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Abstract— The problem of automatically extracting the most
interesting and relevant keyword phrases in a document has been
studied extensively as it is crucial for a number of applications.
These applications include contextual advertising, automatic
text summarization, and user-centric entity detection systems.
All these applications can potentially benefit from a successful
solution as it enables computational efficiency (by decreasing the
input size), noise reduction, or overall improved user satisfaction.

In this paper, we study this problem and focus on improving
the overall quality of user-centric entity detection systems. First,
we review our concept extraction technique, which relies on
search engine query logs. We then define a new feature space
to represent the interestingness of concepts, and describe a new
approach to estimate their relevancy for a given context. We
utilize click through data obtained from a large scale user-centric
entity detection system – Contextual Shortcuts – to train a model
to rank the extracted concepts, and evaluate the resulting model
extensively again based on their click through data.

Our results show that the learned model outperforms the
baseline model, which employs similar features but whose weights
are tuned carefully based on empirical observations, and reduces
the error rate from 30.22% to 18.66%.

I. INTRODUCTION

The problem of determining the most relevant and inter-

esting entities and concepts - the key concepts - in a given

document is of growing importance due to the ever increasing

amount of information available on the World Wide Web.

The problem is not simply one of determing the set of

all named entities and phrases in a document - a natural

language problem which has been attacked extensively via

rules, dictionaries, and machine learning algorithms [1] - but

of refining that set to a smaller set of highly relevant and

interesting concepts that accurately capture the topic of the

document and are interesting to a large base of users.

In this paper, we focus on this problem and present a novel

technique for determining and ranking the key concepts in a

document. Extracting the key concepts from documents plays

a major role in a variety of applications, including contextual

advertising systems, search engines, and user-centric entity

detection systems. Therefore all these applications can poten-

tially benefit from the techniques that we present in this paper.

A. Applications

Contextual advertising systems attempt to determine the

most relevant textual ads for a given document (e.g. webpage),

and embed those ads into the document. Examples of such

systems are Yahoo’s Contextual Ads and Google’s AdSense

programs. These systems first attempt to discover the relevant

keywords in a document, and then find the ads that best match

the set of keywords [2]. It has been shown that reducing a doc-

ument to a small set of key concepts can improve performance

of such systems by decreasing their overall latency (processing

time) without a loss in relevance [3].

Text summarization is an important component of Web

search engines. Search engines can potentially return a large

number of search results (URLs) for a given query, so in

addition to each result, a small snippet of text is included

that attempts to summarize the contents of the page behind

the URL. Users scan these snippets to understand which

URLs contain the most relevant results for their queries.

Therefore, providing effective summaries via key concepts can

increase the overall user satisfaction. Furthermore, effective

web page summarization is critical in handheld and mobile

web applications where the display real estate (screen size) is

smaller than in conventional personal computers [4].

User-centric entity detection systems, where the primary

consumer of the detected entities is a human (not a machine),

benefit from detecting just the key concepts in document

by improving the overall user experience. User-centric entity

detection systems not only detect entities and concepts within

text (e.g., web pages), but also transform those detected enti-

ties into actionable, “intelligent hyperlinks”. These hyperlinks

provide additional relevant information about the entity in a

single-click, e.g. detecting an address and showing a map

to it, detecting a product name and showing an ad, etc.

In these cases, the quality (not necessarily the quantity) of

detected entities matters, since not every single entity or

concept is necessarily relevant to the topic of the document,

nor is it necessarily interesting. Examples of user-centric entity

detection systems are IntelliTXT1, Vibrant Media2, Kontera3,

and our own Contextual Shortcuts.

B. Approach

In previous work [5] around leveraging context in user-

centric entity detection systems we proposed to measure the

quality and utility of user-centric entity detection systems in

three core dimensions: the accuracy, the interestingness, and

the relevance of the entities it presents to the user. We showed

that leveraging surrounding context can greatly improve the

performance of such systems in all three dimensions. In the

past months we collected a large amount of click-through data

from users using our Contextual Shortcuts platform. Given all

1http://www.intellitext.com
2http://www.vibrantmedia.com
3http://www.konterea.com



this user interaction data we were motivated to see how we

can leverage it to further improve the overall detection quality

in regards of relevancy and interestingness.

This paper presents a novel approach for determining the

most interesting and relevant set of entities and concepts in

a document (the key concepts), using implicit user feedback

in the form of click data collected in Contextual Shortcuts.

Specifically, given a document and a candidate set of entities

extracted “naively” from the document, the algorithm will

return the entities ranked in decreasing order of interestingness

and relevance. An application can then choose the top N

entities from this ranked list.

We believe the user click data is a good measure of

relevance and interestingness since each click on an entity

or concept means that a user took a detour from his or

her current task to investigate the entity or concept further.

The assumption is that the more relevant an entity is to

the topic of the document and the more interesting it is to

the general user base, the more clicks it will ultimately get.

Intuitively, we define an entity to be relevant to a document

if a shortened synopsys of the document cannot leave the

entity out without losing a key idea. Interestingness can be

thought of as a measure of how likely a reader is to want

further information regarding the entity (either see a map of

a place, search/news results for a person, etc.). Combined,

relevance and interesingness determine the likelihood of a

person actually clicking on the entity. For example, consider

the following snippet,

President Bush’s position was similar to that of New York

Sen. Clinton, who argued at a debate with Obama last week

in Texas that there should be no talks with Cuba until it makes

progress on releasing political prisoners and improving human

rights.

In the above snippet, President Bush, Sen. Clinton, Obama,

and Cuba are all relevant and interesting entities to the reader

of the above text. However, Texas is not at all relevant to

the topic of the snippet (President Bush’s, Sen Clinton’s, and

Obama’s positions on talks with Cuba), and even though

it may be interesting to some users, we expect the click

numbers for Texas to be much lower compared to the other

entities. Another way to look at relevance is via a substitution

argument: if the entity can be replaced with another entity of

the same class/type without losing the meaning of the text, the

entity is not relevant, e.g. Texas can be replaced with Ohio in

the snippet above without changing main idea of the text.

The click data we use is in the form of click-through-

rate (CTR) data mined from user interactions with Contextual

Shortcuts in documents published on Yahoo! News 4. We use

CTR data, along with the context surrounding the entity, in

a machine learning approach to build a ranking function that

ranks a set of entities found in a document. The feature space

consists of attributes related to the relevance of an entity in

a context, as well as attributes related to how interesting an

entity is to the general base of users. Features related to

4http://news.yahoo.com

relevance are primarily derived from analysis of document

corpora, whereas features related to interestingness are derived

from analysis of search query logs.

