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Abstract. In this paper we investigate low-variance multi-taper spectrum 
estimation methods to compute the mel-frequency cepstral coefficient (MFCC) 
features for robust speech and speaker recognition systems. In speech and 
speaker recognition, MFCC features are usually computed from a single tapered 
(e.g., Hamming-window) direct spectrum estimate, i.e., the squared magnitude 
of the Fourier transform of the observed signal. Compared with the 
periodogram, a power spectrum estimate that uses a smooth window function, 
such as Hamming window, can reduce spectral leakage. Windowing may help 
to reduce spectral bias, but variance often remains high. A multi-taper spectrum 
estimation method that uses well-selected tapers can gain from the bias-
variance trade-off, giving an estimate that has small bias compared with a 
single taper spectrum estimate but substantially lower variance. Speech 
recognition and speaker verification experimental results on the AURORA-2 
and AURORA-4 corpora and the NIST 2010 speaker recognition evaluation 
(SRE) corpus (telephone as well as microphone speech), respectively, show that 
the multi-taper methods perform better compared to the Hamming-windowed 
spectrum estimation method. In a speaker verification task, compared to the 
Hamming window technique, the sinusoidal weighted cepstrum estimator 
(SWCE), Multi-peak, and Thomson multi-taper techniques provide a relative 
improvement of 20.25%, 18.73% and 12.83%, respectively, in Equal Error Rate 
(EER). 
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1 Introduction 

Extraction of useful information from speech signal has been a subject of active 
research for many decades [24-26]. A feature extractor (or front-end), first step in an 
automatic speech or speaker recognition system, transforms a raw speech signal into a 
compact representation. Since feature extraction is the first step in the chain, the 
quality of later steps (modelling and pattern matching/classification) strongly depends 
on it [30, 33, 48]. The mel-frequency cepstral coefficient (MFCC) features are the 



most popular in speech and speaker recognition systems, where they demonstrate 
good performance [1, 24, 38]. The MFCC representation is an approximation of how 
the human auditory system works [1]. Since MFCC features are computed from an 
estimated spectrum, the variance of these features is greatly influenced by the 
variance the spectral estimate of the observed speech signal. Hence, an accurate 
estimation of the speech power spectrum is crucial [48, 51]. Direct spectrum 
estimation (also known as nonparametric spectrum estimation) based on a window 
function, such as Hamming window, is the most often used spectrum estimation 
method for speech processing applications [2]. Windowing that gives more weight to 
the center of the signal than to its ends helps to alleviate bias due to leakage in the 
periodogram but variance remains large [11, 56], and therefore, MFCC features 
computed from this estimated spectrum have also high variance [3-4]. Hence, the 
focus of this work is to find spectrum estimators with low variance. One elegant 
technique for reducing the variance is the multi-taper spectrum estimate [4-6], that 
uses a variety of orthogonal tapers, some of which give more weight to the ends of the 
signal, trading off bias and variance.   
Multi-taper methods reduce the variance of spectral estimates by using multiple 
orthogonal window functions rather than a single window. In a multitaper spectrum 
estimation method the speech signal is, first, multiplied by not one but a family of 
tapers which are resistance to spectral leakage. This yields several tapered speech 
signals from one record. Taking the Discrete Fourier Transforms (DFTs) of each of 
these tapered signal several eigenspectra are produced which are combined (using a 
weighted averaging technique) to form the final multitaper spectral estimate. The 
multi-taper method has already proved useful in applications, such as geophysical 
data analysis [5-6, 12-13], and noise reduction [2]. Recently, multi-tapering has been 
applied in [3, 20] for speaker recognition using a simple Gaussian mixture model-
universal background model (GMM-UBM) [21], generalized linear discriminant 
sequence-support vector machine (GLDS-SVM), joint factor analysis (JFA) [22-23] 
and i-vectors-Probabilistic Linear Discriminant (PLDA) [30, 51] classifiers with 
promising preliminary results, but not yet in speech recognition. In this paper, our aim 
is to compute MFCC features from a multi-taper spectral estimate for robust speech 
recognition under additive and convolutive noise conditions on the AURORA-2 small 
vocabulary connected digits task [7] and the AURORA-4 large vocabulary continuous 
speech recognition (LVCSR) task [60]. Similar to [30, 51], we also wish to validate 
the findings of [3, 20] using a state-of-the-art i-vector classifier on the telephone and 
microphone speech of the latest NIST 2010 Speaker Recognition Evaluation (SRE) 
data. Robustness of the multitaper MFCC features under additive noise conditions has 
been analysed in [3, 20].  
Even though speaker and speech recognition systems use often the same acoustic 
features (e.g., MFCCs and the perceptual linear prediction coefficients (PLPs) 
computed from a Hamming windowed direct spectrum estimates), the goals in these 
two tasks are nearly the opposites of each other. In speaker verification, one is 
interested in the speaker’s voice timbre independent of words being spoken, whereas 
in speech recognition one is interested in words being spoken independent of the 
speaker. The modeling techniques in these problems are quite different and 
consequently, spectrum estimator parameters optimized using a full recognition 
system in one of these tasks does not automatically guarantee increased recognition 



accuracy in the other task. Indeed, we have found several front-ends that outperform 
conventional MFCCs in speech recognition [40, 41] but not in speaker recognition 
based on an i-vectors-PLDA classifier. It has also been found in [41] that feature 
extractors that are robust to additive noise environments perform much worse in 
microphone speech or under reverberation. The motivation for presenting extensive 
experimental results (on speaker and speech recognition tasks) for the low-variance 
multitaper MFCCs is to show how it performs in different applications as well as 
under various environmental mismatch conditions. 

