics, so we train a different native feature valuajmter for each class. The weight vectgris fitted to the
training data by maximizing an objective function measgitine estimated effectiveness of the output of the native
feature value predictor when used for Rosetta sampling. maeimization is performed with the standard BFGS
variant of Newton’s method [14].

Brief descriptions of all of the feature value propertieswge for native feature prediction are given in Table I,
along with the predictive power of each by itself, as measing the information gain per residue of a predictor

including each property individually. The information gaif a predictorPF;red for a particular feature type is estimated



by

n

IG( pred #re Z pred )/Psamr(ﬁ)),

where #res is the number of residues in the protein. Infdomafain is calculated with respect to the baseline predicto
Psamp

Rosetta’s prior belief$samp (its feature sampling rates) are largely derived from tagrnents, which are chosen
using secondary structure predictors like Psipred [15FQU16], and SAM [17] that only make use of sequence
information. Native feature value prediction can be regdrds updating Rosetta’s prior beliefs by incorporating
energy information to arrive at a more useful belief disttibn. Details about the exact mathematical form of the
native feature value predictor and the fitted weight vectorgach feature class can be found in the supplementary

material (Section 5.1).

2.3 Resampling

In the third step, we use the predicted native feature valgside a new round of Rosetta model generation. We
use two approaches to guide Rosetta trajectories using dluécted feature values: (1) local secondary structure and
torsional feature values are favored by selecting fragemfamtRosetta model building that are enriched in predicted
native feature values, and (2) predicted beta contactriesiare favored by enforcing the predicted non-local pgérin
using Rosetta broken chain folding [18].

An interesting and important question which must be regbfirst is the ideal target sampling frequencig@samp
for different feature values given the predicted probtib#iFPyeq that each is native. The optimal strategy can be
determined by solving a constrained optimization probléeetdils in Section 5.2 of the supplementary material) .
Optimal strategies lie on a spectrum between two extrenmiesly a single sample is permitted, the optimal strategy
is to deterministically choose the single best guess fon#tive string—for each feature, the single value mostyikel
to be native is chosen. If, on the other hand, sufficient sasngle permitted to try every possible feature string at leas
once, the optimal strategy is to spread sampling as evenppssible. The tension between concentration (placing
all bets on the best guess) and diversification (spreaditsgdagially among all guesses) represents a typical tradeoff
in resampling methods. For intermediate numbers of sampéather extreme is very successful. The concentration
strategy samples the same string over and over, so will VeglyInever find the native. The diversification strategy
succeeds eventually, but requires enormous numbers oflsanihe strategy of settinBesampequal toPpyreq, Similar
in spirit to sampling from an approximation of the Boltzmadhistribution, interpolates between these extremes by
minimizing the expected log number of samples required mpda a single native string (proof in Section 5.2 of
the supplementary material). For intermediate numbersapnfpées, it is far more successful than diversification.

For instance, 77 distinct beta topologies for 1ctf appedn won-zero probability iPsamp With the native topology



Feature value properties

Torsion meta-feature Accuracy IG
Psamp | Rosetta sampling rate 88.9%
lowE | 10" percentile energy of models with the feature value 76.4% 1®.0
minE | minimum energy of models with the feature value 87.7% 0.040
frag | rate of occurence of the feature value in the fragments 86.204039
loop | indicates either an E or O torsion feature value
Pyed | output of nativeness predictor 91.1% 0.081
Secondary structure meta-feature Accuracy IG
Psamp | Rosetta sampling rate 87.2%
lowE | 10'" percentile energy of models with the feature value 72.8% 18.0
minE | minimum energy of models with the feature value 86.2% 0.023
psipred | secondary structure prediction from Psipred 87.7% 0.034
jufo | secondary structure prediction from JUFO 80.9% 0.010
Pyed | output of nativeness predictor 91.8% 0.055
Topology meta-feature Accuracy IG
Psamp | Rosetta sampling rate 21.4%
lowE | 10'" percentile energy of models with the feature value 21.4% 3D.0
minE | minimum energy of models with the feature value 46.4% 0.023
co | approximate contact order of a structure with the given lamypo
Pyed | output of nativeness predictor 60.7% 0.036
Register meta-feature Accuracy IG
Psamp | Rosetta sampling rate 54.0%
lowE | 10" percentile energy of models with the feature value 44.7% 6%.0
minE | minimum energy of models with the feature value 61.2% 0.057
bulge | indicates the presence of at least one beta bulge in theeegis
Pyred | output of nativeness predictor 57.6% 0.066
Contact meta-feature Accuracy IG
Psamp | Rosetta sampling rate 85.4%
lowE | 10" percentile energy of models with the feature value 68.9% 0D.0

