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Abstract. In this paper we investigate low-variance mulfiga spectrum
estimation methods to compute the mel-frequencgteaipcoefficient (MFCC)
features for robust speech and speaker recognéystems. In speech and
speaker recognition, MFCC features are usually coeapfibm a single tapered
(e.g., Hamming-window) direct spectrum estimate,, ithe squared magnitude
of the Fourier transform of the observed signal. @amad with the
periodogram, a power spectrum estimate that usssoamth window function,
such as Hamming window, can reduce spectral leakAlrdowing may help
to reduce spectral bias, but variance often rentagts A multi-taper spectrum
estimation method that uses well-selected tapers gzin from the bias-
variance trade-off, giving an estimate that haslisinias compared with a
single taper spectrum estimate but substantiallweto variance. Speech
recognition and speaker verification experimenesdufts on the AURORA-2
and AURORA-4 corpora and the NIST 2010 speaker mitiog evaluation
(SRE) corpus (telephone as well as microphone speedpectively, show that
the multi-taper methods perform better comparethio Hamming-windowed
spectrum estimation method. In a speaker verificatask, compared to the
Hamming window technique, the sinusoidal weightezpstrum estimator
(SWCE), Multi-peak, and Thomson multi-taper techesjyprovide a relative
improvement of 20.25%, 18.73% and 12.83%, respalgtiitn Equal Error Rate
(EER).
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1 Introduction

Extraction of useful information from speech sighals been a subject of active
research for many decades [24-26]. A feature etdrgor front-end), first step in an
automatic speech or speaker recognition systemsftyems a raw speech signal into a
compact representation. Since feature extractiothesfirst step in the chain, the
quality of later steps (modelling and pattern matgkclassification) strongly depends
on it [30, 33, 48]. The mel-frequency cepstral €icefnt (MFCC) features are the



most popular in speech and speaker recognitioresgst where they demonstrate
good performance [1, 24, 38]. The MFCC representat an approximation of how
the human auditory system works [1]. Since MFCQuess are computed from an
estimated spectrum, the variance of these featigregreatly influenced by the
variance the spectral estimate of the observedchpsignal. Hence, an accurate
estimation of the speech power spectrum is crupl&, 51]. Direct spectrum
estimation (also known as nonparametric spectruimason) based on a window
function, such as Hamming window, is the most oftesed spectrum estimation
method for speech processing applications [2]. Wlvidg that gives more weight to
the center of the signal than to its ends helpalleviate bias due to leakage in the
periodogram but variance remains large [11, 561 #merefore, MFCC features
computed from this estimated spectrum have alsb kayiance [3-4]. Hence, the
focus of this work is to find spectrum estimatorghwlow variance. One elegant
technique for reducing the variance is the mulietaspectrum estimate [4-6], that
uses a variety of orthogonal tapers, some of whieh more weight to the ends of the
signal, trading off bias and variance.

Multi-taper methods reduce the variance of speadstimates by using multiple
orthogonal window functions rather than a singledew. In a multitaper spectrum
estimation method the speech signal is, first, ipligd by not one but a family of
tapers which are resistance to spectral leakages. yiiblds several tapered speech
signals from one record. Taking the Discrete Faufiansforms (DFTs) of each of
these tapered signal seveeajenspectra are produced which are combined (using a
weighted averaging technique) to form the final titeyper spectral estimate. The
multi-taper method has already proved useful inliegiions, such as geophysical
data analysis [5-6, 12-13], and noise reduction Rgcently, multi-tapering has been
applied in [3, 20] for speaker recognition usingimple Gaussian mixture model-
universal background model (GMM-UBM) [21], genezalil linear discriminant
sequence-support vector machine (GLDS-SVM), joattdr analysis (JFA) [22-23]
and i-vectors-Probabilistic Linear Discriminant (PA) [30, 51] classifiers with
promising preliminary results, but not yet in sgeeecognition. In this paper, our aim
is to compute MFCC features from a multi-taper gpée@stimate for robust speech
recognition under additive and convolutive noisaditions on the AURORA-2 small
vocabulary connected digits task [7] and the AURGRIArge vocabulary continuous
speech recognition (LVCSR) task [60]. Similar t®[%1], we also wish to validate
the findings of [3, 20] using a state-of-the-aviector classifier on the telephone and
microphone speech of the latest NIST 2010 Speakeoghition Evaluation (SRE)
data. Robustness of the multitaper MFCC featureuadditive noise conditions has
been analysed in [3, 20].

Even though speaker and speech recognition systsesften the same acoustic
features (e.g., MFCCs and the perceptual lineadigiien coefficients (PLPS)
computed from a Hamming windowed direct spectrutmesges), the goals in these
two tasks are nearly the opposites of each otherspeaker verification, one is
interested in the speaker’s voice timbre independémwords being spoken, whereas
in speech recognition one is interested in wordagepoken independent of the
speaker. The modeling techniques in these problames quite different and
consequently, spectrum estimator parameters omdnizsing a full recognition
system in one of these tasks does not automatigallyantee increased recognition



accuracy in the other task. Indeed, we have foeweral front-ends that outperform
conventional MFCCs in speech recognitigi®, 41 but not in speaker recognition
based on an i-vectors-PLDA classifier. It has dsen found in [41] that feature
extractors that are robust to additive noise emwirtents perform much worse in
microphone speech or under reverberation. The v for presenting extensive
experimental results (on speaker and speech ratmgmasks) for the low-variance
multitaper MFCCs is to show how it performs in di#fnt applications as well as
under various environmental mismatch conditions.

