
IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 15, NO. 3, MARCH 1996 213

Synthesis of High-Performance Analog Circuits
in ASTRWOBLX

Ernil S. Ochotta, Member, IEEE, Rob A. Rutenbar, Senior Member, IEEE,
and L. Richard Carley, Senior Member, IEEE

Abstract- We present a new synthesis strategy that can auto-
mate fully the path from an analog circuit topology and perfor-
mance specifications to a sized circuit schematic. This strategy
relies on asymptotic waveform evaluation to predict circuit per-
formance and simulated annealing to solve a novel unconstrained
optimization formulation of the circuit synthesis problem. We
have implemented this strategy in a pair of tools called ASTRX
and OBLX. To show the generality of our new approach, we have
used this system to resynthesize essentially all the analog syn-
thesis benchmarks published in the past decade; ASTWOBLX
has resynthesized circuits in an afternoon that, for some prior
approaches, had required months. To show the viability of the
approach on difficult circuits, we have resynthesized a recently
published (and patented), high-performance operational ampli-
fier; ASTWOBLX achieved performance comparable to the
expert manual design. And finally, to test the limits of the
approach on industrial-sized problems, we have synthesized the
component cells of a pipelined A/D converter; ASTWOBLX suc-
cessfully generated cells 2-3 x more complex than those published
previously.

I. INTRODUCTION
SURPRISING number of technologies that most people A consider hallmarks of the digital revolution actually

rely on a core of analog circuitry; cellular telephones, mag-
netic disk drives, and compact disc players are just a few
such examples. Many of tomorrow’s products-e.g., neural
networks, speech recognition systems, and personal digital
assistants-will also require analog circuitry. Unfortunately,
the present state of analog CAD tools makes it difficult to
quickly and cost effectively design the new analog circuitry
that these new technologies will require. To conserve space
and save money, it is now commonplace to implement entire
mixed analog/digital systems on a single Application Specific
Integrated Circuit (ASIC). But, to maximize profit, mixed
analog/digital ASIC designers must also minimize design-time
and thus time-to-market. Digital CAD tools facilitate this by
providing a rapid path to silicon for the large digital component
of these designs. Unfortunately, the analog component of these
designs, although small in size, is still designed manually by
experts using time-consuming techniques that have remained

Manuscript received February 15, 1995; revised July 21, 1995. This
work was supported in part by the Semiconductor Research Corporation,
The National Science Foundation, Hams Semiconductor, and Bell Northern
Research. This paper was recommended by Associate Editor R. A. Saleh.

E. S. Ochotta was with the Department of Electrical and Computer
Engineering, Carnegie Mellon University, Pittsburgh, PA 15213 USA. He
is now with Xilinx, Inc., San Jose, CA 95124 USA.

R. A. Rutenbar and L. R. Carley are with the Department of Electrical and
Computer Engineering, Camegie Mellon University, Pittsburgh, PA 15213
USA.

Publisher Item Identifier S 0278-0070(96)03471-9.

largely unchanged in the past 20 years [l], [2] . With the advent
of logic synthesis tools [3] and semicustom layout techniques
[4] to automate much of the digital design process, the analog
section may consume 90% of the overall design time, while
consuming only 10% of the ASIC’s die area.

This paper describes a new approach to analog circuit
synthesis, i.e., translating performance specifications into a
circuit schematic with sized devices, thereby automating part
of the analog design process. The scope of this paper is
synthesis for cell-level (less than 100 devices) circuits. Starting
from a transistor schematic, we seek both to design a dc bias
point and size all devices to meet performance targets such
as gain and bandwidth. Our approach combines the following
ideas into an analog synthesis methodology.

A novel unconstrained optimization formulation to which
the circuit synthesis problem is mapped;
Simulated annealing to solve the resulting optimization
problem;
Asymptotic Waveform Evaluation (AWE) to simulate cir-
cuit performance-the key component of the function to
optimize;
A compiled database of industrial quality, nonlinear de-
vice models, called encapsulated device evaluators, to
provide the accuracy of detailed simulation while mak-
ing the synthesis tool independent of low-level device
modeling concerns;
A relaxed-dc formulation of the nonlinear device sim-
ulation problem to avoid a CPU intensive complete dc
operating point solution for each circuit simulation; and,
finally,
A separate compilation phase to translate the synthesis
problem from a description convenient to the designer
into an executable program that designs the circuit via
optimization.

Although analog synthesis via simulated annealing is not new
[5], the use of AWE and the added power of a separate
compilation phase are completely novel. We believe the result
is a usable synthesis system.

Throughout this paper, we will measure the effectiveness of
our new analog circuit synthesis formulation and compare it
to prior systems based on the five critical metrics for analog
synthesis tools.

Accuracy: the discrepancy between the synthesis tool’s
internal performance prediction mechanisms and those
of a detailed circuit simulator that uses realistic device
models;

0278-0070/96$05.00 0 1996 IEEE

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 15, NO. 3, MARCH 1996 214

.
0

0

.

Generality: the breadth of the circuits and performance
specifications that can be successfully handled by the
synthesis tool;
Complexity: the largest circuit synthesis task that can be
successfully completed by the synthesis tool;
Synthesis time: the CPU time required by the synthesis
tool;
Preparatory effort: the designer-time/effort required to
render a new circuit design in a form suitable for the tool
to complete.

An ideal system maximizes accuracy, generality, and complex-
ity, while minimizing synthesis time and preparatory effort.
Note that these metrics are not always easy to quantify.
For example, the complexity of a synthesis task can be
affected by many factors including the number of designable
parameters (element values and device sizes), the number
and difficulty of the performance specifications, the number
of components in the circuit, and the inherent difficulty of
evaluating the performance of the circuit. For these cases,
where the definition of the term is qualitative, we select
specific concrete metrics that provide a good indication of
the underlying factor we wish to measure. For example, as
the metric for complexity, we use the number of designable
parameters the designer wishes the tool to determine plus the
number of components in the circuit. This is easy to quantify
and relates complexity to both the problem and circuit size.
In addition to the five metrics above, we shall also use one
additional term, automation, which we define as the ratio of the
time it takes to design a new circuit for the first time manually
to the time it takes with the synthesis tool. When comparing
synthesis tools, manual design time will be the same for
a given circuit, so maximizing automation is equivalent to
minimizing the sum of preparatory time and synthesis time.

To provide a concrete set of synthesis tasks to compare our
approach to that of other tools, we have generated synthesis
results over a large suite of analog cells. This suite includes
three classes of synthesis results.

A suite of benchmark circuits that shows the generality of
our approach by blanketing essentially all previous analog
cell synthesis results;

* A redesign of a recently published manually designed
analog cell that shows the ability of our approach to
handle difficult circuits;

* A pipelined A/D converter that includes the most complex
synthesized cells of which we are aware and shows the
ability of our approach to handle large, realistic designs.

In comparison to prior approaches, our approach typically
predicts circuit performance more accurately, yet requires 2-3
orders of magnitude less preparatory effort by the designer.
In exchange for these substantial improvements, a small price
is paid in synthesis time: our approach can require several
hours of CPU time on a fast workstation, instead of seconds
or minutes. This is an acceptable trade-off because automation
is improved when designing a new circuit for the first time,
i.e., spending these hours of a computer’s time can save the
months of designer’s time required to complete the design
manually or with other analog synthesis tools.

The remainder of this paper is structured as follows. Sec-
tion 1T reviews prior approaches to analog circuit synthesis.
Section III presents the basic ideas underlying ow new for-
mulation of the analog synthesis problem, while Section IV
presents a circuit synthesis example to show how these ideas
are applied to a real synthesis task. In Section V, we present
the formulation in detail, and in Section VI, we revisit the
few related approaches to synthesis and compare them to our
approach. Section VII describes synthesis results and again
compares to those from other approaches. Finally, Section VI11
offers concluding remarks.

E. REVIEW OF PRIOR APPROACHES

Previous approaches to analog circuit synthesis [5]-[181
have failed to make the transition from research to practice.
This is due primarily to the prohibitive one-time effort required
to derive the complex equations that drive these synthesis
tools. Because they rely on a core of equations, we refer
to these previous approaches to synthesis as equation-based,
and discuss their architecture in terms of the simplified search
loop shown in Fig. 1. At each step in the synthesis process
(each pass through this loop), a search mechanism perturbs
the element values, transistor dimensions and other variable
aspects of the circuit in an attempt to arrive at a design
that more closely meets performance specifications and other
objectives. Performance equations are used to evaluate the new
circuit design, determine how well it meets its specifications,
and provide feedback to the search mechanism to guide its
progress. Because of their reliance on equations, these systems
are still limited in the crucial areas of accuracy and automation.
Let .

.

us examine these issues in greater detail.
Accuracy: Equation-based approaches rely heavily on
simplifications to circuit equations and device models.
Consequently, the performance of the synthesized circuit
often reflects the limitations of the simplified equations
used to model it, rather than the inherent limitations of
the circuit topology or underlying fabrication technology.
The need for designs that push the limits of circuit
topologies and use the latest technologies invalidates the
use of many of these simplifications. For example, in a
3pm MOS process, IDS = K‘W/2L(V& - is a
workable model of the current-voltage relationship for a
device, and equation-based approaches take advantage of
the fact that it can be inverted to allow either voltage
or current as the independent variable. This simply in-
verted equation allows an equation-based tool to quickly
solve for a circuit’s dc operating point, but ii can yield
grossly inaccurate performance predictions for a device
with a submicron channel length. The need to support
complex device models and high-performance circuits is
fundamentally at odds with equation-based strategies that
rely on these simple, easily inverted equations.
Automation: Equation-based tools appear to design cir-
cuits quickly. But, the run-times of these tools are not
an accurate measure of automation because they do not
consider the preparatory time required to derive the circuit
equations. Even for a relatively simple analog circuit,

OCHOTTA et al.: SYNTHESIS OF HIGH-PERFORMANCE ANALOG CIRCUITS 215

Evaluate Circuit Perturb Circuit
Performance Design

Fig. 1 Search process used in equation-based analog synthesis tools.

these equations are very complex, require considerable
analog design expertise to derive, and must be entered
as thousands of lines of program code. For a textbook
design, this process can take weeks [6], while for an
industrial design it can take several designer-years [7],
and the process must be performed for each new circuit
topology added to the synthesis tool’s library. Moreover,
adding these equations typically requires a user who is a
programmer, an analog designer, and an expert intimate
with the internal architecture of the tool. As a result, it is
almost always easier for an industrial mixed-signal ASIC
designer to design circuits manually rather than dedicate
the effort required to teach these tools to do it.

However, researchers are aware of these accuracy and
automation problems and several different techniques have
evolved in an effort to address them. Early analog synthesis
tools, such as IDAC [SI and OPASYN [6], used direct numeri-
cal means to optimize the analog circuit performance equations
to meet specifications. Others, such as BLADES [9], attempted
to achieve greater flexibility by using ruled-based strategies to
organize the analog circuit equations. The automation problem
inherent with equations was first addressed by OASYS [lo],
which eased the burden of equation derivation by introducing
an aggressive hierarchical structure into circuit performance
equations in an attempt to provide reusable circuit building
blocks. This hierarchical structure became the core of later
tools, such as CAMP [l 11 and An-Corn [12]. The ability to
reuse circuit equations led to the desire to be able to more
easily edit and add to existing libraries of analog circuit design
expertise. In early synthesis tools, analog circuit equations
were hard-coded in the tool as part of the underlying solution
strategy. OASYS VM [13] provided a first step toward an open
system, by decoupling the expertise from the solution strategy.
More recently, tools such as STAIC [14] and IDAC [15],
allowed the user to specify analog circuit design equations
directly using programming-like languages. Despite substantial
early progress with these lines of research, the difficulty
of deriving, coding, and testing performance equations still
remains a daunting task, and researchers have made few strides
with this style of synthesis in recent years.