2   Low Variance Multi-taper Spectrum Estimation 

A windowed direct spectrum estimator is the most often used power spectrum 
estimation method for speech processing applications, such as speech and speaker 
recognition, and speech enhancement. The periodogram [49] was the first (non-
parametric) direct spectral estimate of the power spectral density (PSD) function. The 
periodogram is a biased estimate due to spectral leakage via the sidelobes. It thus 
becomes necessary to use the method of tapering (windowing) to effectively reduce 
this bias [11, 50]. For the m-th frame and k-th frequency bin an estimate of the 
windowed periodogram can be expressed as: 

                                          ( ) ( )
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Ŝ(m,k)= w j s m,j e ,∑    (1)                                

where { }k 0,1,...,K-1∈  denotes the frequency bin index, N is the frame length, 

( )s m,j is the time domain speech signal and ( )w j denotes the time domain window 

function called a taper, which usually is symmetric and decreases towards the frame 
boundaries (e.g., Hamming). Eq. (1) is sometimes called a single-taper, modified or 
windowed periodogram. If ( )w j  is a rectangular window, i.e., ( )w j 1= , then eq. (1) 

is called the periodogram.  
Although windowing reduces the bias (the difference between the estimated spectrum 
and the actual spectrum) due to leakage, it does not reduce the variance of the spectral 
estimate [8] and therefore, the variance of the mel frequency cepstral coefficient 
(MFCC) features computed from this estimated spectrum is also large [27-28]. A 
multitaper spectrum estimate, as a replacement of the windowed periodogram 
estimate, can be used to reduce the variance of the MFCC features [4-6]. The multi-
taper spectrum estimator, which uses M orthogonal window function rather than a 
single window, can be expressed as 

                             ( ) ( ) ( )
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where N is the frame length, pw is the p-th data taper used for the spectral estimate 

MTŜ ( )⋅ , which is also called the p-th eigenspectrum, M denotes the number of tapers 

and ( )ë p is the weight corresponding to the p-th taper. The tapers ( )pw j are chosen 

to be concentrated in the frequency domain so that their broadband bias (bias caused 



by spectral leakage due to sidelobes) is as small as possible [11, 28, 52]. If the tapers 
are pairwise orthonormal, i.e.,  

( ) ( )p q pqj
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then their corresponding spectrum estimates are approximately uncorrelated [52]. The 
multi-taper spectrum estimate is therefore obtained as the weighted average of 
M individual sub-spectra. The windowed periodogram can be obtained as a special 
case of eq. (2) when M=1and ( )ë p =1. Averaging the M uncorrelated spectra gives a 

low variance spectrum estimate and, consequently, low variance MFCC estimate as 
well.  
Fig. 1 (a & b) and 2 (a & b) present a comparison of single window (e.g., Hamming) 
and multi-taper (e.g., Thomson [5]) with four tapers in the time and frequency 
domains, respectively. Unlike conventional data tapers, the orthogonal tapers used in 
producing multitaper spectrum estimates are uncorrelated. It is observed from fig. 2 
(a) and fig. 3 that only the first taper from the DPSS tapers has the traditional window 
shape such as Hanning window (see fig. 3), and gives more weight to the center of the 
signal than to its end. Tapers for 1p > give increasingly more weight to the ends of 

the signal. Fig. 2 (c) presents the taper energy (sum of the squared tapers normalized 
by the number of tapers M) as a function of j (sample index) for different number of 
tapers (M = 1-4).  
The spectra from the different tapers do not produce a common central peak for a 
harmonic component. Only the first taper produces a central peak at the harmonic 
frequency of the component and the other tapers produce spectral peaks that are 
shifted slightly up and down in frequency (see fig. 2 (b)). Each of the spectra 
contributes to an overall spectral envelope for each component. 
 

    
 
Fig. 1. Time and frequency domain plots of a Hamming window (a) Time domain, (b) 
frequency domain. Hamming window gives more weight to the center of the signal 
than to its ends and provides a relative side-lobe attenuation of 42.7 dB.   
 
 



   
(a) 

 
(b) 

 
(c) 

Fig. 2. Time and frequency domain plots of the first four Slepian tapers used in the 
Thomson multitaper method, (a) time domain, (b) frequency domain. (c) The taper 
energy as a function of j (sample index) for different numbers of tapers (M = 1-4).   
 