2 Low Variance Multi-taper Spectrum Estimation

A windowed direct spectrum estimator is the mogemfused power spectrum
estimation method for speech processing applicatisnch as speech and speaker
recognition, and speech enhancement. The perioghodd8] was the first (non-
parametric) direct spectral estimate of the powecsal density (PSD) function. The
periodogram is a biased estimate due to spect#hye via the sidelobes. It thus
becomes necessary to use the method of taperimgigwing) to effectively reduce
this bias [11, 50]. For the m-th frame and k-thgfrency bin an estimate of the
windowed periodogram can be expressed as:
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where kD{O,l,...,K-Z} denotes the frequency bin indeRlis the frame length,

s(m,j)is the time domain speech signal and(j)denotes the time domain window

function called a taper, which usually is symmetil decreases towards the frame
boundaries (e.g., Hamming). Eq. (1) is sometimdleda single-taper, modified or

windowed periodogram. W(j) is a rectangular window, i.ew(j) =1, then eq. (1)

is called the periodogram.
Although windowing reduces the bias (the differebetwveen the estimated spectrum
and the actual spectrum) due to leakage, it doesedace the variance of the spectral
estimate [8] and therefore, the variance of the freuency cepstral coefficient
(MFCC) features computed from this estimated spettis also large [27-28]. A
multitaper spectrum estimate, as a replacementhef windowed periodogram
estimate, can be used to reduce the variance dfIE@C features [4-6]. The multi-
taper spectrum estimator, which uses M orthogoriatew function rather than a
single window, can be expressed as
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where Nis the frame lengthw is the p-th data taper used for the spectral e#ima
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éMT @, which is also called the p-th eigenspectruvhdenotes the number of tapers

and &(p)is the weight corresponding to the p-th taper. Epersw, (j)are chosen
to be concentrated in the frequency domain sottigt broadband bias (bias caused



by spectral leakage due to sidelobes) is as smalbasible [11, 28, 52]. If the tapers
are pairwise orthonormal, i.e.,
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then their corresponding spectrum estimates areappately uncorrelated [52]. The
multi-taper spectrum estimate is therefore obtaiasdthe weighted average of
M individual sub-spectra. The windowed periodogram be obtained as a special

case of eq. (2) wheleandé(p) =1 Averaging the M uncorrelated spectra gives a

low variance spectrum estimate and, consequermty,variance MFCC estimate as
well.

Fig. 1 (a & b) and 2 (a & b) present a comparisbriegle window (e.g., Hamming)
and multi-taper (e.g., Thomson [5]) with four tapen the time and frequency
domains, respectively. Unlike conventional dateetapthe orthogonal tapers used in
producing multitaper spectrum estimates are untzde. It is observed from fig. 2
(a) and fig. 3 that only the first taper from th® E6 tapers has the traditional window
shape such as Hanning window (see fig. 3), andsgivere weight to the center of the
signal than to its end. Tapers far>1give increasingly more weight to the ends of

the signal. Fig. 2 (c) presents the taper energy (sf the squared tapers normalized
by the number of tapers M) as a function of j (skemipdex) for different number of
tapers (M = 1-4).

The spectra from the different tapers do not predaccommon central peak for a
harmonic component. Only the first taper producesemtral peak at the harmonic
frequency of the component and the other tapersum® spectral peaks that are
shifted slightly up and down in frequency (see f&.(b)). Each of the spectra
contributes to an overall spectral envelope foheamponent.
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Fig. 1. Time and frequency domain plots of a Hamming wimda) Time domain, (b)
frequency domain. Hamming window gives more weighthe center of the signal
than to its ends and provides a relative side-attenuation of 42.7 dB.
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Fig. 2. Time and frequency domain plots of the first f@lepian tapers used in the
Thomson multitaper method, (a) time domain, (bjjfiency domain. (c) The taper
energy as a function of j (sample index) for défgrnumbers of tapers (M = 1-4).

The use of multiple orthogonal windows can havaifitant advantages over the use
of any single window [11, 12, 13, 28]. In partiayléhe energy of a single band-
limited window always non-uniformly covers the desi concentration region, which
results in some data being statistically over- ndar-represented when forming the
spectral estimate. In contrast, the cumulative ggnesf the multiple orthogonal
windows more uniformly covers the concentrationgagSince the spectral estimates



that result from using orthogonal tapers are sona¢wimcorrelated, a multi-taper
average of these possesses a smaller estimatioanemr[53]. The windowed
periodogram is an inconsistent estimator becagseaitiance does not decrease with
increasing N (window size in samples). The multtagstimator, in turn, has smaller
variance than the windowed periodogram estimatat i@na consistent estimator
provided the number of tapeh increases withN [29].