The second major innovation that aimed at reducing
preparatory effort was symbolic simulation [19], [20]. This
technique was first introduced as a tool to aid manual design
and education, and it was first integrated directly into a
synthesis tool with ARIADNE [5]. Symbolic simulation
generates analytical transfer functions for small linear or
linearized circuits. For many important classes of circuits, such
as operational amplifiers, most of the important performance

specifications are linear in nature and are amenable to this
kind of analysis. Moreover, fairly accurate equations for many
of the remaining nonlinear specifications can be derived by
inspection, whereas equations for the linear specifications
are much more involved. Thus, in theory there is a great
deal of leverage that can be gained from symbolic analysis.
However, symbolic simulation has yet to overcome substantial
technical obstacles before it can fully automate performance
equation derivation for large, high-performance circuits.
Applied blindly, symbolic simulation of a circuit linearized
from a handful of devices can generate an expression with
tens of thousands of terms, and the number of terms grows
exponentially with circuit size. Because of memory and
CPU time concerns, generating exact symbolic expressions
for all but the smallest circuits is impractical. As a result,
practical symbolic simulation algorithms generate pruned
expressions, but this pruning leads to accuracy problems.
If device models are pruned before symbolic analysis, the
resulting expressions are more compact but lack accuracy for
high-performance designs. If the final equations are pruned,
symbolic simulation still suffers from memory and CPU time
problems, and the result is faithful only to some performance
concerns. For example, pruning terms whose magnitude is
small typically distort phase information, on which the circuit’s
performance may critically depend. Very recently, strategies
have been developed for effectively reducing the number
of terms during simulation, and symbolic simulation is now
efficient enough with computer resources to be applied to
medium-sized opamps [21], [22]. However, even with these
recent innovations, the pruned expressions are valid in only
a very limited region of the achievable design space for the
circuit, and would have to be frequently regenerated if the
designable circuit parameters were varied significantly. The
ability to do this in a manner efficient enough for synthesis
has not been demonstrated to date, although in future these
techniques may yet provide a completely automatic path to
equation-generation.

Fewer technical innovations have been made to improve the
accuracy of analog synthesis techniques. One recent area of
improvement has been the incorporation of realistic device
models. In [16], Maulik incorporated complete BSIM [23]
device models from SPICE 3 [24] into a special purpose syn-
thesis tool. The use of these models substantially complicates
solving for dc operating points in an evolving circuit because
the models cannot be inverted analytically. To address this
problem, Maulik formulated the circuit synthesis problem as
a constrained optimization problem and enforced Kirchhoff‘s
current law by explicitly writing dc operating point constraints.
This technique combines simultaneous circuit performance
optimization with dc operating point solution. As discussed
in Section 111, our relaxed-dc formulation evolved from this
paper.

Although many innovations have been made during the evo-
lution of equation-based analog synthesis tools over the past
decade, the combined problems of accuracy and automation
(i.e., preparatory effort) have never been adequately addressed
in a single cohesive approach. A new strategy is needed that
addresses both these shortcomings.

276 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 15, NO. 3, MARCH 1996

One simple solution is to replace the equations with a
direct simulation technique. This is the basic approach that
was first proposed for analog circuit optimization decades
ago [25], rediscovered when faster computers and improved
simulators made it practical for research [26]-[28], and is now
making its way into industrial CAD systems. For example,
DELIGHT.SPICE [26] follows the basic structure of Fig. 1,
where the search is performed by the method of feasible
directions, a gradient-based optimization technique, and the
performance equations have been replaced by SPICE 1291,
[30]. Because SPICE is a detailed circuit simulator, no de-
signer supplied equations are required (except to extract the
performance specifications from simulation results), and the
performance prediction is very accurate. Unfortunately, as the
core of an optimization loop, SPICE-class simulators are slow.
So slow, in fact, that DELIGHT.SPICE is an optimization tool,
not a synthesis tool. The key hurdle that has not been overcome
to make this transition from optimization to synthesis is that
optimization requires a good initial starting point to find an
excellent final answer, while synthesis requires no special
starting point information. This critical distinction is more
carefully explained as follows:

e Efficieney/§tarting Point Sensitivity: Because SPICE-
class simulators are slow, the search mechanism must
invoke the simulator as infrequently as possible. As a
result, simulation-based methods use local optimization
techniques that require few iterations to converge. These
techniques must be primed with a good initial circuit
design, otherwise, an optimization may not converge or
may converge to a local minima significantly worse than
the circuit’s best capabilities [31]. In circuit synthesis, a
local optimizer is not practical because the search space
contains many local but non-global minima [141, [26] and
because-even with a good rough design-it is onIy luck
if optimizing from the user’s initial circuit design leads
to the globally optimal final solution.

The accuracy and reduced preparatory effort that comes with
simulation-based optimization are the two characteristics that
have been substantially lacking from equation-based systems.
One approach to incorporate simulation into an equation-based
system, as taken in OAC [17], is to run a simulation-based
optimizer as a post-processor. This improves accuracy, but
there is no guarantee that the circuit generated by the equation-
based synthesis will be the starting point needed by the
simulation-based optimizer to find the globally optimal circuit.
Furthermore, because of the extensive simulation run-times,
only the performance specifications that can be validated with
ac and dc analyses are optimized using these techniques [17].
And, perhaps most importantly, the months of preparatory
effort required to derive analog circuit performance equations
are still required by the equation-based part of the overall
design process.

A solution to the problem of preparatory effort dictates that
the user not derive, code, or prune analog circuit equations.
A simulation-based approach meets this criteria, but requires
innovations to avoid problems with efficiency due to circuit
simulation and starting point dependency due to optimization.

We are aware of two analog synthesis tools that meet these
criteria: A S W O B L X [32]-[35], which is the subject of
this paper, and a more recent tool presented in [36]. Before
comparing the differing approaches of these two tools, we
first describe the architecture and underlying ideas behind
ASTRX/OBLX in the following sections. We return to this
comparison in Section VI.

III. BASIC SYNTHESIS FORMULATION

In this section, we present our basic analog circuit synthesis
formulation. We begin with the specific design goals that
guided the evolution of this formulation and the key ideas that
form its foundation. We then outline its architectural aspects.

A. Design Goals

Our design goals for a new analog circuit synthesis archi-
tecture are to directly address the automation, accuracy, and
efficiency problems we identified with previous approaches.
First, to streamline the path from a circuit idea to a sized
circuit schematic, our new architecture should require only
hours rather than weekslmonths of preparatory effort lo design
a new circuit. Second, the system should find high-quality
circuit design solutions without regard to starting point rather
than getting trapped in the nearest local minima. Third, our
new system should yield accurate performance predictions for
high-performance circuits rather than suffer from problems
due to device model or performance equation simplifications.
And, finally, the system must be able to design the complex,
high-performance circuits required in modern products.

Realistically, we cannot hope to achieve progress in all these
areas without making some trade-offs. The first concession
we are willing to make is increased run-time. This is because
our primary goal here is maximal automation, which is the
sum of preparatory and run-times. Equation-based synthesis
tools use only minutes of CPU time but require the designer
to spend months deriving, coding, and testing equations. We
believe the following scenario is more appealing: after an
afternoon of effort, a circuit designer goes home while the
synthesis tool completes the design overnight. Realizing this
scenario is our primary goal. We are also willing to make
two additional concessions for our initial implementation
of our new formulation. The first of these is to exclude
automatic topological design. We believe that sizingibiasing
is the correct starting point for a new synthesis strategy,
and a suitable mechanism for choosing among topological
variants can be added later. Moreover, a tool that finds
optimal sizes for a single user-supplied topology is still
directly usable by analog designers. The third concession is
to exclude operating range and manufacturablility concerns,
and-like most previous synthesis tools-the work presented
here per€orms only nominal circuit design. However, since
the conclusion of our initial work, this formulation has been
augmented with the ability to handle operating range and
manufacturing concerns and preliminary results appear in [37].

B. Underlying Ideas
To achieve our goals, our circuit synthesis strategy relies

on five key ideas: synthesis via optimization, AWE, simulated

OCHO'ITA et al.: SYNTHESIS OF HIGH-PERFORMANCE ANALOG CIRCUITS 271

annealing, encapsulated device evaluators, and the relaxed-dc
numerical formulation. We describe these ideas below.

Synthesis via Optimization: We perform fully automatic
circuit synthesis using a constrained optimization formulation,
but solved in an unconstrained fashion. As in [6], [16], and
[26], we map the circuit design problem to the constrained
optimization problem of (1). Here : is the set of independent
variables-geometries of semiconductor devices or values
of passive circuit components-for which we wish to find
appropriate values; f(:) is a set of objective functions that
codify performancespecifications that the designer wishes
to optimize, e.g., power or bandwidth; and g(:) is a set of
constraint functions that codify specifications must be beyond
a specific goal, e.g., gain 2 60 dB. Scalar weights wi balance
competing objectives

To allow the use of simulated annealing, we perform the
standard conversion of this constrained optimization problem
to an unconstrained optimization problem with the use of
additional scalar weights. As a result, the goal becomes
minimization of a scalar cost function, C(:), defined by

k I

The key to this formulation is that the minimum of C(:)
corresponds to the circuit design that best matches the given
specifications. Thus, the synthesis task becomes two more
concrete tasks: 1) evaluating G(:) and 2) searching for its
minimum. However, performing these tasks is not easy. In
equation-based synthesis tools, evaluating C(:) is done using
designer-supplied equations. To achieve our automation goals,
we must avoid the large preparatory effort it takes to derive
these equations. Moreover, in searching for the minimum, we
must address the issues of starting point independence and
global optimization, since C(:) may have many local minima.

Asymptotic Waveform Evaluation: To evaluate circuit per-
formance, i.e., C(:), without designer supplied equations, we
rely on an innovation in simulation called AWE [38], [39].
AWE is an efficient approach to analysis of arbitrary linear
circuits that is several orders of magnitude faster than SPICE
for ac analysis. By matching the initial boundary conditions
and the first 2q - 1 moments of the actual circuit transient
response to a reduced q-pole model, AWE can predict small-
signal circuit performance using a reduced complexity model.
AWE is a general simulation technique that can be applied
to any linear or linearized circuit and yields accurate results
without manual circuit analysis. Thus, for linear performance
specifications, AWE replaces performance equations, but does
so at a fraction of the run-time cost of SPICE-like simulation.

Simulated Annealing: We have selected simulated anneal-
ing [40] as the optimization engine that will drive our search
for the best circuit design in the solution space defined by
C(:). This method provides the potential for global optimiza-
tion in the face of many local minima. Simulated annealing has

a theoretically proven ability to find a global optimum under
certain restrictions [41]. Although these restrictions are not
enforceable for most industrial applications, the proofs suggest
an algorithmic robustness that has been validated in practice
[42]. Because annealing incorporates controlled hill-climbing,
it can escape local minima and is starting-point independent.
Annealing has other appealing properties including its abil-
ity to optimize without derivatives. Furthermore, although
annealing typically requires more function evaluations than
local optimization techniques, it is now achieving competitive
run-times on problems for which tuned heuristic methods
exist [43]. Because annealing directly solves unconstrained
optimization problems, we require the scalar cost function of
(2).

Encapsulated Device Evaluators: To model active devices,
we rely on a compiled database of industrial models we call
encapsulated device evaluators. These provide the accuracy of
a general-purpose simulator while making the synthesis tool
independent of low-level device modeling concerns. As with
any analysis of a circuit, we use models to linearize nonlinear
devices, generating a small signal circuit that can be passed
to AWE. In a practical synthesis system, it is no longer a
viable alternative to use one- or two-equation approximations
instead of the hundreds of equations used in industrial device
models. Unlike equation-based performance prediction, where
assumptions about device model simplifications permeate the
circuit evaluation process, with encapsulated device evaluators
all aspects of the device's representation and performance are
hidden and obtained only through requests to the evaluator.
In this manner, the models are completely independent of the
synthesis system and can be as complex as required. For our
purposes, we rely entirely on device models adopted from
detailed circuit simulators such as Berkeley's SPICE 3 [24].

Relaxed-DC Formulation: To avoid a CPU intensive dc
operating point solution after each perturbation of the circuit
design variables, we rely on a novel recasting of the un-
constrained optimization formulation for circuit synthesis we
call the relaxed-dc formulation. Supporting powerful device
models is not easy within a synthesis environment because
we cannot arbitrarily invert the terminal relationships of these
models and choose which variables are independent and which
are dependent. This critical simplification enables equation-
based approaches to solve for the dc bias point of the circuit
analytically and, as a result, very quickly. In contrast, when the
models must be treated numerically, as in circuit simulation,
an iterative algorithm such as Newton-Raphson is required.
For synthesis, this approach consumes a substantial amount of
CPU time that we would prefer not to waste on intermediate
circuit designs that are later discarded. Instead, following
Maulik, [16], we explicitly formulate Kirchhoff's laws, which
are solved implicitly during dc biasing, and include them in
g(g) , the constraint functions in (2). Just as we must formu-
late optimization goals such as meeting gain or bandwidth
constraints, we now formulate dc-correctness as yet another
goal to meet. Of course, the idea of relaxing the dc constraints
in this manner is not new, e.g., an analogous formulation for
microwave circuits is discussed in [44]; however, it has been
controversial [45].