edgedist| distance (in residue numbers) of a contact from either eradpafiring
oddpleat | indicates an anomaly in the pleating pattern
Pprea | output of nativeness predictor 88.3% 0.005

Table I: Properties used by the predictor, organized byufeatlass. A native feature value is correctly identified
by a property if the property is higher (or lower, in the casemergy properties) for the native feature value than
for any other values of the associated feature. The “Acgtire@lumn indicates the percentage of features from our
benchmark whose native values were correctly identifieddmheroperty. Accuracy values have been omitted for
properties that are only informative in conjunction withets and so have no predictive value on their oW,

the output of the native feature value predictor, is inctilere for comparison. Predictors were trained using leave-
one-out training on the benchmark set of 28 proteins. Aagunaeasures were computed on the left-out protein and
averaged across the set. The “IG” column indicates the gedrdormation gain for a predicto‘?rgred based only

on Psampand the indicated property, versus the baseline predigdgs, in units of bits per residue—total gain for
features in each class for a given protein is divided by thmlver of residues in the protein. Results are averaged
across proteins in our benchmark. Note that informatiom gain be large even for properties which do not yield
accuracy increases if rare native feature values are ofestantially enriched. The information gain given f#yeq

is the gain when all properties are included in the predictor



sampled at rat8.55%. A diversification strategy would place equal weight on7altopologies, resulting in a native
sampling rate ol /77 = 1.3%, a2.4-fold increase in sampling efficiency. By contraB}eq places a probability of
73.7% on the native topology, &35.2-fold increase. Clearly far fewer samples will be requiredind the native
structure if we uséesamp= Pored. IN 1acf, Psampcontainsl 233 distinct topologies and places probability% on the
native one; diversification results inga.7-fold decrease in sampling efficiency, while settiRgsamp= Fpred results

in a5.3-fold increase t39.5%.

2.3.1 Stochastic constraints

In order to effect a desired feature distribution, modetsgenerated using different sets of beta contact consraint
Each Rosetta search trajectory for the target protein kBegith a random draw of constraints. First a topology is
drawn from the topology distribution ifyeq then registers are drawn for each of the pairings that cempioat
topology, and finally the contacts to enforce are chosendoh eegister.

A residue-residue beta contact can be enforced by meansgiflebody transformation constraint between the
two residues [18] with an attendant chainbreak introdunednearby loop to allow for chain mobility. In generiat,l
constraints will be required to constrain a register withulges, one in each bulge-free segment.

Values are drawn fronfyeq independently for each feature in order to promote featcembination.

2.3.2 Fragment repicking

Rosetta sampling rates for torsion features are closelglated with rates of occurrence of those features in the set
of fragments used for Rosetta sampling. We can therefonegehRosetta sampling rates significantly by repicking
fragments. IfPyeq is our target distribution, with marginal distributidfyeq(X;) for each torsion featurg’;, then we
repick fragment files in such a way that the rate of occurrefieach value for featur&’; in the fragment file closely
matches the rate given Byeq(X;). The fragment files are picked using a simple greedy qudtsfasetion method.

The fragment-picking method of distribution enforcemeas lseveral important advantages over the stochastic
torsion constraint method used in our previous work [19tstit provides more fragments for rare native features,
increasing the likelihood that one of them will be near thiivesgeometry. Second, and most significantly, it sidesteps
some of the inadequacies of the independence model. Whenatginal distributions inFyeq are matched, correla-
tions between nearby torsion features come along for fré@mihe fragments. Rather than a combination of helical

and strand residues, fragments will generally consistldfedical or all strand residues.