Various tapers have been proposed in the literdtrrepectrum estimation. A good
set of M orthonormal data tapers with good leakage propeidigiven by the Slepian
sequences (also called discrete prolate sphersggliences (dpss)), which are a
function of a prescribed mainlobe width [2, 5]. Almer family of tapers is thene
tapers, which are very easy to compute and argvisairorthogonal, and can be given

by [6]:
j+1
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The multiplicative constant makes the tapers omhmal (i.e., have unit norm and are
orthogonal). Theine tapers are applied with optimal weighting for deyps analysis
(called Sinusoidal Weighted Cepstrum Estimator (8)NGn [9] and in [10] the
multi-peak tapers are designed for peaked spe&thaief description of all the three
tapers can also be found in [51]. In this paperuse the Thomson multitaper [5], the
SWCE [9], and the Multi-peak multitaper spectruntireator to compute the low
variance MFCC features for speaker and speech mé¢zmygsystems.
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Fig. 3. A comparison of the shape of the conventional Hanwindow and the first
taper from the Slepian (or DPSS) tapers used imiBom multitaper method. The 1st
DPSS taper has been normalized to have a maximightred unity for comparison

purposes



3 Feature Extraction

For a speaker/speech recognition system, as for cdagsification task, feature

extraction is necessary to extract relevant infdiona that is both good at

discriminating different speaker/speech classesirsghsitive to factors irrelevant to
speaker/speech recognition. Currently, the moselyidsed speech features both in
speaker and speech recognition systems are thdréglency cepstral coefficient
(MFCC) [1] and perceptual linear predictive (PLRptures [39]. In this paper, we
describe only the MFCC feature extraction process.

Fig. 4 shows the generalized block diagram of tle¢ frequency cepstral coefficients
(MFCCs) feature extraction from the single and ialper spectrum estimates. As
we mentioned above, the single tapered (e.g., Hagwwindowed) direct spectrum

estimates can be obtained as a special case ahuhtetaper spectrum estimation
method. To compute MFCC features from single-taf@r window) spectrum

estimates, we udd=1, &(1) =1 andw, (j)is the Hamming window.

A detailed description of the various steps of tM&CC feature computation

framework can be found in [25, 31-32, 33-34, 3§, 59this paper, for completeness,
we briefly describe the various steps of the MFE&tdire extraction process.

The MFCC feature extraction process begins withpteeprocessing of the speech
signal. In this step, the DC offset of the speegma is removed and the signal
spectrum is pre-emphasized by approximately 20 @B gecade to flatten the
spectrum of the speech signal. The pre-emphasgs, fi first order finite impulse

response (FIR) filter with a transfer function bétform H(z) = 1-0.97Z, is used to

offset the negative spectral slope of the voicezbsh signal to improve the efficiency
of the spectral analysis [24-25, 34]. The speegnadiis then decomposed into a
series of overlapping (to ensure better temporatigoity in the transform domain)
small duration segments called frames. Commonlg fisene length and frame shift
are 20-30 ms and 10 ms respectively for a speesdisp recognition task because
the positions of the articulators do not changehrindhe period of a frame length.
After being partitioned into frames, each framenisltiplied by a single window
(such as Hamming window) or multiple window (suck Bhomson multitaper)
function prior to the spectral analysis to reduue ¢ffect of discontinuity introduced
by the framing process. The power spectrum of ffeesh signal is estimated using
the single taper (e.g., Hamming window) or multgagirect spectral estimator, i.e.,
by computing the squared magnitude of the discFeterier transform (DFT) of a
segment of the speech signal.
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Fig. 4. Generalized block diagram for the single and ralbier spectrum estimation-
based Mel-frequency cepstral coefficient (MFCC) tdeas extraction. For the
computation of MFCC features from single-taperwWordow) spectrum estimates, we

useM=1, &(1) =1 andw, (j)is the Hamming window.

The spectrum of the speech signal is then filtdrgda group of triangle bandpass
filters that simulate the characteristics of a homa&ar. These windows are called the
Mel windows and the filtering process is called Mikéring. The Mel filtering is to
model the human auditory system that perceives dsdnna nonlinear frequency
binning [35]. While the Mel filtering approximatéise nonlinear characteristics of the
human auditory system in frequency, the naturaaiitigmic nonlinearity (or power
function nonlinearity [39-41]) deals with the lowess nonlinearity. It approximates
the relationship between a human's perception wdrless and the sound intensity
[36]. The DCT is applied on the log Mel filterbamdoefficients to generate the
cepstral coefficients [37]. Only the lower ordeeffiwients (usually the first 12 or 13
coefficients for speech recognition and the first dr 20 coefficients for speaker
recognition) are used for speech/speaker recognitience a dimension reduction is
achieved. Another benefit of the DCT is that theegated cepstral coefficients are
less correlated, which is beneficial for diagonavariance matrix modeling. In
addition to static cepstral coefficients, the deltal double delta coefficients are used
both in speaker and speech recognition systemsottelrthe temporal dynamics in
the speech signal. The 1st order dynamic coeffisjene., delta coefficients, are

calculated from the static MFCQ{mz)as
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where m is the frame index, is the cepstral indexQ represents the window lag size,
and c(m,r) is the 1-th cepstral coefficient of the m-th frame. The 2ndesrdynamic

Ac(mg)=

coefficients, i.e., double delta coefficients}Ac(m,r)can be calculated from

Ac(my) following the same procedure.