-

278 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 15, NO. 3, MARCH 1996

Topology
I SDecifications

,- I Evaluate1 I Perturb I
Circuit

l l
ASTRX OBLX

Compilation Solution

Fig. 2. New synthesis architecture.

C. System Architecture

We combine these five ideas to create an architecture that
provides a fully automated path from an unsized circuit topol-
ogy and a set of performance specifications to a completed,
synthesized circuit (see Fig. 2). This path is comprised of two
phases.

Compilation: For each new circuit synthesis task, com-
pilation generates code that implements the cost func-
tion, C(g) . To evaluate this cost function, the compiler
will generate the appropriate links to the encapsulated
device evaluators and AWE. Because of our relaxed-
dc formulation, the compiler must also derive the dc-
correctness constraints (KCL at each node) that will
enforce Kirchhoff's laws and encode them in the cost
function.

9 Solution: This cost function code is then compiled and
linked to our solution library, which uses simulated
annealing to numerically find its minimum, thereby de-
signing the circuit.

IV. SYNTHESIS EXAMPLE

In the previous section, we briefly introduced the concepts
that underlie our new analog circuit synthesis formulation. In
this section, we present a small but complete synthesis example
to make concrete the entire path from problem to solution.
Assume we wish to size and bias the simple differential
amplifier topology shown in Fig. 3 to meet the specifications
given in Table I. The topology of the circuit under design
and the performance specifications the completed design must
achieve-essentially the information in Fig. 3 and Table I-are
the information the designer must supply to the compiler to
generate the cost function and complete the synthesis process.
In this section, we shall see exactly what information about the
topology and specifications is required by the circuit compiler
by showing how it uses this information to create C(g) , the
cost function that is optimized (defined in (2)).

The first component of C(:) is the set of independent
variables, g. These variables are readily apparent from the
description of the circuit topology. Assume that for our ex-
ample, the sizes for M3 and M4 are given as constants,
the transistors M1 and M2 are matched to preserve circuit
symmetry, and the rest of the component values are allowed

Vdd

Vb

vout+ 4, vout- c

vss
Fig. 3. Design example: Circuit under design.

TABLE I
DESIGN EXAMPLE SPECIFICATIONS

Attribute Specification
differential gain, A,, 1'"
gain bandwidth, UGF 1 MHz
slew rate, SR 1 V l p

a. t means maximize.

to vary. Then, = (W, L , I , Vb}, where W and L represent
dimensions for both M1 and M2. However, as we shall see
in a few paragraphs, because of the relaxed-dc formulation, g
is not yet complete.

Recall from (2), that C(g) is composed of objective func-
tions f (g) and constraint functions g(:). Since, for our exam-
ple, the only objective is to maximize Adrn, f(g) contains only
f ~ d ~ (:) , which calculates Adrn. we provide a simulation-
oriented definition of f A d m (g) since AWE will be used to
simulate the circuit's performance. This consists of a test jig,
a set of measurements to make on the jig, and any simple
arithmetic that must be performed to calculate the values
we are interested in from the simulation results. The test
jig is important because it supplies the circuit environment
(stimulus, load, supplies, et cetera) in which the circuit under
design is to be tested. We use the test jig in Fig. 4 to measure
&m. Following [26], we also require a good and bad value for
each objective to transform fAdm(Z) , from the user-supplied
function to a function more amenable to optimization (see
Section V for further details). The resulting function is (3) ,
where tf is the transfer function from input to output. The
nodes at which to evaluate the transfer function must be
specified by the user, but the transfer function itself is obtained
for each new circuit by using AWE, and the function to
calculate dc gain from a transfer function is predefined within
the compiler

dc-gain(tf) - good
bad - good . f A d m (g) = (3)

OCHOTTA ef al.: SYNTHESIS OF HIGH-PERFORMANCE ANALOG CIRCUITS

ein dd
279

Vdd

- +
Fig. 4. Design example: Test jig for Adrn, UGF. 8

R
Fig. 5. Design example: Bias circuit.

The next step in creating C(g) is to complete the definition
of g. To understand why we must add variables to g, we trace
the information required to calculate fAdm(&). Here, AWE
determines the needed transfer function, but AWE requires a
linearized (i.e., small-signal equivalent) circuit. Like a detailed
circuit simulator, we rely on device models to linearize our
circuits-in our case, these models are encapsulated device
evaluators. An evaluator converts the dimensions and port
voltages of each device into a set of linear elements that
models the device’s behavior at that operating point. After
replacing each transistor with its model, we can then use
AWE to evaluate the circuit’s performance. What we have not
discussed so far is how we obtain the port voltages of each
device. In a circuit simulator, these voltages must be explicitly
solved for using a time-consuming iterative procedure such as
Newton-Raphson. In contrast, in our relaxed-dc formulation,
we simply include these voltages as additional variables in :.
The compiler includes these voltage variables automatically
based on a circuit analysis. To provide greater flexibility, these
dc bias concerns can be separated from the small-signal test
jigs-a technique familiar to analog designers. Thus dc voltage
variables are obtained from a bias circuit provided by the user.
For our example, an analysis of the bias circuit of Fig. 5 yields
- 2 = {W, L , I , Vb, Vout+, Vout-, VA}. This completes g,
but it is only half of the relaxed-dc formulation.

We complete the relaxed-dc formulation by forcing the node
voltages to take values such that Kirchhoff s laws are obeyed.
This is accomplished by using members of the constraint
functions, g(:), the other component of C(g) . To begin, we
replace the-transistors in the circuit with large-signal models
returned by the device evaluators. Simplifying the device
models for the sake of clarity gives the circuit of Fig. 6.
Kirchhoff‘s current law can then be written at each node in
the circuit, e.g., at node A: I - Id1 - Id2 = 0. To ensure this
KCL equation is met when our optimization is complete, we

Q’
vss

Fig. 6. Design example: Large-signal equivalent circuit.

include gA(:) from (4) as a member of g(:) -

gA(g) 1 max(0,II - Id1 - Id21 - ‘Tabs). (4)

gA(2) contributes a penalty to the cost function whenever the
KCL error at node A is larger than some numeric tolerance,
‘Tabs.’ We formulate the other KCL equations in the same
fashion, creating gVout+ (g) and gvout- (2). Together, these
three constraints enforce KCL, thereby completing the relaxed-
dc formulation.

For our example, the other members of g(g) correspond
to the other performance specifications for w k h we wish to
design. Thus, we need constraint functions for UGF and SR
(see Table I). These are formulated from the user provided
expressions much like fAdm(:) was formulated in (3); how-
ever, for specifications, the good value is a hard boundary
and improvements beyond this value are not reflected in the
cost function. The specification for UGF can be written in a
simulation-based style, using the same test jig as was used
for Adrn. This is not the case with the slew rate because
measuring slew rate would require a transient simulation,
which is not straightforward with AWE. However, unlike
gain and unity gain frequency, slew rate is described with an
easily derived expression. If we assume that we are interested
only in the rate at which the output slews downwards, we
can write this expression by inspection as SR = I/(2(Cl +
Cd)), where Cd is the capacitance at the output node due
to the transistors. Thus, our new formulation supports a
mix of simulation- and equation-based specifications. The
decision of which method to use depends on the kind of
specification. As experiments with symbolic simulation have
shown, equations for linear specifications such as Adm and
UGF can be huge, e.g., 10 000 + terms for a circuit with
ten devices, and the number of terms grows exponentially
with circuit size. In contrast, simulation with AWE uses a
numeric technique and can evaluate Adm and UGF in a few
tens of milliseconds for circuits of this size. Moreover, AWE’S
algorithmic complexity is roughly that of an LU factorization,

‘The large-signal model and this formulation of the KCL constraint are
somewhat simplified for clarity. For more detail, see Section V.

280 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 15, NO. 3, MARCH 1996

approximately O(n1,4) where n is the number of nodes in the
circuit. The speed of AWE and the ability to describe linear
performance specifications without deriving circuit equations
are two of the chief advantages of our new formulation over
previous synthesis approaches.

Including these final terms, we obtain (5) , the final form
of the cost function the compiler generates and that must be
minimized to complete the circuit design

In this section, we have used an example to sketch the
process the compiler must follow to map a synthesis problem
into a cost function. The compiler generates this cost function
as C code that is complied and linked to the optimization
library, creating an executable program that pedorms the
synthesis task specified by the user.

V. DESIGN DETAILS
Now that we have explained the basic ideas behind our

new analog circuit synthesis formulation, and used an example
to show how these ideas can be applied to analog circuit
synthesis, in this section we present a more complete Iook
at the algorithms used. We then address two issues unique to
this formulation: the implications the relaxed-dc formulation
has on circuit synthesis and the practicality of the formulation
in terms of automation and numerical robustness.

A. Algorithmic Aspects of the Compiler

As can be seen in the example, the circuit compiler per-
forms a number of tasks when translating the user’s problem
description into a cost function. These can be summarized
as: a) determine the set of independent variables (g), b)
generate large-signal equivalent circuits for biasing, c) write
KCL constraints for the large-signal circuits, d) generate small-
signal equivalent circuits for AWE, e) generate cost terms for
each circuit performance metric specified by the user, and Q
write all the code that describes the cost function for this circuit
synthesis problem.

The majority of these tasks are algorithmically straight-
forward, or involve algorithms that are well understood by
compiler writers [46]. However, one somewhat subtle aspect
of compilation that deserves mention is the task of determining
the set of independent variables, :. The user specifies most of
these, but the compiler must find a set of independent node
voltages to include in : as part of the relaxed-dc formulation.
To do so, the compiler performs a symbolic tree-link analysis
[47] of the large-signal equivalent circuit, which is built from
the input netlist with the help of device templates provided
by the encapsulated device evaluators. A path is then traced
from each node to ground. Whenever a node voltage cannot be
trivially determined, its value becomes another variable in 2.

B. The Simulated Annealing Algorithm

As described in Section 111, our optimization engine employs
the simulated annealing algorithm [40], [41] to solve the
analog synthesis problem via unconstrained optimization. This
algorithm can be described with the following pseudocode

- z = g0,T = THOT
while not frozen(:, T)

while not doneat-temperature(:, T)
Ag = generate(:)
if accept(g, : + A-, T) then

- x = g - $ A g
T = update_temp(T).

To describe the details of how our optimization engine
works, we must describe each of the components of this algo-
rithm. To begin, for all simulated annealing implementations,
the accept function is called the Metropolis criterion [48],
and is defined by (6), where random() returns a uniformly
distributed random number on [O, 11

Next, we describe annealing’s four problem specific compo-
nents.

The problem representation, which determines how the
present state of the circuit being designed is mapped to
- Z, the present state manipulated by the annealer;
The move-set, which determines how the generate func-
tion perturbs the present circuit state g to create the new
state g + A:;
The costfinction C(:) which determines how the cost
of each visited circuit configuration is calculated;

* and the cooling schedule, which controls T , directing the
overall cooling process. This defines the initial tempera-
ture, THOT, and the functions frozen, done at temperature,
and update temp.

C. Problem Representation

The problem representation appears straightforward: the
variables in g map to aspects of the evolving circuit design,
such as device sizes and node voltages. However, there are
two concerns here. The first is that the user defines a set of
variables, then writes expressions to map these variables to
circuit component values. As in the example of Section IV,
these are typically identity relations, but may be arbitrarily
complex to allow complex matchings and inter-relationships.
For example, the expression ‘2 * L,’ might be used in a bias
circuit where one device length must always be twice that of
another device.

The second concern is that we do not represent all the
variables as continuous values. Node voltage values must
clearly be continuous to determine an accurate bias point.
Device sizes, however, can be reasonably regarded as discrete
quantities, since we are limited by how accurately we can
etch a device. Moreover, there is considerable advantage to
be had from properly discretizing device sizes: the coarser
the discretization, the smaller the space of reachable sizes that
must be explored. Because small changes in device sizes make
proportionally less difference on larger devices, we typically

28 I

use a logarithmically spaced grid. The choice to discretize
variables and the coarseness of the grid is made by the user
and specified in the input description file. Thus, there may
be three kinds of variables in :: 1) user-specified discrete
variables, e.g., a transistor width; 2) user-specified continuous
variables, e.g., a current source value; and 3) automatically
created continuous variables, e.g., a node voltage added to
implement the relaxed-dc formulation.