C. Contributions

In this paper, we study the problem of determining and rank-

ing the key concepts in a document, which plays an important

role in a number of applications. The major contributions of

this paper are listed below:

• We propose to use implicit user feedback in the form of

click data to determine the most interesting and relevant

concepts in a context via a machine learning approach.

• We describe a feature space pertinent to the interest-

ingness of a concept, and present algorithms to identify

relevance of a concept in a given context.

• We evaluate the proposed techniques extensively using

click data, an editorial study, and an analysis on produc-

tion system. The results show significant improvements.

• We provide a detailed description of a framework that en-

ables efficient implementation of the proposed techniques

in a production system.

The remainder of the paper provides an overview of Con-

textual Shortcuts, describes the learning methodology and the

space of features. We then present our results, describe the

framework and conclude the paper with a summary and an

outlook on future work.

II. CONTEXTUAL SHORTCUTS

The Contextual Shortcuts entity detection platform is an ex-

ample of a user-centric entity detection system which provides

a framework for entity detection and content syndication. It

is designed to detect interesting named entities and concepts

(the key concepts) in unstructured text, and annotate them with

intelligent hyperlinks (shortcuts) - thus the name Contextual

Shortcuts. Clicking on a Shortcut results in a small overlay

window appearing next to the detected entity, which shows

content relevant to that entity, e.g. a map for a place or address,

or news/web search results for a person, etc. The system is

highly scalable, detecting hundreds of millions of entities per

day, and has been successfully deployed on various Yahoo!

network properties (e.g., Yahoo! Mail5, Yahoo! News6).

The major components of the platform are as follows; for

more details, please refer to [5]. A sequence of pre-processing

steps handles HTML parsing, tokenization, sentence, and para-

graph boundary detection. Next, specialized detectors discover

entities of various predefined types (e.g. places, persons,

organizations, identifiers like URLs, emails, phone numbers,

etc.), as well as abstract concepts derived from Yahoo! search

engine query logs. Finally, a sequence of post-processing

steps handles collision detection between overlapping entities,

disambiguation, filtering, and output annotation.

5http://mail.yahoo.com
6http://news.yahoo.com



A. Entity Detection

This paper focuses on improving the relevance and interest-

ingness of detected entities, so we now give a brief summary

of the entity detection process. Entities fall into three types:

1) Pattern based entities (emails, URLs, phones, etc.)

2) Named entities (names of concrete people, places, orga-

nizations, products, etc.)

3) Concepts (abstract entities, e.g. “auto-insurance”, “sci-

ence fiction movies”, etc.)

Pattern based entities are primarily detected by regular

expressions. To provide a level of consistent behavior to the

end user, pattern based entities are not subject to any relevance

calculations are always annotated and shown to the user.

Although there are quality issues related to the tuning of

regular expressions, they typically achieve very high accuracy

and overall relevance. We therefore focus our overall efforts

on the quality of named entities and concepts.

Named entities are detected with the help of editorially

reviewed dictionaries. The dictionaries contain categorized

terms and phrases according to a pre-defined taxonomy. The

current system consists of a handful major types, such as

people, organizations, places, events, animals, products, and

each of these major types contains a large number of sub-

types, e.g. actor, musician, scientist, etc. It is possible that

a named entity can be a member of multiple types, such as

the term jaguar, in which case the entity is disambiguated.

The named location detector (places and street addresses) also

uses data-packs that are pre-loaded into memory to allow for

high-performance entity detection. The data-packs are used to

associate type information and meta-data to detected entities,

such as the type information as listed in the entity taxonomy.

In the case of locations, the meta-data contained geo-location

information (longtitude, latitude).

Concepts are detected using data from search engine query

logs, thus allowing the system to detect things of interest that

go beyond editorially reviewed terms. Below we describe our

concept vector generation algorithm; for more details on the

algorithm and Contextual Shortcuts, please see [5]:

B. Generating a Concept Vector

Given a document, first a term vector is generated with a

tf*idf score [6] of each term using a term dictionary which

contains the term-document frequencies (i.e. the number of

documents of a large web corpus containing the dictionary

term). Our corpus in this case consists of all the web doc-

uments that are indexed by Yahoo! Search. The stop-words

are removed and the remaining terms’ weights are normalized

so that they are between 0 and 1. The weights of terms that

fall under a certain threshold are punished (their tf*idf score

is decreased), and the resulting tf*idf scores below another

threshold are removed from the term vector.

Second, a unit vector is generated of all the units found in

the document. A unit, described in [7], [8], is simply a multi-

term entity in the query logs which refers to a single concept.

Briefly, units are constructed from query logs in an iterative

statistical approach using the frequencies of the distinct queries

as follows. In the first iteration, all the single terms that

appear in queries are considered to be units. In the following

iterations, the units that frequently co-occur in queries are

combined into larger candidate units. The validation of these

units is performed based on statistical measures, including

mutual information, whose formal definition is shown below:

I(x, y) = log
p(x, y)

p(x)p(y)
(1)

where p(x, y) is the joint probability distribution function

of x and y, and p(x) and p(y) are the marginal probability dis-

tribution functions. Informally, mutual information compares

the probability of observing x and y together as a query with

the probabilities of observing x and y independent queries. If

there is an association between x and y, then the score I(x, y)
will be higher.

For units, mutual information helps to identify those terms

that frequently co-occur in user queries. Similar to the term

vector scores, unit scores are also normalized to be between

0 and 1. Again, the weights of units that fall under a certain

threshold are punished, and low scoring units are removed.

Finally, the term vector is merged with the unit vector to

obtain the concept vector. We may have the following cases:

1) A term appears in the term vector, but not in the unit

vector: This suggests that the term did not appear as a

popular query, so we add it to the concept vector, but

punish its term vector weight.

2) A term appears in the unit vector, but not in the term

vector: We simply add this term to the concept vector

with its unit weight.

3) A term appears in both term and unit vector: We add

this term to the concept vector, and we sum its term

vector and unit vector weights.

We then inspect the merged concept vector, and perform

the following additional step on the multi-term concepts. To

the weight of the multi-term concept calculated in step two,

we add both the unit vector and term vector scores of each

individual term it contains. Thus, the maximum final concept

weight possible is equal to two times the number of terms a

multi-term concept contains (this would happen if each one

of single terms it contains has unit vector and term vector

scores of 1, which is not possible in practice). This way more

specific concepts eventually bubble up in the overall rank.