The use of multiple orthogonal windows can have significant advantages over the use 
of any single window [11, 12, 13, 28]. In particular, the energy of a single band-
limited window always non-uniformly covers the desired concentration region, which 
results in some data being statistically over- or under-represented when forming the 
spectral estimate. In contrast, the cumulative energy of the multiple orthogonal 
windows more uniformly covers the concentration region. Since the spectral estimates 



that result from using orthogonal tapers are somewhat uncorrelated, a multi-taper 
average of these possesses a smaller estimation variance [53]. The windowed 
periodogram is an inconsistent estimator because its variance does not decrease with 
increasing N (window size in samples). The multitaper estimator, in turn, has smaller 
variance than the windowed periodogram estimator and is a consistent estimator 
provided the number of tapers M increases with N [29]. 
Various tapers have been proposed in the literature for spectrum estimation. A good 
set of M orthonormal data tapers with good leakage properties is given by the Slepian 
sequences (also called discrete prolate spheroidal sequences (dpss)), which are a 
function of a prescribed mainlobe width [2, 5]. Another family of tapers is the sine 
tapers, which are very easy to compute and are pairwise orthogonal, and can be given 
by [6]: 

( ) ( )
p

p j+12
w j = sin ,  j=0,1,....,N-1

N+1 N+1

π 
 
 
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The multiplicative constant makes the tapers orthonormal (i.e., have unit norm and are 
orthogonal). The sine tapers are applied with optimal weighting for cepstrum analysis 
(called Sinusoidal Weighted Cepstrum Estimator (SWCE)) in [9] and in [10] the 
multi-peak tapers are designed for peaked spectra. A brief description of all the three 
tapers can also be found in [51]. In this paper, we use the Thomson multitaper [5], the 
SWCE [9], and the Multi-peak multitaper spectrum estimator to compute the low 
variance MFCC features for speaker and speech recognition systems. 
 

 
 
Fig. 3. A comparison of the shape of the conventional Hanning window and the first 
taper from the Slepian (or DPSS) tapers used in Thomson multitaper method. The 1st 
DPSS taper has been normalized to have a maximum height of unity for comparison 
purposes. 
 



3 Feature Extraction 

For a speaker/speech recognition system, as for any classification task, feature 
extraction is necessary to extract relevant information that is both good at 
discriminating different speaker/speech classes and insensitive to factors irrelevant to 
speaker/speech recognition. Currently, the most widely used speech features both in 
speaker and speech recognition systems are the Mel-frequency cepstral coefficient 
(MFCC) [1] and perceptual linear predictive (PLP) features [39]. In this paper, we 
describe only the MFCC feature extraction process. 
Fig. 4 shows the generalized block diagram of the mel frequency cepstral coefficients 
(MFCCs) feature extraction from the single and multi-taper spectrum estimates. As 
we mentioned above, the single tapered (e.g., Hamming-windowed) direct spectrum 
estimates can be obtained as a special case of the multi-taper spectrum estimation 
method. To compute MFCC features from single-taper (or window) spectrum 
estimates, we useM=1, ( )ë 1 =1, and ( )1w j is the Hamming window.  

A detailed description of the various steps of the MFCC feature computation 
framework can be found in [25, 31-32, 33-34, 38, 59]. In this paper, for completeness, 
we briefly describe the various steps of the MFCC feature extraction process.  
The MFCC feature extraction process begins with the pre-processing of the speech 
signal. In this step, the DC offset of the speech signal is removed and the signal 
spectrum is pre-emphasized by approximately 20 dB per decade to flatten the 
spectrum of the speech signal. The pre-emphasis filter, a first order finite impulse 
response (FIR) filter with a transfer function of the form -1H(z) = 1-0.97z , is used to 

offset the negative spectral slope of the voiced speech signal to improve the efficiency 
of the spectral analysis [24-25, 34]. The speech signal is then decomposed into a 
series of overlapping (to ensure better temporal continuity in the transform domain) 
small duration segments called frames. Commonly used frame length and frame shift 
are 20-30 ms and 10 ms respectively for a speech/speaker recognition task because 
the positions of the articulators do not change much in the period of a frame length.  
After being partitioned into frames, each frame is multiplied by a single window 
(such as Hamming window) or multiple window (such as Thomson multitaper) 
function prior to the spectral analysis to reduce the effect of discontinuity introduced 
by the framing process. The power spectrum of the speech signal is estimated using 
the single taper (e.g., Hamming window) or multitaper direct spectral estimator, i.e., 
by computing the squared magnitude of the discrete Fourier transform (DFT) of a 
segment of the speech signal.  



 

Fig. 4. Generalized block diagram for the single and multi-taper spectrum estimation-
based Mel-frequency cepstral coefficient (MFCC) features extraction. For the 
computation of MFCC features from single-taper (or window) spectrum estimates, we 
useM=1, ( )ë 1 =1, and ( )1w j is the Hamming window. 