3 Resaultsand Discussion

As described in detail in the Methods section, our approastthree steps. First, an initial set of Rosetta models are
projected onto a discrete feature space to reduce the diomatity of the sampling problem. Second, we estimate
the probability that each feature value (secondary stradgpe, torsion angle bin, beta strand pairing, etc.) isgmé
in the native structure. Third, we use these native feattwbability distributions to guide another round of Rosetta
structure prediction calculations into the regions of thergy landscape most likely to contain the native structure
Each step in the approach can be evaluated independendyirhstep is trivial since the feature values (torsion
bins, beta contacts, etc) can be computed directly fronmihietistructures. In the next two sections we evaluate (1) the
extent to which native feature values can be predicted, 2nthé¢ use of these predictions to improve conformational
sampling close to the native structure. All results are flimenchmark set of 28 proteins ranging in size from 51
to 128 residues. The benchmark PDBs were chosen from a setrimon use for Rosetta benchmarking in order
to allow comparison of these methods to other Rosetta dewedats, such as recent work on linchpin features [12].
PDBs were selected to contain a variety of beta topologirsedeta sheet features are central to our method; our
tests (discussed below) indicate that predictor weighgsiat heavily dependent on the choice of training set. Inrorde
to avoid testing on training data, we trained 28 separageafébpology, pairing, contact, and torsion predictors on

for each test protein, from training models for the other Bteins.

3.1 Nativefeature value prediction accuracy

As discussed in Section 2.2, native torsion angle and secgstiucture features are generally sampled with high fre-
guency in standard Rosetta structure prediction runs. Gunghsampling frequency with energy statistics assodiate
with the feature values and the other feature value pragsediescribed in Table | yields quite accurate predictions of
native feature values.

Since our goal in this paper is to use the predicted nativtefeaalue distributions to improve Rosetta sampling, it
is most instructive to compare the probabilities prediéteahative feature values with the frequencies observethi®r
native feature values in standard Rosetta runs: if the foameesignificantly greater than the latter, it should be jnbss
to improve structure prediction by using the predicted diertries to guide sampling. Contours of the cumulative
distribution function (CDF) offyeq conditioned onPsamp for native feature values are shown in Figure 2(a,b,c) for
torsion, topology, and pairing features. Smoothed CDF®\iged using kernel density estimation on features from
the 28-protein benchmark, with leave-one-out training?ptq. These plots demonstrate th&f.q is greater than
Psampfor a majority of native feature values, particularly at Evwalues ofPsamp Where the potential sampling gains
are greatest. Potential sampling improvements are moséet/for topology features. The height of the 0.7-level at

Psamp= 0 shows thaB0% of native topologies wittPsamp~ 0 havePyeq higher than about 0.75.
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Figure 2: Predictor accuracy.(a) Contours of the smoothed cumulative distribution fiorc{CDF) of Fyeq condi-
tioned onPsampfor native torsion feature values. Examining the vertitapsabove a valug’ of Psampgives a portrait

of the distribution ofP,eg among those native feature valugswith Psamdz*) nearf; Pped(z*) can be expected to
be less than the level labelgdor a fractionp of native torsion feature values withamdz*) = f. For instance, the
median value oFeq for feature values witlPsamd 2*) = f lies at the level labele@l 5, and 20% of feature values with
Psamdz*) = f will have Pyred(z*) less than the level labeled 0.2. (b) Contours of the cdf ftivadopologies. The fit

is noisy due to limited training data (one native topology p®tein). (c) Contours of the cdf for native registers. (d)
Number of native feature values for 1acf identified by sehdifferent feature value properties. Red arrow: number of
native feature values identified B%amp Blue arrow:minE Purple arrow:Fyeq. Yellow arrow: native. Each column
of the histogram shows the number of lacf models from a podD6D0 generated by Rosetta that had the indicated
number of native torsion feature values. (e) Secondargtsire predictor accuracy on 28-protein benchmark.
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Figure 3: Sampling efficiency gairPredicted gain in sampling efficiency (ratio between thelifood of the native
feature string undeP,eq and underPsamp by protein for (a) torsion features and (b) beta pairinguess. Gain is
given on a log scale. In (b), gray bars indicate samplingiefiity gain due to topology resampling and clear hashed
bars indicate gain due to register resampling. The redistex begin where the topology bars end and occasionally go
in the opposite direction, in which case gray and hashedayer

As illustrated for protein lacf in Figure 2(d), our nativafiere value predictor typically improves not only over
the initial feature value frequencies, but also over praalis using energy information alone—the feature value for
which Pyreq is highest is more likely to be native than the feature vatuenhich individual properties are highest (or
lowest, in the case of energy-based properties). By ingatpm multiple properties using fitted weights, the native
feature value predictaP,eq performs better than any individual property.