As an example, we list top five concepts in the news snippet

shown in Section I with their concept vector scores:

<termvector id="concept">

<item term="david espo" weight="1.4403">

<item term="special correspondent" weight="1.2075">

<item term="iraq war" weight="1.1833">

<item term="president bush" weight="1.1549">

<item term="political parties" weight="0.6147">

...

</termvector>



III. METHODOLOGY

We now outline our general approach to the entity ranking

problem using user click data. As mentioned in section II, Con-

textual Shortcuts is integrated into various Yahoo! properties,

one of them being Yahoo! News. This means that each news

story shown on Yahoo! News is pre-processed via Contextual

Shortcuts prior to being published. The interesting entities and

concepts in each story (as determined by the current produc-

tion version of Contextual Shortcuts - the baseline version) are

annotated with Shortcuts (intelligent hyperlinks). In randomly

sampled news stories (due to data volume constraints), the

Shortcuts also include tracking information that allows us to

capture whether a reader of the story actually clicked on the

entity. This click data is aggregated and is mined to provide

the following reports on a weekly basis for each sampled news

story:

• the text of the news story

• a list of the entities annotated in the story, along with

metadata for each entity (taxonomy type, position in text)

• the number of times each entity was viewed

• the number of times each entity was clicked

Note that for a given news story, the number of times each

entity was viewed on that page is the same for all entities on

that page, and that number equals the number of times the

news story itself was viewed.

The view and click data above constitute the training and

test data in our machine learning approach. Our goal is: given

the candidate set of entities produced by the baseline system,

learn a ranking function which orders the entities by their

interestingness and relevance. In this case, click-through-rate

(CTR), defined as the number of clicks divided by the number

of views, is our proxy for interestingness and relevance - the

assumption being that entities receiving higher CTR values are

more interesting and relevant to users.

We split the problem into two parts: (a) determining whether

the entity is relevant to the given context, and (b) determining

whether the entity is interesting outside of the context. In order

to produce a system that can be deployed in production and

that can adhere to strict runtime constraints, we initially focus

our efforts on a large, but finite set of entities, namely the

set of named entities in our dictionaries plus a large subset

of all the concepts available to us from query logs - see

section II. For each entity and concept in this set, we first pre-

compute (offline) a static set of features (for relevance and

interestingness) from the training data - see section IV. For

relevance, we construct a model for each entity and concept,

and use this model at runtime to compute a relevance score

for a given entity with respect to a (new) given context. For

interestingness, we build a single model that given a set of

entities, returns the entities ranked in decreasing order of

interestingness. Note that the relevance score computed for

each entity can by itself be used to rank the entities, but it

can also serve as a feature in an overall (learned) model for

interestingness and relevance. The final ranking is determined

by this overall model.

We use an implementation of ranking SVM to learn a

ranking function between pairs of instances. An open source

library for ranking SVM [9] is also available in SVMlight 7.

[10] describes an open source library 8 for large-scale linear

classification which can also be used to learn ranking functions

without kernels. In our case, each instance consists of the

entity/concept along with its associated features, and the label

of each instance is its CTR value. The specific features used

in the system and data pre-preprocessing steps are described

in Section IV.

IV. FEATURE SPACE

In Section II, we reviewed our approach to extract a large

set of general concepts in a given document. However, as

mentioned earlier, our goal in this paper is to identify the

key concepts in this candidate set through ranking. Such

concepts would be highly interesting in general (independent

of the context) and/or highly relevant in the context. In this

section, we first define features that we use to estimate the

interestingness of a concept, and then define a new approach

to estimate the relevance of a detected concept in the context.

Finally, we provide a discussion on other possible features and

provide more insights on some practical issues.

A. Interestingness of a Concept

With interestingness, we would like to measure if a concept

would be appealing to a broad user base in general. At this

point, we do not focus on any personalization or profiling

aspects, but rather try to capture how interesting a concept

would be to a large population of users. For example, concepts

like “global warming” or “tom cruise” can be examples of

highly interesting concepts. Note that under this definition,

the interestingness of a concept does not really depend on the

context in which it appears (although context is fundamental

for relevance). In this subsection, we define a feature vector

to capture the interestingness of a concept; the contributions

of the individual fields will be determined through machine

learning techniques. The complete feature vector constructed

for each concept is shown in Table I. Below, we categorize

the features and describe them in detail.

Search Engine Query Logs: Our first intuition is that the

search engine query logs should provide a strong correlation

with the interestingness of a concept. In other words, if a

concept is interesting in general, there should be a quite

large number of queries submitted to an engine for that

concept. We used following features mined from query logs:

(1) freq exact: number of queries received that are exactly

same as the concept, (2) freq phrase contained: number of

queries that contain the concept as a phrase, (3) unit score:

mutual information of the terms in the concept, as described

in Section II.

When we construct our features from query logs, we essen-

tially focus on the frequencies; we do not perform any cate-

gorization to understand their intentions such as navigational,

7http://svmlight.joachims.org
8http://www.csie.ntu.edu.tw/˜cjlin/liblinear



Features

1 freq exact
2 freq phrase contained
3 unit score

4 searchengine phrase

5 concept size
6 number of chars
7 subconcepts

8 high level type

9 wiki word count

TABLE I

FEATURE SPACE FOR INTERESTINGNESS (AFTER FEATURE SELECTION)

transactional or informational queries (see [11]), although

there might be potential benefits in doing so.

In addition to these three features, we tried with a number of

variations. These include considering queries and concepts as

bags of words (which do not require any ordering), and define

a cosine similarity threshold to identify similar queries to the

concept. During our feature selection process, none of these

features prove to improve upon the features mentioned above,

and therefore we decided not to include them here. A more

detailed discussion on how to measure similarity between two

very short segments of text (such as queries and concept), can

be found in [12].

Search Engine Result Pages: We submit the concept to the

search engine as a phrase query, and use the number of result

pages returned as a feature ((4) searchengine phrase). The

intuition behind this is to get an estimation on the specificity of

the concept; very specific concepts would return fewer results

than the more general concepts. This approach is also used

in [13] for a different problem. During our feature selection,

a variation which submits the concept as a regular query is

eliminated, therefore it is not included in Table I.