 
The spectrum of the speech signal is then filtered by a group of triangle bandpass 
filters that simulate the characteristics of a human's ear. These windows are called the 
Mel windows and the filtering process is called Mel filtering. The Mel filtering is to 
model the human auditory system that perceives sound in a nonlinear frequency 
binning [35]. While the Mel filtering approximates the nonlinear characteristics of the 
human auditory system in frequency, the natural logarithmic nonlinearity (or power 
function nonlinearity [39-41]) deals with the loudness nonlinearity. It approximates 
the relationship between a human's perception of loudness and the sound intensity 
[36]. The DCT is applied on the log Mel filterbank coefficients to generate the 
cepstral coefficients [37]. Only the lower order coefficients (usually the first 12 or 13 
coefficients for speech recognition and the first 19 or 20 coefficients for speaker 
recognition) are used for speech/speaker recognition, hence a dimension reduction is 
achieved. Another benefit of the DCT is that the generated cepstral coefficients are 
less correlated, which is beneficial for diagonal covariance matrix modeling. In 
addition to static cepstral coefficients, the delta and double delta coefficients are used 
both in speaker and speech recognition systems to model the temporal dynamics in 
the speech signal. The 1st order dynamic coefficients, i.e., delta coefficients, are 
calculated from the static MFCCs ( )c m,τ as 
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where m is the frame index, τ  is the cepstral index, Q represents the window lag size, 

and ( )c m,τ is the τ-th  cepstral coefficient of the m-th frame. The 2nd order dynamic 

coefficients, i.e., double delta coefficients, ( )∆∆c m,τ can be calculated from 

( )∆c m,τ following the same procedure.  

After appending delta and double delta features with the static cepstral coefficients, 
the final features (39-dimensional for speech recognition [1, 24-26] and 60-
dimensional speaker verification [42-44]) are then normalized using a feature 
normalization method. Unlike speech enhancement and feature compensation 
methods that aim to recover the clean speech coefficients, the feature normalization 
method usually modifies certain statistics of features, e.g., means and variances, scale, 
statistical distribution to some reference values or distributions [24-25, 45, 46-47, 54-
55]. A reason for doing so is that the statistics of speech features are changed when 
the speech signal is distorted by noise. Features in a speech recognition task are 
usually normalized over the whole utterance using the cepstral mean subtraction 
(CMS) or using the mean and variance normalization method (MVN) [54-55]. In 
speaker recognition, the 60-dimensional feature vector is usually subject to a short-
time feature normalization technique using a sliding window of 3 s [42-45]. 

4 Speech & Speaker Recognition Frameworks 

4.1 Speech Recognition Framework 
 
For the recognition task we use the Hidden Markov Model Toolkit (HTK) speech 
recognizer [31]. In the experiments for the connected digits task we use a simple 
Hidden Markov Model (HMM)-based system with 16 states per word model, 3 
Gaussian components per state. Most speech recognition systems use statistical 
models, such as hidden Markov models (HMMs), to represent the basic speech 
patterns (generally referred to as acoustic units) required by the recognizer [57, 58]. 
For the LVCSR task on the AURORA-4 corpus, all experiments employed state-tied 
crossword speaker-independent triphone acoustic models with 4 Gaussian mixtures 
per state. A single-pass Viterbi beam search-based decoder was used along with a 
standard 5K lexicon and bigram language model with a prune width of 250 [60, 61]. 
For our experiments, we use 13 Mel-frequency cepstral coefficient (MFCC) features 
(including log energy) augmented with their delta and double delta coefficients, 
making 39-dimensional MFCC feature vectors. The analysis frame length is 25 ms 
with a frame shift of 10 ms. The delta and double features were calculated using a 3-
frame and 2-frame lag window, respectively. For the baseline (i.e., Hamming) and 
multi-taper methods (Thomson, Multi-peak and SWCE), the MFCC features are 



normalized using the conventional mean and variance (MVN) [54-55] normalization 
technique over the whole utterance.  
 