In order to compare the accuracy of our native feature valediptor methodology against a standard benchmark,
we specialized to secondary-structure prediction andecha secondary structure predictor for comparison against
Psipred [15], a standard sequence-based predictor, withracy defined as the fraction of residues for which the rativ
value was given the highest probability. Psipred’s préalicivas used as a feature value property in this predictor, so
training could have recapitulated Psipred by placing albieon this property to the exclusion of all others. Instead
it distributed weight between Psiprefls;mp and various energy terms. Mean prediction accuracy is%8&# our
benchmark set, as compared to 84.5% for Psipred (Figurg 2(joing previous results indicating that low-resolutio
tertiary structure prediction can inform secondary striteprediction [20].

The total improvement in sampling usitigyeq compared ta%sampcan be measured using ts@mpling efficiengy
the chance of producing an all-native feature string in glsifRosetta search trajectory. Under the assumption that

features are independent, this can be estimated as thegpiaddhe probabilities of all native feature values. Theaat
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between the sampling efficiency 8eqd and of Psampis also an estimate of the ratio between the number of samples
required to find a native conformation under ordinary R@ssdimpling and under resampling witheqd. Its logarithm

to base 2 is an estimate of the total information gairPgéq over Psampfor a single protein. The ratio of sampling
efficiencies, estimated with leave-one-out training, isve on a log scale for torsion features in Figure 3(a) and for
topology and pairing features in Figure 3(b). The fully matiorsion feature string had a mediah3 times higher
probability in Pyreq than in Psamp for seven proteins, the native string was more th@htimes as likely, implying that
100 times fewer samples would be required. These expectedegitizigains for torsion features are rough estimates,
since some native torsion feature values are in fact hightyetated. The efficiency increases for beta topology
features are more realistic, since there is only one topdieature per protein and hence no correlation effect. The
hashed bars in Figure 3(b) indicate the additional expeetfgdency gain from resampling of pairing features. The
median sampling rate of native topologies un@esmp,was7.4%; under Fyeq, it Was47.7%. Ppred further placed a
median 2.25-fold higher joint probability on the co-ocaure of all the native registers within the native topology.

For several proteins, there were enough native values doveer probability by Fyeq to outweigh the gains on
other features; these are the ones for which the predictaglsay efficiency in Figure 3 is negative. The aggressive-
ness of our predictor training means a few cases like thisakgtable. The size of the gains in other cases comes at
the expense of a few failures.

As a rough measure of the effect of different data sets on kagngfficiency, we performed 100 trials of dividing
the benchmark in half and training torsion feature predgtin each half for testing on the other. Because this
decreases training data significantly, some loss in predattcuracy is to be expected; however, the change was not
dramatic. Compared to leave-one-out training, total lagang efficiency decreased by an average 10.3%, with a
standard deviation of 12.1% of the mean. By inspection,iptedweights were very similar between the predictors

trained on each half of the data set.

3.2 Resampling

For each of the 28 benchmark proteins, ranging in size fronio5128 residues, we generated 20000 first-round
models. Fragments for each protein were repicked accotditize output distribution of the torsion predictor. We
then generated a resampled set of 10000 new models usingploked fragments and stochastic beta constraints
drawn from the output distributions of the topology, pairirand contact predictors. We refer to this data set as
frag+beta At the same time, we generated@ntrol set of 10000 regular Rosetta models for each protein. Inrdode
pick apart the contributions of the repicked fragments &edstochastic constraints, we also generated data sets with
repicked fragment files onlyfrag) and stochastic beta sheet constraints obétd. Each Rosetta model takes on the

order of one hour of CPU time to compute, so results were aqipadely normalized for CPU time by normalizing
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for number of samples (the discretization and predictiepstake a negligible amount of CPU time).