Text Based Features: We specify the following features

derived from simple text analysis. (5) concept size: number

of terms in the concept; (6) number of chars: number of char-

acters in the concept; (7) subconcepts: number of subconcepts

contained in the concept that have more than two terms and

have a unit score of larger than 0.25.

Taxonomy Based Features: If the concept exists in one of

the editorially maintained lists, then the high level type, such

as place, person, organization, etc., is used as a feature for (8)

high level type.

Other: As Wikipedia continues to grow, we are able to

find entries about many concepts in Wikipedia. Although

measuring the quality of the articles in Wikipedia is an open

problem, the length of the articles is shown to be a useful

feature [14], and we decided to use the length of the article

as a feature. (9) wiki word count: number of words in the

Wikipedia article returned for the concept, and 0 is used if

no article exists. We also tested with features that utilize idf

(inverse document frequency) value of the individual terms

that appear in the concept, however, these features were not

useful and eliminated during feature selection process.

B. Relevance of a Concept in a Context

Relevance is quite important in ranking the concepts in a

given context, and it applies to all of the applications men-

tioned above. Clearly, text summarization techniques would

not be helpful if the summaries returned were not relevant

to the overall content. The studies described in [15], [3],

[16] indicate that the ads related to the page content receive

more clicks. In user-centric entity detection systems, relevance

plays an important role and those concepts with low relevance

usually do not attract users to take further action unless they

are extremely interesting.

In this subsection, we propose a mining approach to obtain

a good relevance scoring mechanism. Our main goal with

this approach is obviously to identify those concepts that are

most relevant in the context. However, we would like to note

that the initial candidate set may contain very general or low

quality concepts (such as “my favorite”, “the other”, “what

is happening”, etc). The reason for having them as candidates

usually relates to their high unit scores, as described in Section

II. Similarly, they might even get ranked higher due to the

noisy fields in the interestingness feature space (such as search

query logs, etc). However, we would expect the relevance

scoring mechanism to address this issue since these concepts

should almost never get a high relevance score in any context.

In other words, our second goal with relevance is to provide

a score that can be used as a safety net for such concepts.

As described in the following sections, we employ machine

learning techniques to learn the best rules (weights) to identify

such cases. In summary, we expect the relevance score to

play an important role in conjunction with the interestingness

features in the ranking of the candidate concepts.

Our main idea for computing the relevance score of a

concept in a context is quite simple. Assume for now that

we have constructed a set of relevant context keywords for

that concept in advance. In other words, assume that we have

extracted, say the top hundred most distinctive terms from

contexts in which the concept was known to be relevant. Now,

given a new context containing that concept, we would like

to find out the relevancy of the concept in the context. We

argue that a reasonable approximation for the relevance of that

concept can be computed based on the co-occurrences of the

pre-mined keywords and the given concept in the context. If

none of the keywords occur, we can conclude that the concept

is not relevant in the context, and it is likely that the model

will rank that concept much lower based on this fact. Below

we describe our approach for mining the relevant keywords,

and the resources we use in more detail.

1) Mining Relevant Keywords for Each Concept: We now

formally define the problem that we address through prepro-

cessing, which is crucial for the relevance score of a concept

in a context. We are given a large set of concepts of size n:

C = {c1, c2, ..., cn} (2)

For each concept ci, we would like to mine the top m (100
used in practice) relevant context keywords, and their scores:



relevantT ermsi = {(ti,1, si,1), ..., (ti,m, si,m)} (3)

Here, the score would indicate the importance of the relevant

term for the concept, i.e. our confidence about this term.

As mentioned above, for concept ci the relevant keywords

{ti,1, ..., ti,m} are mined from contexts in which the given

concept is presumed to be relevant. In this work, the contexts

in which the concept is presumed to be relevant come from

three sources: (a) search engine result snippets, (b) Prisma, a

tool for query refinement, and (c) related query suggestions.

No manual (human) analysis of relevance is performed. Intu-

itively, the more frequently the term appears in those contexts,

the higher this score should be. Similarly, the more important

the term is in general, the higher this score should be. Below

we describe the resources we used for this task, and the exact

scoring metric we employed for each resource in detail.

Before proceeding, we would like to note the relevant terms

that we are working with are all stemmed [17], all characters

are lower cased and the surrounding punctuation characters

are removed.

Search engine snippets: For the task of mining the relevant

keywords for a given concept ci in C, we first propose using

search engine snippets. These short text strings are constructed

from the result pages by the engine, and they usually provide

a good summary of the target page since they help users in

making the decision of whether to visit the target page or

not. We use Yahoo! Search Engine snippets for our task, and

obtain them through the Yahoo! Developer Network [18]. We

submit the concept to this API and use the snippets retrieved

for the first hundred results. In our setup, we pretend that the

returned snippets constitute a single document and then use

a bag-of-words model. For each unique term that appears in

this document, we compute its tf*idf score, where tf stands

for the term frequency and idf stands for the inverse document

frequency [6]. Then we choose top m=100 terms based on this

score, and use them as the relevant keywords for concept ci. So

for term ti,j , we define score si,j to be tf*idf value. Note that

this score can successfully provide the two desired features,

which is discussed above, through tf and idf values.

Prisma query refinement tool: Prisma is a tool which

assists users to augment or replace their queries by providing

feedback terms [19]. The feedback terms are generated using a

pseudo-relevance feedback approach [19], [20] by considering

the top 50 documents in a large collection, based on factors

such as count and position of the terms in the documents,

document rank, occurrence of query terms within the input

phrase, etc. When Prisma is queried, it returns top twenty

feedback concepts for the submitted query (the reason for

this limitation is that the tool is designed for assisting users,

and providing more feedback terms is not desirable from

users’ perspective; however, for our application having a

larger feedback set would certainly be beneficial). In order to

obtain the set relevantT ermsi for concept ci, we follow the

same approach as we did for snippets: We construct a single

document from the concepts returned by Prisma for concept

ci, and compute scores si,j based on the tf*idf values.

Related query suggestions: Finally, we propose to use

search engine query suggestions as a resource, which can be

obtained from Yahoo! Developer Network [18]. This service

provides query suggestions related to the submitted query. In

our case, we submit the concept ci to this service and obtain up

to 300 suggestions. We also obtain the query frequencies of the

suggestions (i.e how many times this suggestion was submitted

to the engine as a query). Note that each unique term seen in

these suggestions may appear in multiple suggestions (say, it

appears in k suggestions). We consider the query frequencies

of these suggestions, and define the score of the term to be∑k

i=1 ln(query freqi) ∗ idf(term). We again sort the terms

based on their scores and choose top m=100 terms to be used

as the relevant keywords for concept ci.