D. Move-Set

Given the present state g the move-set A: is the set of
allowable perturbations on it, which are implemented by the
generate function. The issue is the need for an efficient
mechanism to generate each perturbation, and this is sub-
stantially complicated because we use a mix of discrete and
continuous variables. For discrete variables, the problem is
simpler because there is always a smallest allowable move, an
atomic perturbation. The two issues here are what larger moves
should be included in the move-set for efficiency and how to
decide when to use these larger moves. We address these issues
by defining a set of move classes for each variable. Each class
is a tuple (z,, T) where x, is the variable to be perturbed by
this move class and T is a range [rrnln, rmax], which is related
to the range of allowable values for 2,. For example, for a
transistor width variable that has been discretized such that it
can take on 100 possible values, we might create three move
classes with ranges [-1,1], [-lo, lo], and [-50,501. The idea
is that during annealing, we will randomly select a move class.
This determines not just x,, the variable to perturb, but T the
range with which to bound the perturbation. Once selected,
we generate Ax, as an integral uniform random number in
[rrnin, rrnax]. Finally, Axc, may be adjusted to ensure the new
variable value, x, + Ax2, lies within the allowable values for
2%.

To improve annealing efficiency, we wish to optimize the
usefulness of the move-set by favoring the selection of move
classes that are most effective at this particular state of the
annealing process. To do this, we use a method based on the
work of Hustin [49]. We track how each move has contributed
to the overall cost function, and compute a quality factor that
quantifies the performance of that move class. For move class
i, the quality factor Q, is given by (7)

Qz = (l/llGc,ll) W3I. (7)
3 E A

can then be regarded as the fraction of moves that should be
dedicated to move class i. Initially, when almost any move
is accepted, large moves will change the cost function the
most, giving them the largest quality factors and likelihood
of being selected. When the optimization is almost complete,
most large moves will not be accepted, so more small moves
will be accepted and their quality factors and probabilities will
increase. Using this scheme, we automatically bias toward the
moves that are most effective during a particular phase of the
annealing run.

For continuous variables, the situation is more complex.
For an n-dimensional real-valued state, E R", it is difficult
to determine the correct smallest A: because adjustments
in real values may be infinitesimally small. We may need
to explore across a voltage range of several volts and then
converge to a dc bias point with an accuracy of a few
microvolts. We are aware of several attempts to generalize
simulated annealing to problems with real-valued variables
[50]-[52], and each presents methods of controlling the move-
set. These methods show promise, but require complex time-
consuming matrix manipulations, large amounts of memory,
or gradient information to determine the appropriate move
sizes. Fortunately, for analog circuit synthesis, we can take
advantage of problem-specific information to aid in selecting
the correct largest and smallest moves. For user-specified
variables, such as the size of a resistor or capacitor, the
precision with which the value can be set-and the atomic
move size-is a function of the underlying fabrication process
and readily available to the designer. For node voltages,
the smallest moves are dictated by the desired accuracy
of performance prediction. Duplicating the method used in
detailed circuit simulators, these tolerances can be specified
with an absolute and relative value and the smallest allowable
move derived from them. Thus, we use problem specific
information to determine minimum move sizes and create
move classes, allowing these continuous variables to be treated
in the same fashion as the discrete variables.

To further assist in manipulating continuous node voltages,
in addition to the purely random undirected move classes
found in most annealers, we augment the annealer's move-set
with directed move classes that follow the dc gradient. This
technique is similar to the theoretically-convergent continuous
annealing strategy use by Gelfand and Mitter [52]. They
use gradient-based moves within an annealing optimization
framework, and they prove that this technique converges to
a global minimum given certain restrictions on the problem.
Our addition of dc gradient moves has the same flavor. We
incorporate gradient-based voltage steps as part of our set of
move classes. Using KCL-violating currents calculated at each
node, Ai, and the factored small-signal admittance matrix,
Y-l , we can calculate the voltage steps to apply at each node,
AV, as

Here, llG,ll is the number of generated move attempts that
used class i over a window of previous moves and A, is the
accepted subset of those moves (i.e., A, C G,), Furthermore,
IAC, I is the absolute value of the change in the cost function
due to accepted move j. Q, will be large when the moves
of this class are accepted frequently (11A,11 is large), and/or if
they change the value of the overall cost function appreciably
(some IAC, I are large). We can then compute the probability
that a particular move class should be selected. If Q is the
sum over all the quality factors, Q = E, Q,

p z = !$

a2 = a(Y-la1) (9)

where a is a scaling factor that bounds the range of the
move. Thus, this move effects all the node voltage variables
simultaneously. Equation (9) also forms the core of a New-
ton-Raphson iterative dc solution algorithm-the technique

(8)

282 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 15, NO. 3, MARCH 1996

used in most circuit simulators to solve for the dc operating
point-so we incorporate the complete algorithm as an addi-
tional move class in the move-set. Because of the complexity
of performing Newton-Raphson within a simulated annealing
algorithm, we have no theoretical proof of convergence. How-
ever, in practice, this technique allows the annealer to converge
to a dc operating point at least as reliably as a detailed circuit
simulator.

Finally, we also combine directed and undirected moves into
a single move class to further augment the move-set. These
combination moves are designed to alter the circuit component
values, and thereby circuit performance, while maintaining a
correct dc operating point. Without combination moves, when
the optimization is nearly frozen, it is difficult for the annealer
to adjust circuit component values-possibly improving circuit
performance-without incurring a large penalty in the cost
function as a result of dc operating point errors.

In summary, the complete move-set for the annealer com-
prises move classes of these types

Undirected moves: where we modify a single variable
(discrete or continuous) and generate Ax.; as a uniform
random number in [rmin, rrnax];

* Directed moves: where the Newton-Raphson algorithm
is used to perturb all the node voltage variables simul-
taneously;

* Combination moves: that perturb a user-specified vari-
able in an undirected fashion and then immediately per-
form a Newton-Raphson solve.

E. Cost-Function
The heart of the formulation and the next problem specific

component of the annealing algorithm is the circuit specific
cost function C(:) generated by the compiler, which maps
each visited circuit configuration : to a scalar cost. The cost
function was described by example in Section IV. In general,
it has the form

C (g) = Coy:) -
objective

+ Cperf (E) + C"""(:) + Cdev(:) + CdC(z) (10)
\ / +

penaltyterms

where each term in (10) represents a group of related terms
in a particular compiler-generated cost function. There are
two distinct kinds of terms: the objective terms correspond
to f (g) in (2) and must be minimized, while the penalty terms
correspond to g(:) and must be driven to zero. Here, C o h j

and Cperf are generated from the user-supplied performance
objectives and specifications; C""" penalizes regions of the
solution space that may lead to numerically ill-conditioned
circuit performance calculations; Cdev forces active devices
to be in particular user-specified regions of operation; and
Cdc implements the relaxed-dc formulation. In the following
paragraphs, we describe the most interesting of these cost-
function components in greater detail.

Objective Terms: Following [26], circuit performance and
figures of merit such as power and area can be specified as

falling into one of two categories: an objective or a constraint.
Regardless of the category, the user is also expected to provide
a good value and a bad value for each specification. These are
used both to set constraint boundaries and to normalize the
specification's range. Performance targets that are given as
objectives become part of C o b j , which we define as follows.
Formally, let

If%(.) I 1 I i I k } fi0bJ = (1 1)

be the set of k performance objective functions provided by
the user. Then Qobj is transformed into C o b j as follows:

where

and f,(:) is the ith specification function provided by the
user, and bad, and good, are the bud and good normalization
values specified for function i . The normalization process of
(13) has these advantages. First, it provides a natural way
for the designer to set the relative importance of competing
specifications. Second, it provides a straightforward way to
normalize the range of values that must be balanced in the
cost function. Note that the range of interesting values between
good and bad maps to the range [O, 11, and regardless
of whether the goal is maximizing or minimizing f%(g),
optimizing toward good will always correspond to minimizing
the normalized function fi (3). Finally, this normalization and
the inclusion of the normalizing factor (l / / / R o b j 1 1) helps keep
the cost function formulation robust over different problems,
by averaging out the effect of having a large number of
objectives for one circuit and a small number for another.
The user has a wide range of predefined functions at his
disposal to create fi(:). These include node voltages, device
model parameters, and functions to derive linear performance
characteristics such as gain and bandwidth from the transfer
functions continually being derived by AWE.

Pe$ornunce SpeciJications: The performance specifica-
tions provided by the user make up Perf, and are quite similar
to objectives with two exceptions. First, a specification is a
hard constraint so circuit performance better than the good
value does not contribute to Perf. Second, an additional
scalar weight biases the contribution of each performance
specification to the overall cost function. These weights are
determined algorithmically during the annealing process and
should not need to be adjusted by the user. We defer detailed
discussion of the weight control algorithm until Section V.H.

Operuling Point Terns: The most unusual component of
the cost function is the Cdc penalty term. This term imple-
ments the relaxed-dc formulation. Recall that we explicitly
formulate Kirchhoff's current law constraints for each linearly
independent node in all the bias circuits. At the end of the
optimization, these Cdc terms will be zero and Kirchhoff's
laws will be met. Cdc includes two views of Grchhoff's
current law (KCL), a current view CKCL, and a voltage
view CDV. To show how these terms are calculated, (14)

OCHOTTA et al.: SYNTHESIS OF HIGH-PERFORMANCE ANALOG CIRCUITS 283

defines the sum of the currents leaving node n via its incident
branches B", and (15) defines the average magnitude of
currents flowing through the branches at this node

(14)

The KCL term for node n is CEcL which can then be
calculated as follows:

(16)
err, = lAi,l - (~ ~ ~ 1 . mag, + Tabs)

As in detailed circuit simulation, the tolerances Tabs and ~~~l

ensure that numerical truncation when adding the magnitude
of a small current to the magnitude of a large one does not
adversely effect the measure of KCL correctness.

The CDV terms present an alternative view of KCL. They
measure the voltage change required at each node to make
the circuit satisfy KCL. By this definition, calculating the DV
terms in Cdc exactly would require actually solving for the
correct circuit node voltage values, which is what we are trying
to avoid with the relaxed-dc formulation. Instead, we estimate
the DV error terms by multiplying the factored small-signal
nodal admittance matrix, Y-l, by the error currents

ctCL = max(0, err,).

Ac = Y-lAY. (17)

Since the circuit will typically contain nonlinear devices, the
Y matrix will be a linearized estimate of the admittance
taken at the present bias point and the DV errors first-order
approximations to the actual voltage error. As the annealing

~ state freezes, the DV terms will be quite accurate, but during
the early stages of the anneal, the KCL terms will be the
only reliable estimates of dc correctness because they are
not approximations. The addition of the DV terms takes the
impedance into account and provides more useful feedback to
designers, since they tend to have better intuition regarding
voltage errors than current errors.

Calculation of the Cost Function: The terms in C(g) are
calculated from the present problem state following the flow
in Fig. 7. Each time a variable in g changes, circuit com-
ponent values may change, the encapsulated device models
be reevaluated, AWE used to recompute transfer functions,
and cost function terms recomputed. Fortunately, this analysis
is extremely fast, allowing a complete reevaluation for each
circuit visited. The cell-level analog circuits we target have
less than 100 devices, and produce small-signal models with
less than 1000 elements. The bulk of the work is performed
by AWE, which reduces such a small-signal model to an
accurate low-order transfer function in 10 to 100 ms on a
fast workstation. Previous synthesis strategies were unable
to determine both a dc operating point and performance
characteristics automatically.

F. Annealing Control Mechanisms

The final customizable component of the annealing algo-
rithm is the cooling schedule. We have implemented the

circuit component values

active devices

encapsulated device evaluation
linear elements

C .- c.
c
U

%all-signal admittance (Y) matrix

Fig. 7. Evaluation of the cost function.

general purpose cooling schedule of Lam [43] as modified
by Swartz [53]. This specifies THOT, done at temperature and
update temperature. Our freezing criteria, the frozen function,
which determines when the annealing has completed, was
developed specifically for our analog synthesis application.
The design is complete when both the discrete variables have
stopped changing and the changes in the continuous variables
are within their specified relative tolerances.

G. Implications of the Relaxed-DC Formulation
Even after a complete description of our new analog cir-

cuit synthesis formulation, a few design decisions usually
require further explanation. The first of these is the relaxed-
dc formulation. As a result of the relaxed-dc formulation,
early in the optimization process, the sum of the currents
entering a given node has a significant nonzero value. An
important issue to address is what it means to evaluate the
performance of a circuit that is not dc-correct. One way to
view this circuit is to imagine an additional current source at
each node. This current source sinks the current required to
ensure dc-correctness. Then, the goal of the Kirchhoffs law
constraints Cdc is to reduce the value of these current sources
to zero. When evaluating circuit performance, the fact that
these current sources will not be in our final design means
that our predicted performance will differ slightly from the
final performance. This error factor allows us to visit many
more possible circuit configurations within a given period of
time, albeit evaluating each a little less accurately. As the
optimization proceeds, the current sunk by these sources goes
to zero and the performance prediction becomes completely
accurate. This evolution is shown in Fig. 8. By the end of
the annealing process, the circuit will be dc-correct within
tolerances on the order of those used in circuit simulation.