Rosetta predictions were generated according to methmilasto those used by Rosetta for CASP [21]. For each
sampling round, we clustered the lowest-energy 10% of nscaledl used as predictions the minimum-energy models
from each of the five largest clusters. We noted both the RMSbedfirst prediction (from the largest cluster) and the
best (lowest RMSD) prediction. Because the energy funésimot always accurate, we also noted the first percentile
RMSD (1% RMSD), which measures the RMSD of the best confaomaproduced in a sampling round even if they
are not identifiable by energy.

Full results of the resampling rounds are given in Table lhe RMSD of the first prediction improved by an
average 1.7K (from 6.52A to 4.755\), a significant decrease. A sign test on the null hypothibsisthe RMSD of
the first prediction does not improve under resampling weld p-value of 0.018. The RMSD of the best prediction
improved by an average 0.2\2(fr0m 413 to 3.7].5\). The predicted sampling efficiency gain, shown in Figure 3
which measures the success of the predictors in identifyatiye feature values, was, as expected, a strong indicator
of resampling success. For the 22 of 28 target proteins iclwbsampling gains were greater th@&# for both the
torsion feature and beta sheet feature predictors, the Rbf$iEe first prediction improved by an average A2or
the remaining 6 targets, the improvement was a negligikﬂéﬁO.This result serves as confirmation that increased
sampling of native features does indeed lead to lower RMS3fimvever, for certain targets (such as 1mkyA) with
high predicted gains in sampling efficiency, resamplinddgd higher-RMSD predictions. This suggests room for
improvement in the Rosetta broken chain folding protocol.

We can distinguish the contributions from fragment repigkand stochastic beta sheet constraints by examining
the histogram of 1% RMSD over all targets for the variousmgdang methods (Figure 4). The modes of the distribu-
tions suggest the advancediiag (red) andbeta(blue) are cumulative ifrag+beta(purple); each component pushes
the lower limit of achievable RMSDs a bit further.

There were several clear cases where resampling recomigiatates to explore previously inaccessible regions
of conformation space near the native structure. In the ch$bq9, the native conformation has three beta pairings,
each of which was present in the initial round of Rosettacdeaione in96.9% of models, one ir8.9%, and one
in 0.5%—but all three were never present together in the same mdda. minimum observed RMSD among the
20000 initial round models was 2.81In the resampling round, all three native pairings wermspnt together ifil
of the 10000 models, a rate 06f6%, and the minimum RMSD was 2.85Other proteins showed similar evidence of
exploration in new, near-native regions. The minimum RM$hieved in the resampling round was 1Al#r 1opd,
as compared to 2.8in the controls. The minimum RMSD for 1acf improved from 418 3.41; for 1ctf, from 3.15
to 2.39; and for 1nOu, from 2.7A to 1.98A.

Features chosen for enrichment by the native feature vakdiqtors are those associated with lower energies, so

resampling should generally result in lower energies. Tfigercentile energy (1% energy) of thentrol, frag, and
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Benchmark results