C. Discussion

In Section IV-A, we introduced a set of features that would

potentially be useful in determining the overall interestingness

of a concept. As stated earlier, our goal in this aspect is to be

able to identify if a concept would be appealing to a broad user

base. However, it is clear that interestingness is a subjective

matter and can vary significantly for different individuals

and backgrounds. In cases where the application supports a

user login, we believe that personalization and collaborative

filtering techniques can greatly improve this prediction for

individuals by analyzing the history of actions taken. Secondly,

the interestingness of a concept can change in time depending

on the world’s state as news breaks, trends change, etc. To

identify this case, new features can be included to the space

that can identify spikes or changes in news articles and/or

query logs. We plan to address these issues in our future work.

In Section IV-B, we described a new approach to compute

the relevancy scores, which essentially mines the relevant

keywords for a given concept through preprocessing, and then

uses them to estimate the relevance score of that concept

in a new context. The approach proves to be quite effective

according to our evalations, which will be presented in detail

in Section V. However, we would like to first discuss an

important goal of the relevancy as mentioned in Section IV-

B: Ideally, those concepts that are very general or have low

quality should almost never get a high relevance score in any

context. Our approach actually addresses this issue implicitly.

Assume for now that we are given a concept, and we are

using the search engine snippets as the relevant contexts. If the

concept is very specific, we observe that some distinctive terms

(that have high idf scores) occur very often in the snippets and

they get high tf scores; so these terms end up having quite

large final (tf*idf ) scores. On the other hand, if the concept

is very general or have low quality, then we observe that the

mined relevant keywords are usually very sparse, and no such

clustering occurs, so the mined relevant terms usually end up

having small final (tf*idf ) scores. To illustrate this observation,

we applied our approach on a large set of concepts, and for

each concept we summed the final scores of its top hundred



Concept Summation

methicillin resistant staphylococcus aureus 9544.3

motorola razr v3m silver 9118.7

egyptian foreign minister ahmed aboul gheit 9024.9

my favorite 2142.9

the other 1718.0

what is happening 1503.0

TABLE II

CONCEPTS AND THEIR SUMMATION VALUES, WHERE SUMMATION IS THE

SUM OF SCORES FOR THE CONCEPT’S TOP HUNDRED RELEVANT

KEYWORDS.

relevant keywords. Then we sorted the concepts based on these

summations. The upper part of Table II shows three concepts

ranked very high with quite large summations, and the lower

part shows three concepts ranked very low with much smaller

summations. As we can see, low quality concepts get much

lower chance of getting identified as relevant in any context

since their relevant terms end up having small scores.

Another issue that we would like to discuss is the ambiguous

concepts (such as Madonna or Jaguar). If a concept is ambigu-

ous, then the relevant keywords mined might have low final

scores, as they would not cluster well globally. However, there

would be some good local clusters, depending on the number

of senses, and if such clusters can be identified then the scores

can be boosted. A number of techniques, inluding ones that

are based on latent semantic analysis [21], can potentially be

useful for this problem, however this is beyond the scope of

this paper.

V. EVALUATION AND RESULTS

We performed a series of experiments: In Section V-A,

we apply a cross-validation method to train and test our

approach on news stories that were published and annotated

by Contextual Shortcuts. Under this setup, we train a model

based on the CTRs, and test the model on remaining unseen

documents. For the evaluation, we propose two metrics and

provide detailed analysis and comparison to the concept vector

score. In Section V-B, we report results from an editorial study.

The study is conducted by a team of expert judges, and the

judges are asked to rate each entity or concept highlighted in

the document in terms of its interestingness, and relevance.

Finally, in Section V-C, we provide some highlights on the

real world results as the approach is currently being used in

production.

A. Cross Validation Approach

1) Data: As discussed in Section III, our approach utilizes

randomly sampled news stories that were annotated by Con-

textual Shortcuts. Our information tracking system allows us

to capture how many times these stories were viewed by the

readers, and the number of clicks received by each concept

that was detected in the stories.

In our evaluation, we used news stories that were pub-

lished between November 26th, 2007 and January 27th 2008.

However, in order to avoid noisy input in our experiments,

we ignored the story (1) if the number of sampled views is

less than 30, (2) if the story contained only one concept, or

(3) if no concept has more than three sampled clicks on the

page. After these simple rules, our final data set contained

870 stories which had 6420 concepts detected. These concepts

received a total number of 16549 sampled clicks. To avoid the

positioning bias inherent in working with user click data (i.e.

the first entities in a document may get an unfair share of user

attention), we partitioned large documents into windows of

size 2500 characters. We made sure that consecutive windows

overlap (with 500 characters) so that the neighboring concepts

are not separated due to this appoach. Doing this produced a

total of 947 windows. For query logs, we considered the most

popular 20 million queries submitted to the engine in the week

of November 17th – 23rd, 2007.

2) Evaluation Metrics: In our experiments, we use Con-

textual Shortcuts as a baseline system, which was described

in Section II. This baseline system ranks the detected entities

and concepts based on their concept vector scores. As another

baseline method, we used random ordering. To evaluate the

effectiveness of the proposed approach in this paper, we use

two metrics. Below, we describe each metric in detail, and

provide examples to give the reader some intuition.

Weighted Error Rate: A common metric used for evaluating

ranking systems is the “error rate” of preference pairs. This

metric or its variations have been used in [22], [23], [24].

Given a ranking (prediction) and the correct ordering, this

metric considers all possible preference pairs in the prediction,

and counts the number of mistakes made. Then it simply

reports the ratio of mistakes to all possible preference pairs:

Error Rate =

| Mistakenly Predicted Pairs |

| All Pairs |
(4)

To obtain an intuition, consider a perfect ranking of

four concepts, [A,B,C,D], on a news article, based on

the CTR values observed. Assume a system recommends

ranking R1=[A,B,D,C], and another system recommends

R2=[B,A,C,D], and we would like to evaluate which system

performed better. Using this metric, the error rate for both

systems are 16.67%, since both systems make a single pairwise

mistake out of all six possible pairs.