After appending delta and double delta features Wit static cepstral coefficients,
the final features (39-dimensional for speech redamn [1, 24-26] and 60-
dimensional speaker verification [42-44]) are thearmalized using a feature
normalization method. Unlike speech enhancement &adure compensation
methods that aim to recover the clean speech caffs, the feature normalization
method usually modifies certain statistics of feasy e.g., means and variances, scale,
statistical distribution to some reference valuedistributions [24-25, 45, 46-47, 54-
55]. A reason for doing so is that the statistitspeech features are changed when
the speech signal is distorted by noise. Featureas speech recognition task are
usually normalized over the whole utterance usimg tepstral mean subtraction
(CMS) or using the mean and variance normalizatimthod (MVN) [54-55]. In
speaker recognition, the 60-dimensional featurd¢oreis usually subject to a short-
time feature normalization technique using a stidirindow of 3 s [42-45].

4 Speech & Speaker Recognition Frameworks

4.1 Speech Recognition Framewor k

For the recognition task we use the Hidden Markoxd® Toolkit (HTK) speech
recognizer [31]. In the experiments for the conedctligits task we use a simple
Hidden Markov Model (HMM)-based system with 16 etatper word model, 3
Gaussian components per state. Most speech reimrgrEystems use statistical
models, such as hidden Markov modééMMs), to represent the basic speech
patterns (generally referred to as acoustic unégqyired by the recognizer [57, 58].
For the LVCSR task on the AURORA-4 corpus, all gkpents employed state-tied
crossword speaker-independent triphone acousticelmoaith 4 Gaussian mixtures
per state. A single-pass Viterbi beam search-bdsedder was used along with a
standard 5K lexicon and bigram language model witinune width of 250 [60, 61].
For our experiments, we use 13 Mel-frequency capstrefficient (MFCC) features
(including log energy) augmented with their deltad adouble delta coefficients,
making 39-dimensional MFCC feature vectors. Thelyaia frame length is 25 ms
with a frame shift of 10 ms. The delta and doubklatires were calculated using a 3-
frame and 2-frame lag window, respectively. For tiaseline (i.e., Hamming) and
multi-taper methods (Thomson, Multi-peak and SWCHg MFCC features are



normalized using the conventional mean and varigh®éN) [54-55] normalization
technique over the whole utterance.

4.1.1 Speech Recognition Corpus

The AURORA-2 small vocabulary connected digits (Bt [7] and the AURORA-
4 large vocabulary continuous speech recognitiofQ&R) [60] corpora are used for
the speech recognition task. In the AURORA-2 corfhere are two training sets
(clean training set and multi-condition training)sand three test sets (test sets A, B
and C). The clean training set consists of 844@rckpeech recordings only from 55
male and 55 female adult speakers [7]. The mutid@t@n training consists of 8440
utterances of both clean and noisy speech split #t subsets. The 20 subsets
represent 4 different noise scenarios (subway, Ibaltlar and exhibition hall) at 5
different signal-to-noise ratios (SNRs) (20, 15, B) and 0 dB). Test set A is
composed of 28028 speech recordings with conditivatched to the multi-condition
training set, test set B is composed of 28028 dpeecordings with non-matched
background noise (restaurant, street, airport amth-station) and test set C is
composed of 14014 speech utterances with partighedtbackground noise and non-
matched convolutional noise (MIRS (modified intetiate reference system) filtered
subway and street noise). The speech recordingpeithree test sets are uttered by 52
female and 52 male speakers. The clean training ceestitutes mismatched
training/testing conditions whereas the multi-ctiodi training set constitutes much
more matched training/testing conditions [7].
The AURORA-4 LVCSR corpus is divided into 3 setamely, training, development
(dev test) and evaluation (eval or test) sets. Tdw& is often referred to as the 5k
closed vocabulary task, i.e., there are no out afabulary words (OOVs) in the
evaluation set. The training set contains 7138aitiges from 83 speakers, totaling 14
hours of speech data. 14 evaluation sets were edkfin order to study the
degradations in speech recognition performance tuenicrophone conditions,
filtering and noisy environments. Each of the fittg versions of the evaluation set
recorded with Sennheiser microphone and secondacyopmone was selected to
form the two eval sets. The remaining 12 subset® wefined by randomly adding
each of the 6 noise types (car, babble, restaustirget traffic, airport, and train-
station noises) at randomly chosen SNR between b 1&n dB for each of the
microphone types as mentioned above. The goal evhavte an equal distribution of
each of the 6 noise types and the SNR with an gee&\R of 10 dB [60]. Each of
the test sets contains 166 utterances from 8 speakéaling 20.69 minutes of speech
data. The 14 test sets are grouped into the fatlgwifamilies [60, 61]:

1. Test set A: clean speech in training and taesheschannel (set 1)

2. Test set B: clean speech in training and ngisgeh in test, same channel

(sets 2-7)

3. Test set C: clean speech in training and t&@&trent channel (set 8)

4. Test set D: clean speech in training and n@gsgsh in test, different channel

( sets 9-14).
The number inside the brackets represents the setstnumber defined in the
AURORA-4 corpus.