RMSD of first pred. RMSD of best pred. 1% RMSD 1% Energy

Cont Resamp Cont Resamp | Cont Resamp| Cont Frag Resamp
1di2 | 6.03 4.26 1.50 3.58 2.65 2.16 | -138.68 -138.80 -132.45
1dtj | 10.37 2.79 2.47 2.08 2.93 2.09 | -144.73 -149.70 -145.95
1dcj | 5.22 2.50 4.99 2.50 4.13 244 | -131.90 -134.96 -122.43
logw | 4.67 3.46 3.06 3.21 3.11 3.14 | -152.25 -152.97 -146.72
2reb| 1.33 1.27 0.74 1.07 1.23 2.04 | -134.20 -134.89 -125.89
2tif | 4.18 3.98 4.05 3.98 3.15 3.68 | -118.01 -114.54 -105.25
1nOu | 10.56 3.73 3.14 3.73 3.76 3.11 | -129.61 -132.85 -127.63
1hz6A | 3.15 3.50 3.12 2.53 2.41 2.08 | -132.58 -135.33 -127.00
ImkyA | 5.08 6.21 3.64 4.88 3.75 4.04 | -152.32 -155.47 -145.47
1al9A | 3.60 11.34 | 3.60 11.16 3.47 599 | -176.04 -179.58 -168.98
1a68 | 15.01 7.76 8.80 6.94 6.37 6.80 | -170.08 -177.38 -169.37
lacf | 11.18 411 | 11.18 2.40 6.75 438 | -233.91 -241.46 -222.27
laiu | 1.60 1.50 1.60 1.50 1.72 162 | -208.86 -215.75 -205.03
1bm8 | 12.13 13.53 | 5.27 5.00 5.61 5.48 | -197.36 -203.51 -189.84
1cc8A | 3.94 4.63 2.52 3.52 2.73 2.60 | -138.04 -139.63 -124.08

1bg9A | 5.83 7.78 3.58 3.17 4.77 3.77 -83.03 -84.54 -82.59
lctf | 8.97 4.13 6.08 2.67 4.20 3.03 | -141.52 -144.24 -135.21
lighA | 3.73 2.82 3.73 2.71 3.01 2.32 | -156.67 -159.15 -157.16
liibA | 10.12 4.66 3.54 4.56 3.19 3.54 | -203.45 -204.30 -190.95
2ci2l | 9.42 6.65 6.50 6.34 451 5.44 | -123.48 -127.99 -111.98
2chf | 3.96 3.06 3.08 3.06 3.59 3.00 | -264.57 -266.76 -251.24
lopd | 4.27 3.08 3.82 1.52 3.65 2.36 | -166.97 -171.71 -165.78
1pgx | 3.10 3.66 | 0.867 1.71 1.61 1.34 | -118.16 -118.70 -111.27
1scjB | 2.66 6.36 2.61 6.06 2.89 3.41 | -132.38 -136.47 -124.93
1tig | 11.66 417 | 11.14 3.06 3.91 3.04 | -179.02 -179.10 -167.46
lubi | 9.23 3.81 3.27 3.56 3.02 2.75 | -141.45 -143.57 -138.16
5croA | 6.36 4.22 2.92 3.37 3.26 296 | -110.43 -111.41 -107.56
4ubpA | 5.20 4.10 4.92 4.10 4.26 441 | -198.71 -201.91 -195.62
Mean | 6.52 4.75 4.13 3.71 3.56 3.32 | -156.37 -159.17 -149.94

Table 1I: Results from a 28 protein benchmark. The resulteéninitial four columns show the RMSD of the first and
best-of-five predictions for controt¢ntrol) and resampledHesamp populations. Top five predictions were made by
selecting the lowest-energy structures from the five largjasters. In resampling, fragments were repicked acogrdi
to the output of the torsion predictor. Beta topology, reggis, and contacts were stochastically constrained aicaprd
to the output of the beta sheet feature predictors. Theteewsuthe next two columns show first percentile RMSD
for control and resampled populations. The final three cokishow first percentile energy for these populations, in
addition to models generated using repicked fragmentsdbeta constraints.
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Figure 4: Histogram of ¢ percentile RMSD for a benchmark set of 28 alpha/beta pret@nong models generated
by fragment repicking (“frag”), beta topology resamplirig€ta”) and both (“frag+beta”), compared with a control
set with no constraints.

Pesampdata sets are given ifiable I1. As expected, 1% energy is lower f26 of 28 proteins infrag than incontrol,
with a mean difference of2.53. However, 1% energy is higher iResampthan incontrol, with a mean difference
of 6.70. This suggests that Rosetta has a difficult time reachingdowrgies in broken-chain folding, even while

achieving lower RMSDs, and further suggests room for impnognt in the broken-chain folding protocol.