 
4.1.1 Speech Recognition Corpus 
 
The AURORA-2 small vocabulary connected digits (English) [7] and the AURORA-
4 large vocabulary continuous speech recognition (LVCSR) [60] corpora are used for 
the speech recognition task. In the AURORA-2 corpus, there are two training sets 
(clean training set and multi-condition training set) and three test sets (test sets A, B 
and C). The clean training set consists of 8440 clean speech recordings only from 55 
male and 55 female adult speakers [7]. The multi-condition training consists of 8440 
utterances of both clean and noisy speech split into 20 subsets. The 20 subsets 
represent 4 different noise scenarios (subway, babble, car and exhibition hall) at 5 
different signal-to-noise ratios (SNRs) (20, 15, 10, 5, and 0 dB). Test set A is 
composed of 28028 speech recordings with conditions matched to the multi-condition 
training set, test set B is composed of 28028 speech recordings with non-matched 
background noise (restaurant, street, airport and train-station) and test set C is 
composed of 14014 speech utterances with partly matched background noise and non-
matched convolutional noise (MIRS (modified intermediate reference system) filtered 
subway and street noise). The speech recordings in the three test sets are uttered by 52 
female and 52 male speakers. The clean training set constitutes mismatched 
training/testing conditions whereas the multi-condition training set constitutes much 
more matched training/testing conditions [7].  
The AURORA-4 LVCSR corpus is divided into 3 sets, namely, training, development 
(dev test) and evaluation (eval or test) sets. This task is often referred to as the 5k 
closed vocabulary task, i.e., there are no out of vocabulary words (OOVs) in the 
evaluation set. The training set contains 7138 utterances from 83 speakers, totaling 14 
hours of speech data. 14 evaluation sets were defined in order to study the 
degradations in speech recognition performance due to microphone conditions, 
filtering and noisy environments. Each of the filtered versions of the evaluation set 
recorded with Sennheiser microphone and secondary microphone was selected to 
form the two eval sets. The remaining 12 subsets were defined by randomly adding 
each of the 6 noise types (car, babble, restaurant, street traffic, airport, and train-
station noises) at randomly chosen SNR between 5 and 15 dB for each of the 
microphone types as mentioned above. The goal was to have an equal distribution of 
each of the 6 noise types and the SNR with an average SNR of 10 dB [60]. Each of 
the test sets contains 166 utterances from 8 speakers, totaling 20.69 minutes of speech 
data. The 14 test sets are grouped into the following 4 families [60, 61]: 

1. Test set A: clean speech in training and test, same channel (set 1) 
2. Test set B: clean speech in training and noisy speech in test, same channel  
(sets  2-7) 
3. Test set C: clean speech in training and test, different channel (set 8) 
4. Test set D: clean speech in training and noisy speech in test, different channel  
( sets 9-14).  

The number inside the brackets represents the test set number defined in the 
AURORA-4 corpus. 



4.2 Speaker Verification Framework 
 
The i-vector framework for speaker verification has set a new performance standard 
in the research field. The i-vector extractor converts an entire speech recording into 
low-dimensional feature vectors called i-vectors [15-17]. The i-vector speaker 
verification framework used in this paper consists of the following stages: i-vector 
extraction, generative modeling of i-vectors, and scoring or likelihood ratio 
computation as described in [14]. A detailed description of the speaker verification 
framework used in this paper can be found in [14, 30]. 
 
4.2.1 Speaker Verification Corpus 
 
We performed experiments on the NIST 2010 speaker recognition evaluation (SRE) 
corpus [19]. Our focus is on the five evaluation conditions (microphone and telephone 
speech, det1 to det5) [19] of both female and male (of different ages) parts of the 
extended core-core task. All of the speech recordings in the NIST 2010 SRE task are 
in English, though English was not the first language of some of the speakers [19]. 
Both the training and test utterances used English conversational speech recorded 
over multiple recording sessions: speech recorded, over ordinary (wired or wireless) 
telephone channels,  over a room microphone channel, over a room microphone 
channel from a interview scenario. The training data consist of the LDC release of 
Switchboard II - phase 2 and phase 3, Switchboard Cellular - part 1 and part 2, Fisher 
English data, NIST SRE 2004 and 2005 telephone data, NIST SRE 2005 and 2006 
microphone data and NIST SRE 2008 interview development microphone data giving 
57620 recordings (31874 from female and 25746 from male speakers). The test data 
for the NIST 2010 task comprises of 21586 recordings ( female utterances = 11845, 
male utterances = 9741). All the training data are used for training the i-vector 
extractor. LDA transformation matrix and PLDA models are trained on the same data 
as the i-vector extractor, except for the Fisher English data that were excluded. 
 
4.2.2 Feature Extraction and UBM training 
 
For our experiments, we use 20 MFCC features (including the 0th cepstral coefficient) 
augmented with their delta and double delta coefficients, making 60-dimensional 
MFCC feature vectors. The analysis frame length is 30 ms with a frame shift of 10 
ms. Delta and double coefficients are calculated using a 2- and 1-frame lag window, 
respectively. Then silence frames are removed according to the VAD labels extracted 
using the algorithms described in [42-43]. We apply a short-time Gaussianization 
(STG) technique [46-47] to normalize the feature vectors  using a 300-frame window. 
We train a gender-independent, full covariance Universal Background Model (UBM) 
with 256-component Gaussian Mixture Models (GMMs). NIST SRE 2004 and 2005 
telephone data were used for training the UBM for our system. 
 