4.2 Speaker Verification Framework

The i-vector framework for speaker verification st a new performance standard
in the research field. The i-vector extractor cats/@n entire speech recording into
low-dimensional feature vectors called i-vector$b-II7]. The i-vector speaker
verification framework used in this paper consistghe following stages: i-vector
extraction, generative modeling of i-vectors, ancbrig or likelihood ratio
computation as described in [14]. A detailed dgdimmn of the speaker verification
framework used in this paper can be found in [14, 3

4.2.1 Speaker Verification Corpus

We performed experiments on the NIST 2010 spea@gnition evaluation (SRE)
corpus [19]. Our focus is on the five evaluatiomditions (microphone and telephone
speech, detl to det5) [19] of both female and nfaledifferent ages) parts of the
extended core-core task. All of the speech recordings in the NIST 2GRE task are
in English, though English was not the first langeaf some of the speakers [19].
Both the training and test utterances used Engl@tversational speech recorded
over multiple recording sessions: speech recordeer, ordinary (wired or wireless)
telephone channels, over a room microphone chamvelr a room microphone
channel from a interview scenario. The trainingadebnsist of the LDC release of
Switchboard Il - phase 2 and phase 3, Switchboattlll@r - part 1 and part 2, Fisher
English data, NIST SRE 2004 and 2005 telephone, 8T SRE 2005 and 2006
microphone data and NIST SRE 2008 interview devalm microphone data giving
57620 recordings (31874 from female and 25746 froate speakers). The test data
for the NIST 2010 task comprises of 21586 recorsliafemale utterances = 11845,
male utterances = 9741). All the training data ased for training the i-vector
extractor. LDA transformation matrix and PLDA masiere trained on the same data
as the i-vector extractor, except for the Fishaglish data that were excluded.

4.2.2 Feature Extraction and UBM training

For our experiments, we use 20 MFCC features (tistuthe & cepstral coefficient)

augmented with their delta and double delta caeffiis, making 60-dimensional
MFCC feature vectors. The analysis frame lengtBOsms with a frame shift of 10
ms. Delta and double coefficients are calculatedgua 2- and 1-frame lag window,
respectively. Then silence frames are removed dowpto the VAD labels extracted
using the algorithms described in [42-43]. We apalghort-time Gaussianization
(STG) technique [46-47] to normalize the featuretores using a 300-frame window.
We train a gender-independent, full covariance Ersal Background Model (UBM)
with 256-component Gaussian Mixture Models (GMMS)ST SRE 2004 and 2005
telephone data were used for training the UBM far system.



4.2.3 Training and extraction of i-vectors

Our gender-independent i-vector extractor is of efision 800. After training the
gender-independent GMM-UBM, we train the i-vectottractor using the Baum-
Welch (BW) statistics extracted from the followidgta: LDC release of Switchboard
Il - phase 2 and phase 3, Switchboard Cellulart band part 2, Fisher English data,
NIST SRE 2004 and 2005 telephone data, NIST SR 26@ 2006 microphone data
and NIST SRE 2008 interview development microphdat. In order to reduce the
i-vectors dimension, d.inear Discriminant Analysis (LDA) projection matrix is
estimated from the BW statistics by maximizing tbkkowing objective function:

P'E
Poa = argpma%ﬁt’:j|

whereP represents the LDA transformation matrix, andZ,, represent the between-
and within-class scatter matrices, respectively. fhe estimation af we use all
telephone training data excluding Fisher data¥ynid estimated using all telephone

and microphone training data excluding Fisher dataoptimal reduced dimension of
150 is determined empirically. Then we extract #iiensional i-vectors for all
training data excluding Fisher data by applying thdnsformation matrix on the 800-
dimensional i-vectors. For the test data, first BiAtistics and then 150 dimensional
i-vectors are extracted following the similar prdoee using the same projection
matrix. We also normalize the length of the i-vestto gaussianize the i-vectors
distribution so that we can use a Gaussian PLDAeahatstead of a heavy-tailed
PLDA model [18], i.e., PLDA model with heavy-tail@dior distributions [16].

4.2.4 Training the PLDA model

We train two PLDA models, one for the males andtlaofor females. These models
were trained using all the telephone and microphtvaming i-vectors; then we
combine these PLDA models to form a mixture of PLbwdels in i-vector space
[14]. The PLDA models are trained on all the tragnidata except the Fisher data,
resulting in 1686 female speakers in 720 hourpeésh and 1294 male speakers 540
hours of speech.

5 Results & Discussion

5.1 Speech Recognition Results

We use word accuracy (%) as a performance evatuatieasure for comparing the
recognition performances of the multi-taper spentestimation methods to that of
the single taper technique. The baseline (i.eglsitaper) and multi-taper systems
considered here for performance evaluation are shiowable 5.