A second analogy that can be used to understand how
the relaxed-dc formulation behaves is to simply pretend a
dc operating point solution is performed at each iteration.
However, the tolerance for dc correctness is very relaxed
early in the optimization process and evolves toward that of
typical detailed simulations as the optimization proceeds. All
simulators have numerical tolerances on dc correctness, and as
a result, there is always numerical error in circuit simulation.

284 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 15, NO. 3, MARCH 1996

1 v

Volta e ‘OOmV
Errorqor OmV
Several
Nodes lmV Completed

J Design
100 pv

l 0 u V
0 i oo
Annealing Progress (% Complete)

Fig. 8. Discrepancy from KCL correct voltages during optimization

The relaxed-dc formulation simply trades increased error for
increased speed of evaluation early in the optimization process.

These analogies point out a seeming inconsistency in our
overall synthesis formulation. We clearly do not intend that
each annealing move visits a dc-correct circuit, i.e., where
the current sources ensuring dc-correctness are zero-valued.
Nevertheless, we evaluate each circuit using detailed device
models and highly accurate AWE techniques. Clearly this
accuracy is not fully exploited early in the optimization when
these Kirchhoff current law errors are substantial. Simpler
models could be used in these early stages, but, practically,
knowing when and how to switch from simple to accurate
models would be difficult and it is unlikely significant changes
in run-time would be achieved. Moreover, this accuracy is not
entirely wasted because the annealer still learns much from
these early circuits. For example, if we need to achieve more
gain in our circuit, we probably need to increase the gm on
some critical device. We do not need a precise dc bias point
to know that we must either increase that device’s width, its
current, or both. The optimizer can successfully make coarse
decisions such as this even in the presence of the slight noise
introduced by the relaxed-dc formulation.

H. Reliability Without User-Supplied Constants

The final aspect of our formulation that requires further
explanation is the issue of numeric constants. Numeric al-
gorithms in general require constants that tune the algorithm
such that it reliably produces high quality solutions, and our
annealer is no exception. If a numeric algorithm and the design
automation tool of which it is a part are poorly designed,
the constants will need to be adjusted for each new problem
solved. As a result, the tool will not do a very good job
of automation, since a user of the tool will spend much of
his time adjusting constants, rather than designing circuits.
Coupled with this automation problem is a robustness problem
inherent in the choice of simulated annealing as the core of
our optimization engine. Simulated annealing is a stochastic
process, and each time the annealer is run it may find a slightly
different trade-off between its constraints. As a result, it is not
possible to guarantee that a single run will provide the best
answer. However, it is important that the tool is still robust,
i.e., we wish to be confident that running the annealer several
(5-10) times will provide several high-quality solutions from
which to choose.

Substantial effort has been spent designing our formulation
and its implementation such that it is truly a robust automation

tool, i.e., the user is not required to provide problem-specific
constants and the tool produces a high percentage of top
quality solutions. One key aspect of this algorithmic design
is the use of adaptive algorithms to replace the majority
of the numeric constants that would otherwise be needed
within the annealer. For example the penalty terms in C‘(g)
require scalar weights to balance their contributions to the
cost function. Similar to the strategies used in [54], these
weights have been replaced with an adaptive algorithm. The
adaptive algorithm in the annealer is based on the observation
that all the penalty terms, g(g), must be zero at the end of a
successful annealing run. Thus, we can use a simple feedback
mechanism to force each penalty term to follow a trajectory
that leads from its initial value to zero; i.e., if a penalty term
presently exceeds its expected value as given by its trajectory,
the weight is increased and the natural annealing action focuses
on reducing that penalty term in subsequent annealing steps.
With this adaptive algorithm, the problem is then one of
determining what the best trajectories are and setting their
values. The advantage of this technique is that, as we have
shown over the circuit synthesis problems we have solved
with our implementation, a single set of trajectories is much
more robust than a single set of individual weights. As a result,
an analog circuit designer can use our analog circuit synthesis
system without understanding the internal architectural details
needed to adjust components of its cost function.

To set the trajectories, we treated them as independent vari-
ables in a large optimization problem solved using Powell’s
algorithm [55]. We refer to the large problem as “optimizing
the optimizer” because the annealer was executed as the inner
loop of the Powell optimization process. Each time a trajectory
was perturbed, the annealer was run and the quality of the
resulting circuit solution fed back to the Powell optimizer.
However, because of the stochastic nature of annealing, it is
insufficient to characterize a set of trajectories on a single
annealing run. Instead, using a large network of workstations,
the annealer was run 200 times on the same synthesis problem
and a statistical analysis performed to determine the quality of
a particular set of trajectories. Because of the large amount
of CPU time involved, we optimized the trajectories for a
small circuit problem and validated them over our benchmark
suite. Verifying that this single set of trajectories provided
good results across all our circuits-and will likely do so for
new circuits-was essential because optimizing the optimizer
consumed approximately four years of CPU time. Comparing
our initial “best guess” trajectories to those that resulted from
optimizing the optimizer, the number of top quality solutions
for a typical synthesis problem increased from about 30%
to about 80%. As a result, the careful design and tuning of
dynamic algorithms within the annealer have freed the user
from providing algorithmic constants and greatly improved
the overall robustness of the tool. See [33] for more details on
the design and optimization of these trajectories.

VI. COMPARISON TO RELATED WORK
In this section, we compare and contrast our new analog

circuit synthesis formulation to recent related work. Our for-

OCHOTTA et al.: SYNTHESIS OF HIGH-PERFORMANCE ANALOG CIRCUITS 285

mulation is unique among analog synthesis systems in several
key ways. Architecturally, it is unique because of its two-
step synthesis process. It includes a complete compiler that
translates the problem from a compact user-oriented descrip-

large a region of the design space as is possible with our
system.

VII. RESULTS
tion into a cost function suitable for subsequent optimization.
Compilation provides significant flexibility. It provides the
opportunity for the user to interact with the tool in a language
that is familiar to designers, yet, because the compiler produces
an executable designed specifically to solve the user’s problem,
it also provides optimal run-time efficiency. Our formulation
is also unique in its use of AWE for analog circuit synthesis.
Although recently other researchers have used AWE for the
synthesis of power distribution networks [56], to the best of
our knowledge ours was the first tool to employ AWE for
performance evaluation within an optimization loop.

Of course, our paper uses and builds upon the successes and
failures of previous approaches to analog circuit synthesis. As
discussed in Section 11, previous systems are equation-based
and thus suffer from problems with accuracy and automation.
Because it is a simulation-based approach, our paper is a sub-
stantial departure from these previous approaches. However,
the encapsulated device models and relaxed-dc formulation
are based on similar ideas used by Maulik [16]. The key
distinction is that Maulik still relies on hand-crafted equations
to compute circuit performance from the parameters returned
by the device models, and these equations must be hand-coded
into the system for each new circuit topology.

Our formulation also borrows ideas from-but differs
from-simulation-based optimization systems. As discussed
in Section 11, these tools are not true synthesis tools because
they are starting point dependent. Our formulation avoids this
problem by using simulated annealing, which is not starting
point dependent, as the optimization algorithm and avoids the
resulting efficiency problem by using AWE.

There is one other simulation-based synthesis tool of which
we are aware. The tool described in [36] appeared shortly
after the initial publication of our paper [32], [34]. It uses
several of the same strategies: simulation is used to evalu-
ate circuit performance and a form of simulated annealing
is used for optimization. However, it relies on SPICE for
the simulation algorithm which is typically 2-3 orders of
magnitude slower than AWE for ac analysis [39]. To achieve
reasonable run-times, it does not use transient analysis within
SPICE (which is even slower than ac analysis) and relies
on several heuristics for small-signal specifications. The first
heuristic is to substantially reduce the number of iterations that
would normally be required for optimization with simulated
annealing. Results generated with this heuristic adaptation
seem reasonable, but comparisons to difficult manual designs
have not been presented so the efficacy of this heuristic is
unclear. The second heuristic is to save the dc operating point
from the previous SPICE run and use it as the starting point
for the dc analysis of the next SPICE run. This is the first
step toward a relaxed-dc formulation, where the dc operating
point is maintained as part of the overall design state. They
do not, however, take the final step toward relaxed-dc by
loosening the dc requirements early in the design process.
As a result, they cannot afford the CPU time to explore as

In this section, we first describe our implementation of our
new analog circuit synthesis formulation. We then present
circuit synthesis results and compare them with those of
previous approaches.

A. Implementation

To show the viability of our new fonnulation for analog
circuit synthesis, we have implemented the ideas described
in this paper as a pair of synthesis tools called ASTRX and
OBLX. ASTRX is the circuit compiler that translates the user’s
circuit design problem into C code that implements C(g) .
ASTRX then invokes the C compiler and the linker to link
this cost function code with the OBLX solution library, which
contains the annealer, AWE, and the encapsulated device
library. Invoking the resulting executable completes the actual
design process. Translation of the user’s problem into C code
requires only a few seconds, so run-times are completely
dominated by optimization time. ASTRX and OBLX are
themselves implemented as approximately 125 000 lines of
C code.

The syntax used to describe the synthesis problem is the
SPICE format familiar to analog designers, with the addition
of a few cards to describe ASTWOBLX specific information,
such as specifications. For our example of a simple differential
amplifier design (Section IV), the complete input file (exclud-
ing process model parameters) is shown in Fig. 9. A complete
description of the format can be found in [57].

A. Circuit Benchmark Suite

The primary goal of ASTWOBLX is to reduce the time
it takes to size and bias a new circuit topology to meet per-
formance specifications. Fig. 10 summarizes a representative
selection of previous analog circuit synthesis results.2 Here,
each symbol represents synthesis results for a single circuit
topology. The length of the symbol’s “tail” represents the
complexity of the circuit, which, as described in Section I,
we quantify as the sum of the number of devices in the
circuit and the number of variables for which the user asks the
synthesis tool to determine values. The ather axes represent
metrics for accuracy and automation. The prediction error
axis measures accuracy by plotting the worst case discrepancy
between the synthesis tool’s circuit performance predication
and the predictions of a circuit simulator. The time axis
measures automation by plotting the sum of the preparatory
time spent by the designer and CPU time spent by the tool to
synthesize a circuit for the first time. Fig. 10 reveals three
distinct classes of synthesis results. The first class is on
the right and contains the majority of previously published
papers. Here, the synthesis tool predicts performance with

’Not all prior approches could be included in Fig. 10 because of the
unavailability of the necessary data. In [14] where preparatory time was not
published, we equated 1000 lines of circuit-specitic custom code to a month
of effort.

286 ItEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL 15, NO. 3, MARCH 1996

Design Exauqple

.param cl = 1pF

.param vddva132.5

.param vssvalr-2.5

. subckt oa inpos
Ma outpos inneg
+ constraintl =
MI outneg inpos
+ constraintl =
W 3 outpos nvb
Ed4 outneg nvb
w b nvb nvss
ib A nvs s . ends

inneg outpos outneg nvdd nvss

'vgs - von > 0.2' constraint2 = 'vds - vdsat > 0.05'
A A Ne W I ' W' 1s ' L '
'vgs - von > 0.2' constraint2 = 'vas - vdsat > 0.05r
nvdd nvdd Pe wzau l=l.2u
nvdd nvdd Pe w=au l=l.2u
'rn'
'I'

A A Ne WI~W' 1a'L'

7
2
3
4

6
7
8
9

10
11
12
13
14
15
16
17

J

.VAR W RANGE=(l.8u,500u) (3RID=1

.VAR L RANGE=(1.2U,lOOu) GRID=l

.VAR I RANGE=(luA,ImA) RES=O.OOl

.VAR Vb RANGEr(0.5) RESEO. 001

.SYNTH example

.OblxCkt self-bias bias
xamp inpos inneg outpos outneg nvdd nvss oa
vdd nvdd 0 vddval
vss nvss 0 vssval
rfl inneg outpos le6
rf2 inpos outneg le6
.spec SR value '1/(2*(cl+xamp.rnl.Cdd+x~.~.cdd))' good

18
19
20
27
22
23
24
25
26
27
28
29
30

= l W e g bad = 10k 31
.endOblxCkt

.OblxCkt openloop awe

.bias self-bias
xamp inpos inneg outpos outneg nvdd
vdd nvdd 0 vddval
vss nvss 0 vs sval
vin inpos 0 0 ac 1
ein inneg 0 ~ 0 inpos 1
Cll OUtpOS 0 c1
c12 outneg 0 c1
.pz tf V(outpos) vin
.spec ugf value 'unity-gain-freq(tf)*
.obj Adm value 'dc-gain(tf)'
.endOblxCkt

. END

32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48

nvss oa

g o d Ueg bad a 10k
good = 1000 bad = 10

Fig. 9. Design example: ASTRX input file. (Process parameters are not included.)

reasonable accuracy, but only because a designer has spent
months to years of preparatory time deriving the circuit
performance equations. The second group of results, those
on the left, trade reduced preparatory effort for substantially
reduced circuit performance prediction accuracy. Finally, the
center group of results is for ASTWOBLX. In contrast
to the other two groups, generating each new design with
ASTRWOBLX typically involved an afternoon of preparation
followed by 5-10 annealing runs performed overnight, yet
produced designs that matched simulation with at least as
much accuracy as the best prior approaches.