 
 
 
 



4.2.3 Training and extraction of i-vectors 
 
Our gender-independent i-vector extractor is of dimension 800. After training the 
gender-independent GMM-UBM, we train the i-vector extractor using the Baum-
Welch (BW) statistics extracted from the following data: LDC release of Switchboard 
II - phase 2 and phase 3, Switchboard Cellular - part 1 and part 2, Fisher English data, 
NIST SRE 2004 and 2005 telephone data, NIST SRE 2005 and 2006 microphone data 
and NIST SRE 2008 interview development microphone data. In order to reduce the 
i-vectors dimension, a Linear Discriminant Analysis (LDA) projection matrix is 
estimated from the BW statistics by maximizing the following objective function:  

T
b

LDA T
P

w

P Σ P
P = argmax ,

P Σ P
 

whereP represents the LDA transformation matrix, bΣ and wΣ represent the between- 

and within-class scatter matrices, respectively. For the estimation of bΣ we use all 

telephone training data excluding Fisher data andwΣ is estimated using all telephone 

and microphone training data excluding Fisher data. An optimal reduced dimension of 
150 is determined empirically. Then we extract 150-dimensional i-vectors for all 
training data excluding Fisher data by applying this transformation matrix on the 800-
dimensional i-vectors. For the test data, first BW statistics and then 150 dimensional 
i-vectors are extracted following the similar procedure using the same projection 
matrix. We also normalize the length of the i-vectors to gaussianize the i-vectors 
distribution so that we can use a Gaussian PLDA model instead of a heavy-tailed 
PLDA model [18], i.e., PLDA model with heavy-tailed prior distributions [16].  
 
4.2.4 Training the PLDA model 
 
We train two PLDA models, one for the males and another for females. These models 
were trained using all the telephone and microphone training i-vectors; then we 
combine these PLDA models to form a mixture of PLDA models in i-vector space 
[14]. The PLDA models are trained on all the training data except the Fisher data, 
resulting in 1686 female speakers in 720 hours of speech and 1294 male speakers 540 
hours of speech. 

5 Results & Discussion 

5.1 Speech Recognition Results 
 
We use word accuracy (%) as a performance evaluation measure for comparing the 
recognition performances of the multi-taper spectrum estimation methods to that of 
the single taper technique. The baseline (i.e., single taper) and multi-taper systems 
considered here for performance evaluation are shown in table 5.  
The number of tapers for the multi-taper method is chosen according to tbp-1M=2  
where tbp represents time-bandwidth product. A usual range for tbp is 3 to 5 [51]. In 



order find an optimal number of tapers for the multi-taper methods, we extracted 
multi-taper MFCC features for the AURORA-2 connected digits task with tapers 
starting from 4 to 10, and we have found experimentally that MFCC features 
extracted from multi-taper spectrum estimators with M = 6 give better speech 
recognition performance in terms of word accuracy (%).  

Table 1.  Average (0-20 dB) word accuracy as percentage for test sets (a) A, (b) B, and (c) C in 
clean training condition on the AURORA-2 corpus. The higher the word accuracy means the 
performance of the system is better. For each column the best result is in boldface. 
Experimental setup: 39-dimensional MFCC features (MFCC_E_D_A (13-dimensional static 
MFCCs (including the log energy)+ delta coefficients + double delta coefficients)), 16 states 
HMM per word model, 3 Gaussian components per state. 

(a) 
Word accuracy (%)  

 Subway Babble Car Exhibition Average 
Hamming 63.77 66.85 63.23 63.95 64.45 

SWCE 64.70 68.87 64.77 63.63 65.49 
Multi-peak 65.32 69.26 65.08 63.94 65.90 

Thomson 64.16 69.34 64.99 63.10 65.40 
 (b) 

Word accuracy (%) 
 Restaurant Street Airport Train-station Average 

Hamming 68.88 65.64 69.78 65.13 67.36 
SWCE 70.23 66.70 70.89 66.56 68.59 

Multi-peak 70.78 67.17 71.35 66.79 69.02 
Thomson 69.83 66.72 70.67 67.08 68.58 

 (c) 
Word accuracy (%)  

 Subway (MIRS) Street(MIRS) Average 
Hamming 58.11 60.97 59.54 

SWCE 58.57 62.45 60.51 
Multi-peak 59.66 62.33 60.99 

Thomson 58.35 62.22 60.28 
 
Tables 1 (a-c) present the average word accuracy (averaged over 0-20 dB SNRs) for 
test sets A, B and C on the AURORA-2 connected digits task, respectively, in clean 
training conditions. Tables 2 (a-c) present the average word accuracy (averaged over 
0-20 dB SNRs) for test sets A, B and C on the AURORA-2 connected digits task, 
respectively, in multi-condition training. Multi-taper methods perform better than the 
baseline single taper technique in all the cases except one. In multi-condition training 
and for test set B, a Hamming windowed spectrum estimation method provides better 
word accuracy than the multi-taper methods.  
Table 3 presents the word accuracy (in %) for test sets A, B, C, and D on the 
AURORA-4 large vocabulary continuous speech recognition (LVCSR) task. It is 
observed from table 3 that the multitaper methods performed better than the baseline 
Hamming system in the case of test sets A and C, i.e., under clean and channel 
mismatch conditions. Under additive noise distortions, i.e., in the case of test sets B 



and D, the Thomson multitaper method provides better word accuracy than all other 
methods considered in this work. In the LVCSR task the Thomson method performed 
the best. For this LVCSR task, the performances of the SWCE and Multipeak 
multitaper methods were slightly worse than that of the baseline system under 
additive noise conditions. The possible reason could be that we did not optimize the 
parameters of the multitaper methods, e.g., the number of tapers, separately for 
LVCSR task on a development test set. The optimal number of tapers that has been 
obtained using a development test set for AURORA-2 small vocabulary connected 
digits task was also applied for the LVCSR task.  