4 Conclusion

We have developed a new method for improving structure ptiedi methods like Rosetta by using information ex-
tracted from the discretized feature-space representafi@n initial set of generated models to guide a new “re-
sampling” round of search. The discretization step drasallyi reduces the search space while preserving essential
structural information, as in the reduction of conformatspace to principal components of structural variatiof}.[22
The prediction and resampling steps interpolate betwesesttremes of concentration-style methods, which exploit
promising regions already explored, and genetic algosthmnich recombine structural features in an unguided fash-
ion to explore new regions. There is also a close kinship éetwesampling methods and generalized ensemble
methods such as multicanonical sampling [9] and the Wangtaa algorithm [11], which use an initial round of sam-
pling to modify the energy function in a subsequent round@eoto yield a more advantageous sampling distribution
(other methods such as metadynamics[10] use progressigéications). However, the connection between energy
and sampling distribution in Rosetta is complex; even ifehergy function perfectly reflected physical free energy,

Rosetta would not draw conformations from the Boltzmanirithistion due to a non-uniform proposal distribution.
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Rather than adjust the energy function, we directly adjussampling distribution over features. In contrast to gene
alized ensemble methods, which perturb this distributisayafrom the canonical ensemble, we train a native feature
value predictor to correct for the difference between theeoked Rosetta sampling distribution and an estimate of the
desired, canonical one.

In experiments, the predictive distributidfyeq Showed significantly improved accuracy over the Rosetta- sam
pling rate Psampfor all feature classes, though most significantly for beftogy. Resampling was quite successful
on targets for which the lowest-energy models in the initi@ind were far from the lowest-RMSD models, suggest-
ing our methods are resistant to energy function inaccesaletails in Section 5.3 of the supplementary material).
Several proteins also demonstrated clear evidence of t@oam native feature values never observed together in the
initial round in order to explore new regions of conformatigpace closer to the native. These results suggest the
present method sits in a happy medium between conformapane resampling methods, which focus on previously
seen low-energy regions, and genetic algorithms, in whih feature combinations are explored in an unguided
fashion. However, its relative advantages in practice rbestested by future side-by-side comparisons. The only
similar Rosetta-based method [3] operates in a regime of/ifearer samples than our method, so current results are
incomparable.

Average improvements over plain Rosetta were significant.@@mary success measures, the RMSD of the first
and best-of-five predictions, improved by an average,&.iﬁd 0.424, respectively. These results, though strong,
may not reach the potential suggested by the accuracy ofdtieerfeature value predictors. Some targets with
very high predicted gains in sampling efficiency showed maigeor nonexistent improvements under resampling.
Improvements in the Rosetta broken chain folding protoanlid likely have a significant effect on our method.

Although in this paper we concentrate our efforts on abadnitiodeling, the application of our resampling method
to homology modeling would be straightforward. The prifeils very much the same—from an initial pool of can-
didate conformations, perhaps derived from a set of diffetemplates, native-like feature values would be idemtifie
using predictors and enriched in a subsequent resamplingdrdNative feature value predictors for homology mod-
eling might take into account feature value propertietirggeto template information, for instance the proportidn o
templates which have the feature value. New feature typesifspto homology modeling might also be developed.
One particularly promising possibility is to create a sekozfal alignment features, one for each residue (or gap-free
block of residues). The alignment feature for a residue ditaKke values in the possible template residues to which the
target residue might be aligned. An initial sampling roumarhich models are generated for many possible alignments
would give energy information that could be used in a preditd identify the correct alignment. More generally, the
core principle of our resampling work—that statistics ded from an initial sampling round are informative about

local structural features—has the potential to be a powarfd broadly applicable tool in protein structure predioti

16



Acknowledgments. This work was supported by NIH grant P20 GM76222 and by HHMg. &\s0 wish to acknowl-

edge support to MIJ from the Miller Institute for Basic Resdain Science.

References

[1] Rhiju Das and David Baker. Macromolecular modeling wibsetta.Annual Review of Biochemistry7:362—

382, 2008.

[2] Jooyoung Lee, Harold A. Scheraga, and S. Rackovsky. Netimnization method for conformational energy
calculations on polypeptides: Conformational space dimgealournal of Computational Chemistr$8:1222—

1232, 1997.

[3] T J Brunette and Oliver Brock. Improving protein struatyrediction with model-based sear@ioinformatics

21 (Suppl. 1):66-74, 2005.