For all eight circuit topologies discussed in this paper, Table
I1 lists information about the input file used to describe the
problem to ASTRX and the resulting cost function and C
code generated. Note that five of these topologies (Simple
OTA, OTA, Two-Stage, Folded-Cascode, and Comparator)
form our benchmark suite, and cover essentially all3 synthesis

We make the reasonable assumption that a circuit topology can represent
topologies that vary in only minor detail

results published at the time of this writing. The limited
range and performance of these prior results is perhaps the
best indicator that the first-time effort to design a circuit has
always been a substantial barrier to obtaining a broader range
of results. The first two rows of the table give the number
of lines required for each synthesis problem description.
The number of lines is reported as two separate values:
1) the lines required for the netlists of the circuit under
design and the test jigs (abbut the number of lines that
would be required to simulate the circuit with SPICE), and
2) the lines for the independent variables and performance
specifications (lines specific to ASTWOBLX). Note that this
is a modest amount of input, most of which is the netlist
information required for any simulation deck. The synthesis-
specific information is predominantly a list of the variables the
user wishes ASTRWOBLX to determine and the performance
specifications. For small circuits, creating the input to ASTRX
usually takes a few hours (compared to the weekslmonths
required to add a new circuit to other synthesis tools). For

OCHOTTA et al.: SYNTHESIS OF HIGH-PERFORMANCE ANALOG CIRCUITS 287

Fig. 10. Complexity, error, and first time design effort. ASTRWOBLX compared with prior approaches.

TABLE I1
RESULT OF ASTRX'S ANALYSES

..
. .- . .-

B: 20.31 R: %,.49 8: 14.54 B: 75.138 B 65. 126 B: 33.54 U: 90, 167 B: 219,550
C,Ii&'&pt*; A: 20.67 A: 2% 1 Id A: 3.3, I I8 A: 75% 324 A: 63,265 A: 32,105 A' Yo. 395 A: 152,693

A:64.2M A: 152,693
A.29.115 A: w. 39s

.-̂ I__. -. . . .- ..

the 2x gain stage, creating and checking the topology, and
specifications took two to three days. The third and fourth rows
of Table I1 show the number of independent variables that
must be manipulated by OBLX during optimization. Recall
that since the relaxed-dc formulation requires Kirchhoff's laws
to be explicitly constrained, OBLX must also manipulate most
of the circuit node voltages. As shown in the fourth line of
Table 11, as a result of internal nodes in the device models we
employ, these added variables typically outnumber the user-
specified variables. This dimensional explosion is substantially
alleviated by the inclusion of Newton-Raphson moves as one
of the circuit perturbations OBLX can use during simulated

annealing (see Section V.D.). The fifth and sixth rows of the
table show the other results of ASTRX's analysis of the input
description: the number of terms in the cost function OBLX
will optimize and the number of lines of C code automatically
generated by ASTRX for this synthesis problem. Recall that
ASTRX compiles the problem description, generating the cost
function as C code then compiling and linking it with OBLX.
Finally, Table I1 shows the size of the linearized small-signal
test jig circuit(s) generated by ASTRX to be evaluated by AWE
for each new circuit configuration and the size of the bias
circuits generated by ASTRX using the large-signal models
for the nonlinear devices.

288 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 15, NO. 3, MARCH 1996

TABLE 111
BASIC SYNTHEsrs RESULTS, BSIM AND GUMMEL-POON MODELS, 1.2 pm PROCESS

Specifkatton: OBUC i Simulation

Attribute Simple OTA
Cioad (pF) 1
Vdd 5

dc g m (dB) Ta: 35.6 I36.6
gain bandwidth (MHz) 2.50: 50.1 I 50.6
phase margm (“) 260: 71.4 I 74.8

PSRR (vss) 220:21.4121.9

PSRR Wdd) 220 36.8 I36.8
output swrng (V) 22.3: 3.7 13.6

slew rate {Vlw) 210 1301131
activve area (1dp2) 4: 2.8
sfatie power {mW) S1: 0.72 f0.72

OTA
1

5

?: 40.4 140.2
225: 25.0 125.4

245 57.9 i57.8

24Ck 42.1 I 42.0
240: 52.8 152.8

22.5: 4.014.0

210: 51.6 148.2
J: 0.9
1E0.33 10.34

Twa-StagrS
1
5

260: 66.4 I 66.4
210: 10.61 10.6
245 87.3 f 86.5

220: 31.0 I30.9

240: 45.8 /45.8

22: 2.71 2.8
22: 3.8f4.0
J: 2.1

SI: 0.16/0.16

Folded Caseode

1.25
5

270: 70.1 I 70.1
?: 72.4 I72.1

260: 80.0 f 80.0
2105 I07 / 107
2105: I25 / 125

>1.0:f1.5 /M.5
250 67/57

&: 46

215: IO/ 10

BtCAAOS Two-Stage

1

5
T: 99.1 199, I.

250 73.7 f 75.1
245: 45.2 / 49.6
260 78.9 179.0

24@ 52.2 i 52.2
22 3.3/4.0
2.10: lOi9.5

J. 11.9
120: 1.31 1.5

a. t means maximize, whie 5 means minimize.

Vdd
L M3 M4 J
c

Vout

M2-

Fig. 11. Simple OTA schematic.

The schematics for all our circuits are shown in Figs. 11-18
and the basic synthesis results for the benchmark suite are
in Table 111. CPU times given are on an IBM RS/6000-550
(about 60 MIPS). It is impossible to compare directly circuit
performance of these ASTWOBLX synthesized circuits with
that of circuits synthesized with other tools because of the
unavailability of device model parameters to describe the
processes for which they were designed. As a result, we
compare the accuracy of ASTWOBLX to that of previous
approaches. Because of the simplifications made during circuit
analysis, results from equation-based synthesis tools differ
from simulation by as much as 200% (see Fig. 10). In con-
trast, for the small-signal specifications where A m predicts
performance, ASTWOBLX results match simulation almost
exactly. By simulating linearized versions of these circuits,
we have determined that these minor differences are due to
differences between the models used during simulation with
HSPICE [58] and our models adopted from SPICE 3 [24]. For
nonlinear performance specifications, such as slew rate, we
used first-order equations written by inspection. This was done

Vdd

M8

Fig. 12. OTA schematic

to validate our assertion that most large-signal specifications
can be readily, yet realistically, handled despite the lack
of transient simulation within the present implementation of
A S W O B L X . The accuracy of these is better than similar
equations in completely equation-based techniques because
circuit parameters used to write the equations, such as branch
currents and device parasitics, are updated automatically by
OBLX as the circuit evolves.

Presently A S W O B L X employs three different encapsu-
lated device models: the level 3 MOS model from SPICE [24],
the BSIM MOS model [23] and the Gummel-Poon model for
BJT devices [59]. Because the encapsulated model interface in
OBLX was designed to be compatible with SPICE, adopting
these models from SPICE source code required little more than
the addition of topological information. To demonstrate the
importance of supporting different models, we synthesized the
same circuit (Simple OTA) with three different modeVprocess
combinations: BSIM/2p, BSIM/1.2p, and MOS3/1.2pL. AS-

OCHOT'TA et al.: SYNTHESIS OF HIGH-PERFORMANCE ANALOG CIRCUITS 289

Vdd

M8

I I

TABLE V
COMPARATOR SYNTHESIS RESULTS

Key Attribute Specfflcation: UBUSlmulstion
Vdd 5v
stage 1 settling, 0.1% (ns) IS: 4.514.7
stage 2 settling, 0.1%, (ns) 6: 4.614.8
stage 1 slew rate (VIPs) 2800: 8001750
stage 2 slew rate (Vlgs) 2800: 800/620
latch 1, positive pole (M N t) 2200: 430 I450
latch 2, positive pole (MWz) 2200: 3601330
error rate, (1 in years) 510: 88+24
active area (1o3p2) ka: 1.6
static power (mW) 4: 2.712.7

iimdckt evaI (ms) I36
CPU time (min. / nur} 97

Fig. 13. Two-stage schematic. a 1 means minimize.

TABLE IV vss
COMPARISON WITH MANUAL DESIGN FOR CIRCUIT NOVEL FOLDED CASCODE

Manual Automatic Rs-Synthesir
Attribute Design Spec:OBU / Slm

Cload (pF) 1 1

Vdd (VI 5 5

dc gain (dB) 71.2 271.2: 82/ 82
gain bandwidth (MHz) 47.8 t": 89/89
phase margin (0) 77 4 260: 91/91
PSRR (VSS) 92.6 293: 11211f2
PSRR (Vdd) 72.3 273: 77f I7
output swing (V) f1.4 zt1.4: 1.41 1.3
slew rate (Vfp) 76.8 276: 92/87

active area (1 0 3 ~ ~) 68.7 1: 56 Vdd
static power (mw) 9.0 S25.0: 12/ 12

t idckt . cval (m) 83
CPU(min./nm) + I I6

R T means maximize, while 4 means minimize

TWOBLX was given (and achieved) the same specifications
for each, but was told to minimize active area. The resulting
areas are shown in Fig. 20. As expected, the BSIM/2p design
required the largest area (5 8 0 , ~ ~) . But, surprisingly, the two
designs for the same 1 . 2 ~ process also differed substantially
in area: 300p2 for BSIM and 140p2 for MOS3. These models
differ in their performance predictions, even though they
are both intended to model the same underlying fabrication
process. Clearly the choice of device model greatly effects
circuit performance prediction accuracy. As a final experiment
to show the utility of encapsulated device models, we designed
a BiCMOS two-stage amplifier, which shows the ability of
ASTWOBLX to handle a mix of MOS and bipolar devices.
Synthesis and simulation results appear as the last column of
Table 111. Here again, performance predictions match detailed
circuit simulations, confirming the importance of encapsulated
devices for both accuracy and generality.

Fig. 14. BiCMOS two-stage schematic.

B. Comparison to Manual

Our next example shows the ability of ASTWOBLX to
design difficult circuits and achieve results similar to those ob-
tained by manual design. This circuit, a novel folded cascode
fully differential opamp, shown in Fig. 18, is a new high-
performance design recently published in [60] and as such is a
significant test for any synthesis tool because the performance
equations cannot be looked up in a textbook. Moreover, the
performance of the circuit is difficult to express analytically,
and as many as six poles and zeros may nontrivially effect the
frequency response near the unity gain point. Table IV is a
comparison of a redesign of this circuit using ASTWOBLX
with the highly optimized manual design for the same 2p
process. Surprisingly, ASTWOBLX finds a design with
higher nominal bandwidth at the cost of less area. Although
we are pleased with the ability of OBLX to find this corner of
the design space, this does not mean that ASTWOBLX out-
performed the manual designer. In fact, the manual designer
was willing to trade nominal performance for better estimated
yield and performance over varying operating conditions.

290 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 15, NO. 3, MARCH 1996

vss
Fig. 15. Folded cascode schematic.

Vdd

Fig. 16. Comparator schematic

Fig. 17.
(Fig. 18), and the switches are MOS pairs.

2x gain stage schematic. The amplifier is the Novel Folded Cascode

Adding this ability to ASTWOBLX is the subject of ongoing
research and preliminary results are reported in [37].