Note that this ranking metric punishes each pairwise mistake

equally. However, in reality some mistakes are more crucial

than others, and ideally a pairwise mistake should be punished

relative to the preference difference between the two items. In

our case, we know the actual CTR of each concept on a given

document, and since CTRs usually reflect the strength of the

preferences, we propose to punish mistakes according to their

CTRs differences. So we define a weighted error rate metric:

Weighted Error Rate =

P| mistakes |
i=1

CTR differencei
P|all pairs |

i=1
CTR differencei

(5)



So assume the CTR values for the four concepts mentioned

above are as follows: [(A, 0.15), (B, 0.05), (C, 0.02), (D,

0.01)]. Using this metric, R1 and R2 predictions would get

weighted error rates of 2.22% and 22.22% respectively, since

the cost of (B, A) misprediction is much higher than that of

(D, C). We will use the weighted error rate metric in our

evaluations since we believe it provides a better comparison

technique.

NDCG Score: In our evaluation, we also use the normalized

discounted cumulative gain measure (NDCG) [25]. NDCG

is a valuable metric for those applications that require high

precision at top ranks. Such applications can typically leverage

and incorporate the position information in the ranked output

to provide a better user experience. In our case, following

applications can benefit from a high precision ranking of

concepts at top ranks: 1) News Alerts, which offers a noti-

fication service for key entities and concept in an article, 2)

Advertisement Systems, which may leverage the rank positions

of the key concepts detected in a document to improve the

matching quality. On the other hand, all applications that

consume key concepts in documents can potentially improve

their overall user satisfaction by working with fewer high

precision (quality) concepts at top ranks, and getting the noisy

ones removed. Therefore, we decide to use this metric in

evaluating the effectiveness of the proposed approach.

NDCG assumes each result has a label (score) assigned;

it computes a gain function for each result, and applies a

discount function depending on the rank of the result. The

NDCG score for a sorted list of k concepts on documenti
can be computed as follows:

NDCGdocumenti
= Ni

k∑

j=1

2score(j) − 1

log(j + 1)
(6)

where Ni is the normalization constant so that a perfect

ordering of the concepts in documenti will receive the score

of 1.0, score() is the gain function, and log(j + 1) is a

discounting function to reduce the gain value as the rank

increases. In our case, for conceptj , we define score(j) =

bucketNo(CTR(j))/100, where bucketNo() simply returns a

bucket number between 0 and 1000 considering all the CTR

values observed in the system in increasing order. By dividing

the bucket number by 100, we basically obtain a judgement

score between 0.00 and 10.00.

To obtain an intuition for NDCG, let us again con-

sider the two rankings discussed above: R1=[A,B,D,C] and

R2=[B,A,C,D]. For simplicity, let us assume score(j) =

CTR(j)*10. The ndcg@1 values for R1 and R2 are 1.0 and

0.23 respectively: R1 gets a perfect score as expected, and R2

a much lower score 0.23 ((20.05 − 1)/(20.15 − 1)). ndcg@2

values for R1 and R2 are 1.0 and 0.75, and ndcg@3 values

for R1 and R2 are 0.98 and 0.76, respectively.

3) Baseline Methods and Methodology: In our experiments,

we compare the proposed approach to two baseline methods:

random and concept vector score based ordering. When we

randomly rank the concepts in our document set, we observe

Technique Weighted Error Rate (%)

Random 50.01

Concept Vector Score 30.22

Feature Set

All Features 23.69

- Query Logs 24.50

- Taxonomy Based 24.47

- Search Results 23.80

- Other 23.78

- Text Based 23.73

TABLE III

WEIGHTED ERROR RATES WITH INTERESTINGNESS FEATURES

that the error rate is 50.0%, as expected. Next, we use

the concept vector scores as has been used in Contextual

Shortcuts: With this ranking we observe that the error rate

is 30.22%. We would like to note that in the case of ties, we

assume a random ordering of concepts.

In the following experiments, we followed the five-fold

cross-validation process: We randomly partitioned our docu-

ment set into five subsets, used four subsets for training and

the remaining subset for testing. We repeated this five times

to ensure the learned model is tested on each unseen subset.

For the ranking SVM, we test with both linear and the radial

basis function kernels with the default parameters, and report

the best result we obtain.

Fig. 1. NDCG scores for top k = {1, 2, 3} results when all interesting
features are used in the model

4) Results with Interestingness Features: When we utilize

all features shown in Table I in the model, we observe the

error rate can be reduced to 23.69%. In order to understand

the contributions of the features, we removed each feature set

discussed in Section IV-A one at a time. As we can see in Table

III, search engine query logs and the taxonomy information



Technique Weighted Error Rate (%)

Random 50.01

Concept Vector Score 30.22

Best Interestingness Model 23.69

Resource

Prisma 32.32

Query Suggestions 31.23

Snippets 24.86

TABLE IV

WEIGHTED ERROR RATES WITH RELEVANCE SCORE BASED RANKING

play important roles, and when each one of them is removed,

we see a big increase in the error rate.

Next, we present the NDCG results for positions at k

= {1, 2, 3} in Figure 1. The trend seen for the random

method actually confirms our initial assumption: Few concepts

on a document actually get most of the clicks. The NDCG

results are in line with the error rate metric and show that

interestingness features can greatly help.

Fig. 2. NDCG scores for top k = {1, 2, 3} results when concepts are ranked
based on their relevance scores

5) Results with only Relevance Score: In this subsection,

we do not train a model but simply rank the concepts based

on their relevance scores. In Table IV, we present error rates

for each resource that we used for mining (see Section IV-B).

The Prisma and related query suggestions perform worse than

the baseline. However, snippets perform significantly better

than either of them, and improve on the baseline. We believe

snippets provide much better coverage of keywords compared

to Prisma and query suggestions, and therefore allow for better

clustering. We present the NDCG results in Figure 2.

6) Results with all Features: Finally, we train a model using

all interestingness features and the relevance score based on

Technique Weighted Error Rate (%)

Random 50.01

Concept Vector Score 30.22

Best Interestingness Model 23.69

Best Relevance 24.86

Interestingness + Relevance 18.66

TABLE V

WEIGHTED ERROR RATES WHEN ALL FEATURES ARE USED IN THE MODEL

snippets. As presented in Section V-A.5, the relevance score

alone is quite useful in reducing the error rate. Therefore, in

case of ties, we decided to favor concepts that have higher

relevance scores. The error rate results are shown in Table V.

As we can see, when all features are employed, the model

performs better than any method discussed so far: The error

rate is reduced to 18.66%, which is significantly lower than

our baseline result of 30.22%. The NDCG results are shown

in Figure 3.