[4] G.E.P.Boxand K. B. Wilson. On the experimental attaimira optimum conditions (with discussionjournal

of the Royal Statistical Society SerieslB(1):1-45, 1951.

[5] Justin Boyan and Andrew W. Moore. Learning evaluationdtions to improve optimization by local search.

The Journal of Machine Learning Researth77-112, 2001.

[6] Thomas Dandekar and Patrick Argos. Potential of geradtjorithms in protein folding and protein engineering

simulations.Protein Engineering5(7):637-645, 1992.

[7] Jan T. Pedersen and John Moult. Ab initio structure potai for small polypeptides and protein fragments

using genetic algorithmds2roteinsg 23:454-460, 1995.

[8] Yan Cui, Run Sheng Chen, and Wing Hung Wong. Protein fajdiimulation with genetic algorithm and super-

secondary structure constrainBroteins 31:247-257, 1998.

[9] Nobuyuki Nakajima, Haruki Nakamura, and Akinori Kideriglulticanonical ensemble generated by molecular
dynamics simulation for enhanced conformational sampdiingeptides.The Journal of Physical Chemistry, B

101(5):817-824,1997.

[10] Alessandro Laio and Francesco L Gervasio. Metadynsindanethod to simulate rare events and reconstruct
the free energy in biophysics, chemistry and material sgieReports on Progress in Physjcél(12):126601
(22pp), 2008.

17



[11] Fugao Wang and D. P. Landau. Efficient, multiple-rarggediom walk algorithm to calculate the density of states.

Physical Review Letter86(10):2050+, March 2001.

[12] David E. Kim, Ben Blum, Philip Bradley, and David Bakeésampling bottlenecks in de novo protein structure
prediction.Journal of Molecular Biology393(1):249-260, 2009.

[13] Kevin W. Plaxco, Kim T. Simons, and David Baker. Contadder, transition state placement and the refolding

rates of single domain proteindournal of Molecular Biology277(4):985-994, 1998.

[14] C. G. Broyden. The convergence of a class of double-nainlkmization algorithms.Journal of the Institute of

Mathematics and Its Application6(1):76-90, 1970.

[15] David T. Jones. Protein secondary structure predidii@sed on position-specific scoring matricdsurnal of

Molecular Biology 292(2):195-202, 1999.

[16] Jens Meiler, Michael Mlller, Anita Zeidler, and Felschmaschke. Generation and evaluation of dimension-
reduced amino acid parameter representations by artifieiatal networks.Journal of Molecular Modeling

7(9):360-369, 2001.

[17] Kevin Karplus, Christian Barrett, and Richard Hughdyidden Markov models for detecting remote protein
homologies Bioinformatics 14(10):846—856, 1998.

[18] Philip Bradley and David Baker. Improved beta-protsiructure prediction by multilevel optimization of non-

local strand pairings and local backbone conformatfnoeteing 65:922—929, 2006.

[19] Ben Blum, Michael I. Jordan, David Kim, Rhiju Das, PhiBradley, and David Baker. Feature selection methods
for improving protein structure prediction with rosetta.John Platt, Daphne Koller, Yoram Singer, and Andrew

McCallum, editorsAdvances in Neural Information Processing Systems (NIBS)Q08.

[20] Jens Meiler and David Baker. Coupled prediction of pimsecondary and tertiary structuferoc. Nat. Acad.

Sci. U.S.A.100(21):12105-12110, 2003.

[21] Rhiju Das, Bin Qian, Srivatsan Raman, Robert VernomeaThompson, Philip Bradley, S Khare, Michael D.
Tyka, Divya Bhat, Dylan Chivian, David E. Kim, William H. Sfiker, Lars Malmstram, Andrew M. Wollacott,
Chu Wang, Ingemar Andre, and David Baker. Structure predfidor casp? targets using extensive all-atom

refinement with rosetta@homroteins 69(Suppl 8):118-128, 2007.

[22] Bin Qian, Angel R. Ortiz, and David Baker. Improvemehtomparative model accuracy by free-energy opti-
mization along principal components of natural structuaaiation.Proc. Nat. Acad. Sci. U.S.AL01(43):15346—
15351, 2004.

18