C. Pushing the Limits of Complexity and Generality
Our final result shows the utility of ASTWOBLX when

confronted with the much more complex task of designing a
pipelined A/D converter. This is an important test because
it addresses the issues of generality and complexity. The
pipelined A/D topology converter we selected, Fig. 19, em-
ploys two cells: a comparator (Fig. 16) and a 2x gain stage
(Fig. 17). This is a test of generality because these cells display
important nonlinear behavioral characteristics whose modeling

TABLE VI
SWK-CAP 2x GAIN STAGE SYNTHESIS RESULTS

Key AtMbutca $ ~ ~ c ~ f ~ ~ ~ o n : ~ ~ ~ $ i ~ ~ l ~ ~ ~ o ~
Vdd 5v
settling at output (nsf 5100: 93/98
settling at amp inputs (as) 42/61
input range (V) 21to.S: 1.6f 1.6
output range (V) Lt0.S: 0.810.7
common mode gain (dB) 5-10: -33/-33
active area (1dw2) 0: 58
static power (mW) 1: 21/21.

a. 1 means minimize.

in ASTRX/OBLX is not as straightforward as the performance
characteristics of amplifiers and other linear cells. This is a
test of complexity because, using the metric of devices plus
designable parameters, these cells are. 2-3 x more complex
than those published previously. To aid noise rejection in
a mixed-signal environment, the A/D converter uses a fully
differential structure. The 2x gain stage is implemented as
a switched-capacitor circuit, and the input switches provide a
convenient method to perform the multiplexing and subtraction
needed to complete the design. The 2x gain stage also employs
an operational amplifier (Fig. 18) [60]. It is important to
note that ASTWOBLX optimizes the entire gain cell as a
single circuit. This allows the optimizer to explore crucial
tradeoffs between the sizes of the switches, capacitors and
amplifier devices. This also yields a very large optimization
problem, which contributes to the lack of published synthesis
results of this complexity. However, the ability to handle
problems of this magnitude is fundamental for industrial
design situations where the designer naturally works with cells
of this complexity. Other characteristics of the two circuit
design problems are shown in Table 11.

Sample ASTWOBLX synthesis results for a comparator
appear in Table V and results for a samge 2x gain stage
appear in Table VI. These results are for a 1 . 2 ~ MOS process

OCHOTTA 291

Fig. 18. Novel folded cascode schematic [60].

and use a BSIM model for the devices. Reported run-times
are again on an IBM RS/6000-550 (about 60 MIPS), and
simulation results were obtained with HSPICE. As before,
there is a close correspondence between OBLX prediction and
simulation.

One key benefit of circuit synthesis is the ability to explore
the design space for a given circuit and process, quantifying
the interactions between competing circuit performance con-
straints. Fig. 21 shows the results of several ASTWOBLX
runs for the comparator of Fig. 16. Each point on the graph
is a different complete circuit design, obtained by increasing
the clock frequency specification and asking ASTWOBLX to
minimize static power. The graph shows the expected increase
in static power consumption as a function of the circuit's
maximum clock frequency.

Finally, Fig. 22 shows the simulated inputloutput response
at 3 MHz for a single stage of our completed A/D con-
verter formed by connecting the two synthesized cells. The
input-output response follows the saw-tooth pattern expected
of an A/D converter stage. The 3 MHz performance is a few
years behind the state of the art, but we consider this perhaps
modest performance to be quite acceptable for the first fully
automatic design of cells of this complexity.

VIII. CONCLUSION AND FUTURE WORK

Our experience with ASTWOBLX as it has evolved over
the past few years has given us considerable insight into the
practical aspects of the system's use and the strengths and
weaknesses of both its underlying ideas and their implemen-
tation. In practice, since the input format was designed to
be very familiar to users of SPICE, analog designers need
little assistance before they can begin experimenting with
ASTRWOBLX, and several colleagues at Carnegie Mellon
have successfully used the tool. However, obtaining usable
circuits generally requires some experience and patience. The
typical failure mode is that the synthesis problem is under-
constrained, and the optimizer finds a circuit that meets all
the specifications given and yet is not usable. For example,
if no output swing specification is given, OBLX will exploit
this omission and design an amplifier that meets all the given
specifications, but whose output devices will be pushed out
of saturation by almost any change in the input. Correctly

Vi+

vi-

--..- ----- --
Fig. 19. Pipelined A/D converter topology.

600
Active 400

200
Area

@* 0
2p 1.2p l"2P

BSlM BSlM MOS3

Fig. 20.
different processhodel combinations.

Active area for the circuit simple OTA synthesized for three

specifying the circuit synthesis task is usually overcome with a
few iterations through the synthesize/verify cycle. This process
of tuning specifications could likely be enhanced by some
form of debugger that could point toward the cause of input
specification problems, but as with conventional programming
languages, creation of sophisticated development tools will
follow only when the language is well established.

There are several ways that ASTWOBLX itself could be
extended, and some of these are the focus of ongoing research.
Three general areas of improvement are the speed and scope of
circuit performance evaluation, automatic topology selection,
and hierarchical design. Faster and more powerful circuit simu-
lation is itself an open research area. Fast evaluation with AWE
makes ASTmOBLX practical, yet it limits the information a

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 15, NO. 3, MARCH 1996

10.0’

292

F

i5
E
ti

n

i.5

U

0

Q
.- c

’ ’ ’ ’ ’ ’ ’ ’

8.0

6.0

4.0

2.0

rn

U

Fig. 21. Clock frequency versus static power for the comparator of Fig. 16.

-0%!6 ’ -0.4 ’ -0.2 ’ 0:l ’ 0:2 ’ 014 ’
Input (Volts)

Fig. 22. Inputloutput response of pipeline stage.

designer can obtain about the circuit under design. The AWE
techniques we employ do not work for transient specifications,
and conventional transient simulation is impractical because it
is many orders of magnitude too slow. This forces the designer
to write some equations. Although first-order equations here
are not difficult to derive, if fast transient simulation were
possible, it would be a better solution. In the near term, an area
in which the scope of ASTWOBLX circuit evaluation can
be improved is manufacturablility . Since manufacturablility
concerns are a critical aspect of any industrial circuit design,
adding manufacturablility evaluation to A S W O B L X is a
critical aspect of creating a synthesis tool usable in an indus-
trial setting. Ongoing work in this area is described in [37].
Unfortunately, adding more power and flexibility to circuit
evaluation within ATWOBLX exacts a penalty in run-time,
making synthesis of large circuits less practical. In part, the
continuing trend of ever-increasing CPU speeds will alleviate
this problem and make more sophisticated circuit evaluation
techniques more practical in a desktop environment in the next
few years.

Determining the topology-the interconnection of transis-
tors and other circuit devices-is the other component of

analog circuit design, and automating this task is another area
of ongoing work with ASTRXI OBLX. The key challenge is
to extend ASTWOBLX while continuing to ensure that it
does not contain any hard-coded circuit-specific knowledge.
Our strategy is to perform simultaneous topology selection
and sizing via optimization, as first introduced in [16].

Finally, a completely different way in which ASTRX/OBLX
could be expanded would be to support larger circuits via
hierarchy and macromodeling. Basically, this would involve
using a macromodeling technique to convert a complete circuit
such as an opamp into the equivalent of an encapsulated device
model [61]. These macromodeled circuits would then become
the atomic building blocks of a larger circuit structure such as
a filter or A/D converter.

We have presented ASTWOBLX, tools that accurately
size high-performance analog circuits to meet user-supplied
specifications, but do not require prohibitive preparatory effort
for each new circuit topology. For a suite of benchmark analog
circuits that covers nearly all previously published synthesis
results, we have validated our formulation by showing that
ASTRX/OBLX requires several orders of magnitude less
preparatory effort, yet can predict results more accurately. By
comparing to a novel manual design, we have also shown that
ASTRX/OBLX can handle difficult-to-design circuits and pro-
duce circuits comparable to those designed manually. Finally,
by designing the cells of a pipelined A/D converter, we have
shown that ASTRX/OBLX can successfully generate designs
for problems of industrial complexity.

ACKNOWLEDGMENT
The authors wish to thank their colleagues whose critical

analyses and insightful discussions have helped shape this
paper. In particular, the authors wish to thank S. Kirkpatrick of
IBM, and their coresearchers at Camegie Mellon: R. Rohrer
and his AWE group, R. Harjani, P. C. Maulik, B. Stanisic,
and particularly, T. Mukherjee.

REFERENCES

[l] R. Harjani, “OASYS: A framework for analog circuit synthesis,” Ph.D.
dissertation, Carnegie Mellon University, Pittsburgh, PA, 1989.

[2] P. G. Gray, “Analog 1C’s.in the submicron era: Trends and perspec-
tives,” IEEE IEDM Dig. Tech. Papers, pp. 5-9, 1987.

[3] R. K. Brayton, A. L. Sangiovanni-Vincentelli, and G. D. Hachtel,
“Multilevel logic synthesis,” Proc. IEEE, vol. 78, pp. 264-300, Feb.
1990.

[4] E. S. Kuh and T. Ohtsuki, “Recent advances in VLSI layout,” Proc.
IEEE, vol. 78, pp. 237-263, Feb. 1990.

[5] G. Gielen, H. C. Walscharts, and W. C. Sansen, “Analog circuit design
optimization based on symbolic simulation and simulated annealing,”
IEEE J. Solid-state Circuits, vol. 25, pp. 707-713, June 1990.

[61 H. Y. Koh, C. H. Sequin, and P. R. Gray, “OPASYN: A compiler
for MOS operational amplifiers,” IEEE Trans. Computer-Aided Design,
vol. 9, 113-125, Feb. 1990.

171 M. G. R. DeGrauwe, B. L. A. G. Goffart, C. Meixenberger, M. L. A.
Pierre, J. B. Litsios, J. Rijmenants, 0. J. A. P. Nys, E. Dijkstra, B. Joss,
M. K. C. M. Meyvaert, T. R. Schwarz, and M. D. Pardoen, “Toward an
analog system design environment,” ZEEE J. Solid-State Circuits, vol.
24, pp. 659-672, June 1989.

[81 M. G. R:DeGrauwe, 0. Nys, E. Dijkstra, J. Rijmenants, S. Bitz, B.
L. A. G. Goffart, E. A. Vittoz, S. Cserveny, C. Meixenberger, G. van
der Stappen, and H. J. Oguey, “IDAC: An interactive design tool for
analog CMOS circuits,” IEEE J. Solid-state Circuits, vol. SC-22, pp.
1106-1116, Dec. 1987.

OCHOTTA et al.: SYNTHESIS OF HIGH-PERFORMANCE ANALOG CIRCUITS 293

[91 F. El-Turky and E. E. Perry, “BLADES: An artificial intelligence
approach to analog circuit design,” IEEE Trans. Computer-Aided Design,
vol. 8, pp. 680-691, June 1989.

[lo] R. Harjani, R. A. Rutenbar, and L. R. Carley, “OASYS: A framework
for analog circuit synthesis,” IEEE Trans. Computer Aided-Design, vol.
8, pp. 1247-1266, Dec. 1989.

[I l l B. J. Sheu, A. H. Fung, and Y. Lai, “A knowledge-based approach to
analog IC design,” IEEE Trans. Circuits Syst., vol. 35, pp. 256-258,
1988.

[12] E. Berkcan, M. d’Abreu, and W. Laughton, “Analog compilation
based on successive decompositions,” in Proc. 25th ACM/IEEE Design
Automation Con$, 1988, pp. ,369-375.

[I31 E. S. Ochotta, “The OASYS virtual machine: Formalizing the OASYS
analog synthesis framework,” M.S. thesis, Rep. #89-25, Carnegie Mellon
University, Pittsburgh, PA, Mar. 1989.

[I41 J. P. Harvey, M. 1. Elmasry, and B. Leung, “STAIC: An interactive
framework for synthesizing CMOS and BiCMOS analog circuits,” IEEE
Trans. Computer-Aided Design, vol. 12, pp. 1402-1418, Nov. 1992.

[15] J. Jongsma, C. Meixenberger, B. Goffart, J. Litsios, M. Pierre, S. Seda,
G. Di Domenico, P. Deck, L. Menevaut, and M. Degrauwe, “An open
design tool for analog circuits,” in Proc. IEEE Int. Symp. Circuits Syst.,
June 1991, pp. 2000-2003.

[16] P. C. Maulik, L. R. Carley, and R. A. Rutenbar, “A mixed-integer
nonlinear programming approach to analog circuit synthesis,” in Proc.
Design Automation Con$. June 1992, pp. 693-703.

[17] H. Onodera, H, Kanbara, and K. Tamaru, “Operational-amplifier com-
pilation with performance optimization,” IEEE J. Solid-State Circuits,
vol. 25, pp 466-473, Apr. 1990.