Fig. 3. NDCG scores for top k = {1, 2, 3} results when both interestingness
and relevance features are used in the model

B. Editorial Evaluation

We describe the methodology used to evaluate the perfor-

mance of our approach using two criteria as a measure of

quality – the interestingness and the relevance of the detected

entities. We present and analyze the results achieved by the

algorithm when run on sample corpus of documents.

1) Methodology: Our standard evaluation methodology

consists of a team of expert judges rating the entities detected

by the algorithms in a set of documents in a corpus. Using

an interface specifically designed for this task, the processed

set of documents is presented to the judges. A judge is

asked to select a document from the pool of documents, and



once selected, asked to read the document carefully prior to

issuing any judgments. Each document shows the detected

entities (through highlighting), along with the surrounding

context. The judge is then asked to rate each entity or concept

highlighted in the document in terms of its interestingness and

relevance.

Interestingness: Here we measure the degree to which the

highlighted entity or concept is interesting, useful, or com-

pelling enough to tear the reader away from the main thread

of the document. Would the reader take time out from reading

the document to actually click on the entity or concept and

explore it further? The judges can select from the following

choices:

• Very Interesting or Useful – It is very likely that the

reader will find this entity or concept interesting or useful

enough to click on it.

• Somewhat Interesting or Useful – This entity or concept is

mildly interesting, and maybe compelling to some portion

of the general population, but it is not immediately

obvious that most users will click on it.

• Definitely Not Interesting or Useful – There is no plau-

sible scenario in which the reader will find this entity or

concept interesting or useful enough to click on.

Keep in mind that an interesting entity or concept may not

necessarily be relevant, i.e. central to the gist or topic of the

document, or vice versa. In our guidelines the interestingness

of entities or concepts is independent of their relevance to the

meaning of the document.

Relevance: Here we measure the degree to which the high-

lighted entity or concept is relevant to the main topic of

the document. We can think of this as “summarizing” the

document with the best set of entities, regardless of their

interestingness. The judges can select from the following

choices:

• Relevant – The entity or concept is core to the overall

meaning or topic of the document. You could not accu-

rately summarize the given text without mentioning this

entity or concept. Example: The entity Iraq is a relevant

entity in a story about the Iraq war – without it, you could

not accurately relate the story.

• Somewhat Relevant – This entity or concept fits into the

overall sense of the document, but only peripherally. If

you omit this entity in your “summary”, then you’ll still

capture the overall sense of the text, but some minor

details may be missing. Example: The document is a

story about the Iraq war, and M1-Abrams is a found as

an entity.

• Not Relevant – This entity or concept is certainly not

relevant to the meaning of the document. Example: The

document is a story about the Iraq war, and includes a

quote from a soldier that calls Ukiah, CA home – Ukiah

is not a relevant entity in this case.

Each of the above questions also includes a “Can’t Tell”

choice for those rare case when a judge can’t decide.

Overall Results Concept Vector Score Ranking Algorithm

Interestingness News Answers News Answers

Very Interesting 32.6% 35.9% 45.4% 41.6%

Somewhat Interesting 40.9% 35.4% 39.5% 40.3%

Not Interesting 26.4% 28.5% 15.1% 18.1%

Can’t Tell 0.1% 0.2% 0.0% 0.0%

Relevance News Answers News Answers

Very Relevant 53.0% 50.3% 66.3% 61.3%

Somewhat Relevant 29.2% 29.1% 26.3% 28.1%

Not Relevant 17.7% 20.4% 7.4% 10.6%

Can’t Tell 0.1% 0.2% 0.0% 0.0%

TABLE VI

INTERESTINGNESS AND RELEVANCE SCORE COMPARISON OF LEARNED

RANKING ALGORITHM VS. RANKING BASED ON CONCEPT VECTOR SCORE

2) Test Results: The test corpus consisted of 1200 docu-

ments, composed of 800 snippets from Yahoo! Answers Q

& A’s 9, and 400 full length stories from Yahoo! news 10).

This corpus yielded 4995 entities from News stories and 2826

from Answers snippets. Given all the entities detected, we

identified top three and top two entities in News stories and

Answers snippets respectively, using the ranking algorithm

presented in this paper and the concept vector scores alone.

The judgments on these entities are shown in Table VI. As

we can see, the ranking algorithm significantly outperforms

the concept vector score on both types of content. With the

proposed ranking algorithm, the overall average percentage

of non-interesting and non-relevant terms across both types

of content decreased by 45.1%, from 23.3% to 12.8%. Also

noteworthy is the ratio of Very Relevant to Somewhat Relevant

scores in News articles, up 38.5% from 1.82 to 2.52.

C. Real World Results

The proposed approach is currently being used in Con-

textual Shortcuts, and has been in production in the last

fifteen weeks. Under this setup, we annotate much fewer

entities and concepts in News articles, and make sure they

are ranked at top according to techniques described in this

paper. As expected and intended, this dramatically reduced

the number of annotations we performed. When we compare

the outcome to what we observed in the preceding twenty

weeks, we see that the number of average weekly views was

reduced by 52.5%, and yet the number of average weekly

clicks received was down by only 2.0%. This translates to

an increase of 100.1% in CTR, which clearly indicates a

significant improvement in user experience.

VI. FRAMEWORK

All the techniques described so far for building the inter-

estingness vector and mining relevant keywords for concepts

are achieved through preprocessing and are therefore offline

procedures. However, the final system, which detects and ranks

the concepts in a given document, needs to be quite efficient

9http://answer.yahoo.com
10http://news.yahoo.com



as this will be done in real time. This sets computational as

well as memory limitations.

In this section, we describe our framework and discuss

the implementation details. Our user-centric entity detection

system supports quite a large number of concepts as it employs

search query logs. For simplicity, assume that we would like

to support 1 million concepts in our system. The framework

is illustrated in Figure 4.

Stemmer: As mentioned earlier, the Ranker works on the

stemmed input, so we need to include a Stemmer component.

When a document is received, the stemmed version is created

first and stored for later usage, as described shortly.

Interestingness: In Section IV-A, we presented 9 features that

are used in the interestingness vector. For each concept we

have in the system, we first compute the values for these

features in the offline process, and employ a normalization

that would fit each field to two bytes (this causes a minor

decrease in granularity). So the interestingness vectors for 1

million concepts would cost 18MB in memory; with the use

of efficient data structures, such as hash tables, the vectors for

the detected concepts can be retrieved in constant time.