The number of tapers for the multi-taper methoahssen according tav=2""*
where tbp represents time-bandwidth product. A usarege for tbp is 3 to 5 [51]. In



order find an optimal number of tapers for the ialper methods, we extracted
multi-taper MFCC features for the AURORA-2 connekcidigits task with tapers
starting from 4 to 10, and we have found experi@gntthat MFCC features
extracted from multi-taper spectrum estimators with= 6 give better speech
recognition performance in terms of word accur&ey. (

Tablel. Average (0-20 dB) word accuracy as percentagtefirsets (a) A, (b) B, and (c) C in
clean training condition on the AURORA-2 corpuseTihigher the word accuracy means the
performance of the system is better. For each oolihe best result is in boldface.
Experimental setup: 39-dimensional MFCC features (MAE® A (13-dimensional static
MFCCs (including the log energy)+ delta coefficiemtslouble delta coefficients)), 16 states
HMM per word model, 3 Gaussian components per.state

(a)
Word accuracy (%)
Subway Babble Car Exhibition Average
Hamming 63.77 66.85 63.23 63.95 64.45
SWCE 64.70 68.87 64.7[7 63.63 65.4P
Multi-peak 65.32 69.26 65.08 63.94 65.90
Thomson 64.16 69.34 64.99 63.10 65.40
(b)
Word accuracy (%)
Restaurant Street Airport  Train-station Avergge
Hamming 68.88 65.64 69.79 65.13 6736
SWCE 70.23 66.7( 70.89 66.56 68.59
Multi-peak 70.78 67.17 71.35 66.79 69.02
Thomson 69.83 66.72 70.67 67.08 68.58
(©)
Word accuracy (%)
Subway (MIRS) Street(MIRS] Averade
Hamming 58.11 60.97 59.54]
SWCE 58.57 62.45 60.51
Multi-peak 59.66 62.33 60.99
Thomson 58.35 62.22 60.28

Tables 1 (a-c) present the average word accuragygged over 0-20 dB SNRs) for
test sets A, B and C on the AURORA-2 connectedtsligisk, respectively, in clean
training conditions. Tables 2 (a-c) present theraye word accuracy (averaged over
0-20 dB SNRs) for test sets A, B and C on the AURE&Rconnected digits task,
respectively, in multi-condition training. Multiypg@r methods perform better than the
baseline single taper technique in all the casespgbone. In multi-condition training
and for test set B, a Hamming windowed spectruiamesion method provides better
word accuracy than the multi-taper methods.

Table 3 presents the word accuracy (in %) for =86 A, B, C, and D on the
AURORA-4 large vocabulary continuous speech redagni(LVCSR) task. It is
observed from table 3 that the multitaper methcat$opmed better than the baseline
Hamming system in the case of test sets A and€G, under clean and channel
mismatch conditions. Under additive noise distosioi.e., in the case of test sets B



and D, the Thomson multitaper method provides beited accuracy than all other
methods considered in this work. In the LVCSR tekThomson method performed
the best. For this LVCSR task, the performanceshef SWCE and Multipeak

multitaper methods were slightly worse than thattleé baseline system under
additive noise conditions. The possible reasonctel that we did not optimize the
parameters of the multitaper methods, e.g., thebeunof tapers, separately for
LVCSR task on a development test set. The optimatber of tapers that has been
obtained using a development test set for AUROR#wall vocabulary connected

digits task was also applied for the LVCSR task.

Table 2. Average (0-20 dB) word accuracy as percentageefirgets (a) A, (b) B, and (c) C,
respectively, in multi-condition training on the RORA-2 corpus. The higher the word
accuracy indices better performance. For each aolihe best result is in boldface.
Experimental setup: 39-dimensional MFCC features (MAEM®_A (13-dimensional static

MFCCs (including the log energy) + delta coefficiemtslouble delta coefficients)), 16 states
HMM per word model, 3 Gaussian components per.state

(a)
Word accuracy (%)
Subway Babble Car Exhibition Average
Hamming 85.69 88.58 90.69 88.90 88.46
SWCE 86.23 89.20 90.7[7 88.67 88.72
Multi-peak 85.85 89.31 90.81 88.73 88.68
Thomson 87.21 88.83 90.58 87.62 88.56
(b)
Word accuracy (%)
Restaurant Streqt Airpoft  Train-statign Averdage
Hamming 88.37 88.49 90.86 89.00 89.18
SWCE 87.74 87.99 90.22 89.18 88.78
Multi-peak 88.14 88.05 90.53 89.27 89.00
Thomson 87.13 87.66 89.9¢ 88.75 88.38
(©)
Word accuracy (%)
Subway (MIRS) Street(MIRS Average
Hamming 84.60 86.96 85.78
SWCE 85.53 86.98 86.26
Multi-peak 85.16 87.13 86.14
Thomson 86.25 86.72 86.49




Table 3. Average word accuracy as a percentage for testtsé®, C, and D on the AURORA-
4 LVCSR corpus. The higher the word accuracy indimtter performance. For each column
the best result is in boldface. Experimental set®®-dimensional MFCC features
(MFCC_E_D_A (13-dimensional static MFCCs (including tbg energy) + delta coefficients

+ double delta coefficients)); all experiments eoyed state-tied cross-word speaker
independent triphone HMM models with 4 Gaussiantanes per state.