[I81 C. Toumazou, C. A. Makris, and C. M. Berrah, “ISAID-A methodology
for automated analog IC design,” in Proc. IEEE Int. Symp. Circuits
Syst., 1990, pp. 531-533.

[19] S. Seda, M. DeGrauwe, and W. Fichtner, “Lazy-expansion of symbolic
expression approximation in SYNAP,” in Proc. IEEE/ACM Int. Con$
CAD, Nov. 1992, pp, 310-317.

[20] G. Gielen, H. C. Walscharts, and W. C. Sansen, “ISAAC: A symbolic
simulation for analog integrated circuits,” IEEE J. Solid-state Circuits,
vol. 24, pp. 1587-1597, Dec. 1989.

[21] Q. Yu and C. Sechen, “Approximate symbolic analysis of large ana-
log integrated circuits,” in Proc. IEEE Int. Con$ CAD, Nov. 1994,
pp. 664-672.

[22] P. Wambacq, F. V. Fernandez, G. Gielen, and W. Sansen, “Efficient
symbolic computation of approximated small-signal characteristics,” in
Proc. Custom Integrated Circuits Con$, vol. 21, no. 5, May 1994,

[23] B. Sheu, J. H. Shieh, and M. Patil, “BSIM: Berkeley short-channel
IGFET model for MOS transistors,” IEEE J. Solid-state Circuits, vol.

[24] B. Johnson, T. Quarles, et al., “SPICE version 3e user’s manual,” Univ.
California, Berkeley, Tech. Rep., Apr. 1991.

[25] R. A. Rohrer, “Fully automatic network design by digital computer,
preliminary considerations,” Proc. IEEE, vol. 55, pp. 1929-1939, Nov.
1967.

[26] W. Nye, D. C. Riley, A. Sangiovanni-Vincentelli, and A. L. Tits,
“DELIGHTSPICE: An optimization-based system for the design of
integrated circuits,” IEEE Trans. Computer-Aided Design, vol. 7, pp.
501-518, Apr. 1988.

[27] J.-M. Shyn and A. Sangiovanni-Vincentelli, “ECSTASY: A new envi-
ronment for IC design optimization,” in Proc. IEEE Int. Con$ CAD,
Nov. 1988, pp. 484-487.

[28] D. E. Hocevar, R. Arora, U. Dasgupta, S. Dasgupta, N. Subramanyam,
and S. Kashyap, “A usable circuit optimizer for designers,” in Proc.
IEEE Int. Con$ CAD, Nov. 1990, pp. 29&293.

[29] L. Nagle and R. Rohrer, “Computer analysis of nonlinear circuits,
excluding radiation (CANCER),” IEEE J. Solid-State Circuits, vol. SC-
6, pp. 166-182, Aug. 1971.

[30] L. Nagle, “SPICE2: A computer program to simulate semiconductor
circuits,” Univ. California, Berkeley, Memo. UCBERL-MS20, May
1975.

[31] W. Nye et al., “DELIGHT.SPICE user’s guide,” Dept. EECS, Univ.
California, Berkeley, May 1984.

[32] E. S. Ochotta, R. A. Rutenbar, and L. R. Carley, “Equation-free synthesis
of high-performance linear analog circuits,” in Proc. Brown/MlT Adv.
Res. VLSI and Parallel Syst. Providence, RI: MIT, Mar. 1992, pp.

[33] E. S. Ochotta, “Synthesis of high-performance analog cells in AS-
TRWOBLX,” Ph.D. dissertation, Camegie Mellon University, Pitts-
burgh, PA, Feb. 1994.

[34] E. S. Ochotta, L. R. Carley, and R. A. Rutenbar, “Analog circuit

pp. 1 4 .

SC-22, pp. 558-566, Aug. 1987.

129-143.

synthesis for large, realistic cells: Designing a pipelined A/D converter
with ASTRWOBLX,” in Proc. Custom Integrated Circuirs Con$, vol.
15, no 4, May 1994, pp. 1 4 .

[35] E. S. Ochotta, R. A. Rutenbar, and L. R. Carley, “ASTRWOBLX:
Tools for rapid synthesis of high-performance analog circuits,” in Proc.
IEEE/ACM Design Automation Con$, June 1994, pp. 24-30.

[36] F. Medeiro, F. V. Femandez, R. Dominguez-Castro, and A. Rodriguez-
Vazquez., “A statistical optimization-based approach for automated
sizing of analog circuits,” in Proc. IEEE Int. Conf CAD. Nov. 1994.
pp. 594-597. -

[371 T. Mukherjee, L. R. Carley, and R. A. Rutenbar, “Synthesis of manu-
facturable analog circuits,” in Proc. IEEE Int. Conf CAD, Nov. 1994,
pp. 586-593.

[38] L. T. Pillage and R. A. Rohrer, “Asymptotic waveform evaluation
for timing analysis,” IEEE Trans. Computer-Aided Design, vol. 9,
pp. 352-366, Apr. 1990.

[39] V. Raghavan, R. A. Rohrer, M. M. Alabeyi, J. E. Bracken, J. Y. Lee,
and L. T. Pillage, “AWE inspired,” in Proc. IEEE Custom Integrated
Circuits Con$. vol. 18, May 1993, pp. 1-8.

[40] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, “Optimization by
simulated annealing,” Science, vol. 220, no. 4598, pp. 671-680, May
13, 1983.

[41] F. Romeo and A. Sangiovanni-Vincintelli, “A theoretical framework for
simulated annealing,” Algorithmica, vol. 6, pp. 302-345, 1991,

[42] J. M. Cohn, D. J. Garrod, R. A. Rutenbar, and L. R. Carley,
“KOAN/ANAGRAM 11: New tools for device-level analog placement
and routing,” IEEE J. Solid-State Circuits, vol. 26, pp. 330-342, Mar.
1991.

[43] J. Lam and J. M. Delosme, “Performance of a new annealing schedule,”
in Proc. 25th ACM/IEEE Design Automation Con$, 1988, pp. 306-311.

[44] G. W. Rhyne and M. B. Steer, ‘Comments on ‘Simulation of nonlinear
circuits in the frequency domain,” IEEE Trans. Computer-Aided Design,

[45] K. S. Kundert and A. Sangiovanni-Vincentdli, “Reply to: Comments
on ‘Simulation of nonlinear circuits in the frequency domain,”’ IEEE
Trans. Computer-Aided Design, vol. 8, pp. 928-929, Aug. 1989.

[46] A. V. Aho, R. Sethi, and J. D. Ullman, Compilers: Principles, Tech-
niques, and Tools.

[47] J. Vlach and K. Singal, Computer Methods for Circuit Analysis and
Design.

[48] N. Metropolis, A. W. Rosenhluth, M. N. Rosenbluth, and A. H. Teller,
“Equation of state calculations by fast computer machines,” J. Chem.
Phys., vol. 21, p. 1087, 1953.

[49] S. Hustin and A. Sangiovanni-Vincentelli, “TIM, a new standard cell
placement program based on the simulated annealing algorithm,” pre-
sented at the IEEE Physical Design Workshop on Placement and
Floorplanning, Hilton Head, SC, Apr. 1987.

[50] D. Vanderbilt and G. Louie, “A Monte Carlo‘ simulated annealing
approach to optimization over continuous variables,” J. Comput. Phys.,
vol. 56, pp. 259-271, 1984.

[51] G. L. Bilbro and W. E. Snyder, “Optimization of functions with
many minima,” IEEE Trans. Syst., Man, Cybern., vol. 21, pp. 840-849,
July/Aug. 1991.

[52] S. B. Gelfand and S. K. Mitter, “Simulated annealing type algorithms
for multivariate optimization,” Algorithmicu, vol. 6, pp. 419436, 1991.

[53] W. Swartz and C. Sechen, “New algorithms for the placement and
routing of macrocells,” in Proc. IEEE Int. Con$ CAD, Nov. 1990, pp.
336-339.

[54] C. Sechen and K. Lee, “An improved simulated annealing algorithm
for row-based placement,” in Proc. IEEE/ACM Int. Con$ CAD, 1987,
pp. 478481.

[55] M. J. D. Powell, “A view of minimization algorithms that do not require
derivatives,” ACM Trans. Math Software, pp. 197-107, 1975.

[56] B. R. Stanisic, R. A. Rutenbar, and L. R. Carley, “Mixed-signal
noise-decoupling via simultaneous power distribution design and cell
customization in rail,” in Proc. Custum Integrated Circuits Con$, vol.
24, no. 2, May 1994, pp. 1 4 .

[57] E. S. Ochotta, “User’s Guide to ASTRWOBLX,” ECE Dept., Carnegie
Mellon University, Pittsburgh, PA, Rep. CAD 94-36, July 1994.

[58] HSPICE manual, Metasoft Corp., 1990.
(591 H. K. Gummel and H. C. Poon, “An integral charge control model of

bipolar transistors,” Bell Syst. Tech. J., pp. 827-851, May 1970.
[60] K. Nakamura and L. R. Carley, “A current-based positive-feedback

technique for efficient cascode bootstrapping,’’ in Proc. VLSI Circuits
Symp., June 1991, pp. 107-108.

[61] J. Shao and R. Harjani, “Macromodeling of analog circuits for hierar-
chical circuit design,” in Proc. 1994 IEEE Int. Con$ CAD, Nov. 1994,
pp. 656-663.

vol. 8, pp. 927-928, Aug. 1989.

Reading, MA: Addison-Wesley, 1987.

Princeton, NJ: van Nostrand Reinhold, 1983.

294 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 15, NO. 3, MARCH 1996

Emil S. Ochotta (S’88-M’92) received the B.Sc.
degree in computer engineering from the University
of Alberta, Edmonton, Canada, in 1987. He received
the M.S. and Ph.D. degrees in elecfxical and com-
puter engineering from Camegie Mellon University,
Pittsburgh, PA, in 1989 and 1994, respectively.

He is presently a Senior Systems Engineer at
Xilinx, Inc., where he is developing new ideas for
hardware and software in the field programmable
gate array industry. His research interests include
programming and hardware description languages,

biomedical engineering, and CAD tools to support analog design and PGA’s .
Dr. Ochotta received a Best Paper award at the Semiconductor Research

Corporation TECHCON conference in 1993. He was awarded the APEGGA
(Association of Professional Engineers, Geologists, and Geophysicists of
Alberta) Gold Medal for graduating first in his class and is a member of
ACM and Sigma Xi.

Rob A. Rutenbar (S’78-M’84-SM’90) received
the Ph.D degree in computer engineenng (CICE)
from the University of Michigan, Ann Arbor, in
1984

He is currently a Professor of electncal and
computer engineenng and of computer science, and
Director of the Semiconductor Research Corpo-
ration-CMU Center of Excellence in CAD and
IC’s with Camegie Mellon University, Pittsburgh,
PA. His research interests focus on circuit and
layout synthesis for mxed-signal ASIC’s, high-

performance digital IC‘s, and FPGA‘s
Dr. Rutenbar received a Presidential Young Investigator Award from

the National Science Foundation in 1987. At the 1987 EIII-ACM Design
Automation Conference, he received a Best Paper Award for work on
analog circuit synthesis He IS currently on the Executive Committee of the
IEEE International Conference on CAD, and Program Committees for the
ACIWIEEE Design Automation Conference and European Design & Test
Conference He is on the Editorial Board of IEEE Spectrum, and cham
the Analog Technical Advisory Board for Cadence Design Systems He IS
a member of ACM, Eta Kappa Nu, Sigma Xi, and AAAS

L. Richard Carley (S’77-M’8 1-SM’90) received
the S.B., M.S., and Ph.D. degrees from the Mass-
achusetts Institute of Technology, Cambridge, in
1976, 1978, and 1984, respectively.

He is a Professor of electrical and computer
engineering with Camegie Mellon University, Pitts-
burgh, PA. He was with MIT’s Lincoln Laboratories
and has acted as a consultant in the area of analog
circuit design and design automation for Analog
Devices and Hughes Aircraft, among others. In
1984, he joined Carnegie Mellon, and in 1992 be

was promoted to Full Professor. His current research interests include the
development of CAD tools to support analog circuit design, design of high-
performance analog signal processing IC’s, and the design of low-power
high-speed magnetic recording channels.

Dr. Carkey received a National Science Foundation Presidential Young
Investigator Award in 1985, a Best Technical Paper Award at the 1987 Design
Automation Conference, and a Distinguished Paper Mention at the 1991
International Conference on Computer-Aided Design. He was also awarded
the Guillemin Prize for the best EE Undergraduate Thesis.