Table 2. Average (0-20 dB) word accuracy as percentage for test sets (a) A, (b) B, and (c) C, 
respectively, in multi-condition training on the AURORA-2 corpus. The higher the word 
accuracy indices better performance. For each column the best result is in boldface. 
Experimental setup: 39-dimensional MFCC features (MFCC_E_D_A (13-dimensional static 
MFCCs (including the log energy) + delta coefficients + double delta coefficients)), 16 states 
HMM per word model, 3 Gaussian components per state. 

(a) 
Word accuracy (%)  

 Subway Babble Car Exhibition Average 
Hamming 85.69 88.58 90.69 88.90 88.46 

SWCE 86.23 89.20 90.77 88.67 88.72 
Multi-peak 85.85 89.31 90.81 88.73 88.68 

Thomson 87.21 88.83 90.58 87.62 88.56 
 (b) 

Word accuracy (%) 
 Restaurant Street Airport Train-station Average 

Hamming 88.37 88.49 90.86 89.00 89.18 
SWCE 87.74 87.98 90.22 89.18 88.78 

Multi-peak 88.14 88.05 90.53 89.27 89.00 
Thomson 87.13 87.66 89.98 88.75 88.38 

 (c) 
Word accuracy (%) 

 Subway (MIRS) Street(MIRS) Average 
Hamming 84.60 86.96 85.78 

SWCE 85.53 86.98 86.26 
Multi-peak 85.16 87.13 86.14 

Thomson 86.25 86.72 86.49 
 
 
 



Table 3. Average word accuracy as a percentage for test sets A, B, C, and D on the AURORA-
4 LVCSR corpus. The higher the word accuracy indices better performance. For each column 
the best result is in boldface. Experimental setup: 39-dimensional MFCC features 
(MFCC_E_D_A (13-dimensional static MFCCs (including the log energy) + delta coefficients 
+ double delta coefficients)); all experiments employed state-tied cross-word speaker 
independent triphone HMM models with 4 Gaussian mixtures per state. 

 Word accuracy (%) 
 A B C D 

Hamming 88.80 52.2 75.87 39.76 
SWCE 88.91 51.07 75.91 39.09 

Multi-peak 88.79 51.67 79.71 39.66 
Thomson 89.21 53.49 75.86 43.27 

 
 
 
5.2 Speaker Verification Results 
 
We conducted speaker verification experiments on the extended core-core condition 
of the NIST 2010 SRE extended list. For the performance evaluation of the single-
taper (e.g., Hamming window) and multi-taper spectrum estimation-based speaker 
verification systems (see table 5) we used three evaluation metrics: the traditional 
Equal Error Rate (EER), which constrains false alarm (when a non-target is accepted 
as a target) and miss (when a target is rejected) error to be the same,  the old 
normalized minimum detection cost function (minDCF_old), which weighs false 
alarm errors as ten times as costly as miss errors, and the new normalized minimum 
detection cost function (minDCF_new), which weighs false alarm errors as 1000 
times more costly than miss errors. minDCF_old and minDCF_new correspond to the 
evaluation metric for the NIST SRE in 2008 and 2010, respectively [19].  
 
Results are reported for five evaluation conditions corresponding to det conditions 1-5 
(as shown in table 4) in the evaluation plan [19]. The target (the specified speaker is 
speaking in the test segment) and non-target (or Impostor) trials (the specified speaker 
is not speaking in the test segment) of each det condition are presented in table 4. 
Table 6 presents (a) EERs, (b) minDCF_old, and (c)  minDCF_new, respectively, for 
the baseline and multi-taper systems both for the female and male trials. In terms of 
the EER, and minDCF_old, minDCF_new multi-taper systems perform better than the 
baseline system. Average relative improvements (female-male, det1-det5) obtained by 
the sinusoidal weighted cepstrum estimator (SWCE) system are 20.25%, 17.87%, and 
10.85% in EER, minDCf_old and minDCF_new, respectively. The Multi-peak and 
Thomson multitaper systems provide relative improvements over the baseline of EER 
= 18.73%, minDCF_old = 15.26%, minDCF_new = 9.63% and EER = 12.83%, 
minDCF_old = 11.05%, minDCF_new = 5.01%, respectively. The relative 
improvements obtained by the multitaper systems over the baseline are presented in 
fig. 5. 
 
 
 



Table 4: Evaluation conditions (extended core-core) for the NIST 2010 SRE task and the target 
and non-target (impostor) trials to the corresponding det conditions.  
 