Word accuracy (%)
A B C D
Hamming | 88.80] 52.2| 75.8f 39.76
SWCE 88.91| 51.07 75.901 39.09
Multi-peak 88.79| 51.67 79.71 | 39.66
Thomson | 89.21 | 53.49 | 75.86| 43.27

5.2 Speaker Verification Results

We conducted speaker verification experiments erettended core-core condition

of the NIST 2010 SRE extended list. For the perfortoe evaluation of the single-
taper (e.g., Hamming window) and multi-taper speutrestimation-based speaker
verification systems (see table 5) we used threduation metrics: the traditional
Equal Error Rate (EER), which constrains falseral@vhen a non-target is accepted
as a target) and miss (when a target is rejectedy ¢o be the same, the old
normalized minimum detection cost function (minDGkK), which weighs false
alarm errors as ten times as costly as miss eraodsthe new normalized minimum
detection cost function (minDCF_new), which weidhtse alarm errors as 1000
times more costly than miss errors. minDCF_old eninDCF_newcorrespond to the
evaluation metric for the NIST SRE in 2008 and 20&8pectively [19].

Results are reported for five evaluation conditioogesponding to det conditions 1-5
(as shown in table 4) in the evaluation plan [I9]e target (the specified speaker is
speaking in the test segment) and non-target (postor) trials (the specified speaker
is not speaking in the test segment) of each dedliton are presented in table 4.
Table 6 presents (a) EERs, (b) minDCF_old, andn@)DCF_new, respectively, for
the baseline and multi-taper systems both for #meafe and male trials. In terms of
the EER, and minDCF_old, minDCF_new multi-tapetays perform better than the
baseline system. Average relative improvementsdfemmale, detl-det5) obtained by
the sinusoidal weighted cepstrum estimator (SW@Edesn are 20.25%, 17.87%, and
10.85% in EER, minDCf_old and minDCF_new, respetdiiv The Multi-peak and
Thomson multitaper systems provide relative improgats over the baseline of EER
= 18.73%, minDCF_old = 15.26%, minDCF_new = 9.63f@ £ER = 12.83%,
minDCF_old = 11.05%, minDCF_new = 5.01%, respebtiveThe relative
improvements obtained by the multitaper systems twe baseline are presented in
fig. 5.



Table 4: Evaluation conditionsektended core-core) for the NIST 2010 SRE task and the target

and non-target (impostor) trials to the correspogdlet conditions.

. Non-target
Condition Task (an?ra]ggnt];ael)s (Impostor) trials
(Female/male)
dety | Interview in training anq 53551978 | 449138 /346857
test, same Mic.
Interview in training and 1573948 /
det2 | iest, different Mic. 8152/6932 1215586
Interview in training and
detg | normal vocal effort phone 4 1958 334438 / 303412
call over Tel channel in
test.
Interview in training and
detg | normal vocal effort phone 4 gqq ) 105, 392467 / 364308
call over Mic channel in
test
Normal vocal effort phone
det5 call in training and test] 3704 / 3465 233077 /175873
different Tel

Table 5: Single-taper and multi-taper MFCC feature-based speé&k speech recognition

systems.

System Description
MFCC features are computed from t
Baseline Hamming windowed direct spectru
estimate.
MFCC features are computed from t
SWCE sinusoidal weighted (i.e.,sine tapered)
spectrum estimate [9].
MFCC features are computed from the mu
Multi-peak | taper spectrum estimate using multi-pe
tapering [10].
MFCC features are calculated from the mu
Thomson taper spectrum estimates with dpss tape
[5].

The underlying details of a multi-taper spectrurtingstor are somewhat similar to
averaging the spectra from a variety of conventidgapers, e.g., Hamming, Hann,
and Blackman windows. In this case, there will tersgy redundancy as the different
tapers are highly correlated as they have a sitiifa@-domain shape. Unlike these
conventional tapers, th\é orthogonal tapers used in a multitaper spectruimeasr
provideM statistically independent (hence uncorrelatednestés of the underlying

spectrum.



Table 6. Speaker verification results (female and male;l det det5) for the baseline and
multitaper systems in terms of the evaluation rostriia) EER, (b) minDCJfg, and (c)

minDCF,,, respectively. The lower the EER, minDggF or minDCF,,, the better is the

performance of the system. For each column the fmssilt is in boldface. Experimental
parameters: 60-dimensional MFCC features (MFCC_0_D Ad{ghensional static MFCCs
(including the Oth cepstral coefficient) + deltaefficients + double delta coefficients)), 256-
mixture component UBM, 800-dimensional i-vector agtor, LDA reduced dimension is 150.