Relevance: Supporting relevance as described in Section IV-

B is trickier, since for each concept in the system, we need

to store up to hundred relevant keywords with their scores.

In the implementation, the relevant keywords are represented

by unique term ids (perfect hashes). So this means that for

each concept we actually need to store up to hundred term

ids (TIDs) and their scores. In the process of computing the

relevance scores, the system uses a global hash table (Global

TID Table) which simply maps a given term to its TID (if

that term is used by at least one concept). It is clear that the

matching of these TIDs with those of relevant terms for the

detected concepts can be achieved quite efficiently through a

good implementation.

Now, we discuss the memory cost of this approach. Our

analysis shows that the total number of unique terms stored in

the Global TID Table decreases as we increase the number of

concepts in the system. This is certainly as expected since

many relevant keywords (TIDs) are shared among related

concepts. Therefore, the largest TID value we need to support

in the system is not too large and can easily fit into 22 bits. We

normalize the scores of the relevant terms to be in the range

of 0 and 1023, so that they can fit in 10 bits. So for each

concept, we need 400 bytes to store its top 100 (TID, score)

pairs, since each pair can be stored in 32 bits, combined. This

means that, in addition to the Global TID Table, we need about

400MB for 1 million concepts to store their relevant terms with

scores. Note that this cost can be even further reduced through:

1) exploiting the fact that many TIDs are shared by related

concepts, 2) using integer compression techniques, such as

Golomb Coding [26].

Performance: In order to evaluate the running time perfor-

mance of the system, we performed the following experiment

on a Linux Machine with Dual Core AMD Opteron Processor

275 (1808 MHz) and 1MB cache. The machine had enough

space to load all the necessary hash tables into the main mem-

Fig. 4. Framework overview (rounded rectangles represent hash tables)

ory. In the test, we used 1445 randomly chosen documents

with an average size of 2.5KB, and each document contained

6.45 detections on average. The total running time of the

stemmer and ranker components were 0.457 sec and 1.519 sec,

respectively, which translates to processing rates of 7.9MB/sec

and 2.4MB/sec.

VII. RELATED WORK

There is a significant amount of work in the field of

named entity recognition (NER), where the goal is usually

to recognize person, organization and location names in free

text. In general, the target consumers of the NER systems are

machines, and common applications include question answer-

ing, summarization, and automatic correction of missing case

information or misspellings in text. However, since our main

goal is to identify the key entities or concepts in the given text,

rather than detecting all the entities that fall into predefined

categories, our focus is rather different than that of traditional

NER systems.

Closely related to our work are the keyphrase extraction

algorithms where the goal is to find the most distinctive

or representative terms in text [27], [28], [29], [30], [31].

However, the problem setup in these studies is rather different:

the keyphrases are extracted from the body of the input

document without using a predefined list. In our case, we use

a large collection of concepts that are already mined from

search engine query logs. So in a given document, our goal is

to successfully rank these candidate concepts based on their

interestingness and relevance. We argue that the click data

collected in Contextual Shortcuts provides a good proxy for

this, and we employ machine learning techniques to leverage

this implicit user feedback.

The clickthrough data has been successfully used in a

number studies to improve web search [32], [22], [33], as well

as web page summarization [4]. All these applications rely on

the implicit feedback received from the large user base and

employ machine learning techniques for improvements.



VIII. CONCLUSIONS AND FUTURE WORK

This work focuses on the problem of identifying the set of

highly relevant and interesting key concepts in a piece of text.

Our approach to this problem consists of using large scale

user feedback to guide our algorithms. Users are presented

with candidate entities and concepts in the form of Contextual

Shortcuts in each Yahoo! News story that they read. Their

subsequent actions (clicks), or lack thereof, provides us with a

continuous stream of feedback on whether or not the presented

entities are in fact relevant or interesting. Given this large set

of “labeled examples”, we proceed to build a feature space that

includes attributes related to the relevance and interestingness

of a concept in a document. The attributes and the labels are

then used in a supervised machine learning approach to learn

a ranking function over candidate pairs of concepts. We show

that this approach substantially improves the performance

of the Contextual Shortcuts platform. Finally, we present a

framework for how this technique can be implemented in a

production system.

In terms of future work, we would like to investigate

an online version of this technique. In this scenario, the

system would be able to respond to sudden fluctuations in

click data, either boosting scores of low scoring concepts

that are experiencing high CTRs, or punishing the scores of

those experiencing low CTRs. This may allow the system to

potentially react intelligently to world events in real time.
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[25] K. Järvelin and J. Kekäläinen, “IR evaluation methods for retrieving

highly relevant documents,” in Proceedings of the 23rd annual in-
ternational ACM SIGIR conference on Research and development in

information retrieval, 2000.
[26] I. H. Witten, A. Moffat, and T. C. Bell, Managing Gigabytes: Compress-

ing and Indexing Documents and Images, 2nd ed. Morgan Kaufmann,
1999.

[27] E. Frank, G. Paynter, I. Witten, C. Gutwin, and C. Nevill-Manning,
“Domain-specific keyphrase extraction,” in Proceedings of the 1999
International Joint Conference on Artificial Intelligence, 1999, pp. 668–
673.

[28] P. Turney, “Learning algorithms for keyphrase extraction,” Information
Retrieval, vol. 2, no. 4, pp. 303–336, 2000.

[29] A. Hulth, “Improved automatic keyword extraction given more linguistic
knowledge,” in Proceedings of the 2003 Conference on Empirical

Methods in Natural Language Processcing, 2003, pp. 216–223.
[30] M. Henzinger, B.-W. Chang, B. Milch, and S. Brin, “Query-free news

search,” in Proceedings of the 12th International World Wide Web

Conference (WWW), 2003.
[31] P. D. Turney, “Mining the web for lexical knowledge to improve

keyphrase extraction: Learning from labeled and unlabeled data,” CoRR,
vol. cs.LG/0212011, 2002.

[32] E. Agichtein, E. Brill, and S. T. Dumais, “Improving web search ranking
by incorporating user behavior information,” in Proceedings of the

29th annual international ACM SIGIR conference on Research and

development in information retrieval, 2006.
[33] F. Radlinski and T. Joachims, “Query chains: learning to rank from im-

plicit feedback,” in Proceeding of the 11th ACM SIGKDD international

conference on Knowledge discovery in data mining, 2005.