(a)
EER (%)

Baseline | SWCE | Multi-peak | Thomson

detl 2.40 1.80 2.10 2.06

det2 4.60 3.80 3.90 4.36

det4 3.90 3.50 3.40 3.66

Female | det3 3.60 2.90 3.00 2.86
det5 4.00 3.00 3.30 3.43

detl 1.50 1.20 1.30 1.57

det2 3.10 2.60 2.30 2.73

det4 2.60 2.00 2.20 2.17

Male det3 4.10 3.10 3.00 3.25
det5 3.20 2.50 2.20 2.45

(b)
minDCF _old

Baseline | SWCE | Multi-peak | Thomson

detl 0.11 0.09 0.10 0.10

det2 0.22 0.19 0.19 0.21

det4 0.19 0.16 0.16 0.17

Female | det3 0.19 0.15 0.16 0.17
det5 0.20 0.16 0.16 0.17

detl 0.08 0.07 0.07 0.07

det2 0.14 0.12 0.12 0.13

det4 0.11 0.09 0.10 0.10

Male det3 0.17 0.15 0.15 0.16
det5 0.18 0.14 0.13 0.14

(©)
minDCF_new

Baseline | SWCE | Multi-peak | Thomson

detl 0.38 0.34 0.35 0.37

det2 0.60 0.56 0.56 0.59

det4 0.54 0.50 0.49 0.51

Female | det3 0.55 0.56 0.55 0.61
det5 0.57 0.52 0.49 0.50

detl 0.30 0.26 0.28 0.27

det2 0.47 0.40 0.42 0.46

det4 0.38 0.32 0.35 0.38

Male det3 0.59 0.49 0.52 0.56
det5 0.56 0.47 0.44 0.46




The average of the individual spectral estimates,, (m,k) then has smaller variance
than the single tapered direct spectrum estimé;(am,k) by a factor that approaches
14 [27-28, 56], i.e.,

var(ﬂq,IT ( m@) = % va(A§( m)<) :

Fig. 6 demonstrates a reduction in the variancthbymultitaper method compared to
the Hamming windowed periodogram estimate.

The advantages in multitaper spectrum estimatagsttzat no Fourier resolution is

sacrificed and there is no loss of information le extremes of the data. While
information near the bounds is indeed lost with tinst taper, it is included and

indeed emphasized in the subsequent tapers (se&)fi\lso multi-taper methods

result in a reduction of the variance of the sgg@stimate (hence MFCC feature) by
weighted averaging the individual estimate of e@qer.

Determination of the suitable tapevs, (j) (p is the taper index and j is the time or

sample index) used in a multitaper method (Thomsdolti-peak or SWCE
multitaper method) and the weighﬁs(p) corresponding to these tapers does not

increase the system complexity because they camprbeomputed. Since in a
multitaper method the final spectrum estimate isioled by taking weighted average
of M individual spectral estimates, compared to thessical single tapered direct
spectral estimate, multi-tapering results in a $rmarease in processing time as
shown in table 7. The execution time is calculatsiig MATLAB on a Intel (R) core
(TM) i7 CPU having clock speed 2.93 GHz. The bednefi using the SWCE
multitaper method over the other two multitaper et is that it has a closed form
mathematical expression for the computation of thpers and the weights
corresponding to these tapers [9, 51].

Table 7. Execution time of the classical Hamming windoweidect spectrum
estimator and multi-tapered direct spectrum estmédr a speech signal having an
average duration of approximately 300 seconds. i@t time reported in this table
is obtained by averaging the execution times obthifor 100 speech signals of
different durations taken from the NIST SRE 2006naphone speech data.

Average duration of the Windowed Multitaper
speech signal periodogram estimator
estimator

300 seconds (5
minutes)

0.85 seconds 1.89 seconds
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Evaluation metrics

Fig. 5. Relative improvements (in %, averaged over thedatl condition and over
female-male trails) obtained by the multitaper methover the baseline Hamming
windowed direct spectrum estimation method in temhshe EER, DCFy, and
DCF.w The higher the relative improvement the better shstem is. The relative
improvement is the ratio of the difference in perfiances between the baseline and
multitaper system to the performance of the baseldystem.
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Fig. 6. Single tapered (e.g., Hamming) spectrum estimadenaulti-tapered (with six

tapers) spectrum estimate demonstrating large n@iareduction. Sampling

frequency of the speech signal is 8 kHz, analysisié length = 25 msec with a frame

shift of 10 msec. The variance of an estimator mmesss how much variability an

estimator has around its mean (i.e., expectedpvalu

4000

6 Conclusion

In multi-taper spectrum estimation, data are morenly weighted and it has a
reduced variance when compared to single-taper, (damming window) estimates.
In this paper we have used three multi-taper specestimation approaches for low-
variance Mel-frequency cepstral coefficient (MFC@atures computation and
compared their performances with the single windeehnique, in the context of
speech recognition and speaker verification. Expental speech recognition and



speaker verification results on the AURORA-2 smaltabulary task, AURORA-4
large vocabulary task, and NIST 2010 speaker rattiogrevaluation (SRE) corpora,
respectively, depict that an improvement in recbgniperformance can be obtained
by applying multi-tapering, with only a small contational load and processing time
increase, compared to the overall recognition mecd&he relative improvements
obtained in speech recognition and speaker vetificausing multi-taper MFCC
features are very encouraging. Therefore, multétapethods can be an alternative to
the conventional single window technique for thenestion of low variance MFCC
features for speech and speaker recognition.
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