 
 
Table 5: Single-taper and multi-taper MFCC feature-based speaker & speech recognition 
systems. 
 
 

 
 
The underlying details of a multi-taper spectrum estimator are somewhat similar to 
averaging the spectra from a variety of conventional tapers, e.g., Hamming, Hann, 
and Blackman windows. In this case, there will be strong redundancy as the different 
tapers are highly correlated as they have a similar time-domain shape. Unlike these 
conventional tapers, theM orthogonal tapers used in a multitaper spectrum estimator 
provideM statistically independent (hence uncorrelated) estimates of the underlying 
spectrum. 
 

Condition Task Target trials 
(Female/male) 

Non-target 
(Impostor) trials 

(Female/male) 

det1 
Interview in training and 
test, same Mic. 

2326 / 1978 449138 / 346857 

det2 
Interview in training and 
test, different Mic. 

8152 / 6932 
1573948 / 
1215586 

det3 

Interview in training and 
normal vocal effort phone 
call over Tel channel in 
test. 

2031 / 1958  334438 / 303412 

det4 

Interview in training and 
normal vocal effort phone 
call over Mic channel in 
test 

1886 / 1751  392467 / 364308 

det5 
Normal vocal effort phone 
call in training and test, 
different  Tel 

3704 / 3465 233077 / 175873 

System Description 

Baseline 
MFCC features are computed from the 
Hamming windowed direct spectrum 
estimate. 

SWCE 
MFCC features are computed from the 
sinusoidal weighted (i.e., sine tapered) 
spectrum estimate [9]. 

Multi-peak 
MFCC features are computed from the multi-
taper spectrum estimate using multi-peak 
tapering [10]. 

Thomson 
MFCC features are calculated from the multi-
taper spectrum estimates with dpss tapering 
[5]. 



Table 6. Speaker verification results (female and male, det1 to det5) for the baseline and 
multitaper systems in terms of the evaluation metrics: (a) EER, (b) minDCFold, and (c) 
minDCFnew, respectively. The lower the EER, minDCFold, or minDCFnew the better is the 
performance of the system. For each column the best result is in boldface. Experimental 
parameters: 60-dimensional MFCC features (MFCC_0_D_A (20-dimensional static MFCCs 
(including the 0th cepstral coefficient) + delta coefficients + double delta coefficients)), 256-
mixture component UBM, 800-dimensional i-vector extractor, LDA reduced dimension is 150. 

 (a) 
  EER (%) 
  Baseline SWCE Multi-peak Thomson 

det1 2.40 1.80 2.10 2.06 
det2 4.60 3.80 3.90 4.36 
det4 3.90 3.50 3.40 3.66 
det3 3.60 2.90 3.00 2.86 

 
 
Female 

det5 4.00 3.00 3.30 3.43 
det1 1.50 1.20 1.30 1.57 
det2 3.10 2.60 2.30 2.73 
det4 2.60 2.00 2.20 2.17 
det3 4.10 3.10 3.00 3.25 

 
 
Male 

det5 3.20 2.50 2.20 2.45 
(b) 

  minDCF_old 
  Baseline SWCE Multi-peak Thomson 

det1 0.11 0.09 0.10 0.10 
det2 0.22 0.19 0.19 0.21 
det4 0.19 0.16 0.16 0.17 
det3 0.19 0.15 0.16 0.17 

 
 
Female 

det5 0.20 0.16 0.16 0.17 
det1 0.08 0.07 0.07 0.07 
det2 0.14 0.12 0.12 0.13 
det4 0.11 0.09 0.10 0.10 
det3 0.17 0.15 0.15 0.16 

 
 
Male 

det5 0.18 0.14 0.13 0.14 
(c) 

  minDCF_new 
  Baseline SWCE Multi-peak Thomson 

det1 0.38 0.34 0.35 0.37 
det2 0.60 0.56 0.56 0.59 
det4 0.54 0.50 0.49 0.51 
det3 0.55 0.56 0.55 0.61 

 
 
Female 

det5 0.57 0.52 0.49 0.50 
det1 0.30 0.26 0.28 0.27 
det2 0.47 0.40 0.42 0.46 
det4 0.38 0.32 0.35 0.38 
det3 0.59 0.49 0.52 0.56 

 
 
Male 

det5 0.56 0.47 0.44 0.46 
 



The average of theM individual spectral estimates ( )MTŜ m,k then has smaller variance 

than the single tapered direct spectrum estimates ( )dŜ m,k by a factor that approaches 

1
M [27-28, 56], i.e.,  

( )( ) ( )( )MT d

1ˆ ˆvar S m,k var S m,k
M

≈ . 

Fig. 6 demonstrates a reduction in the variance by the multitaper method compared to 
the Hamming windowed periodogram estimate. 
The advantages in multitaper spectrum estimators are that no Fourier resolution is 
sacrificed and there is no loss of information at the extremes of the data. While 
information near the bounds is indeed lost with the first taper, it is included and 
indeed emphasized in the subsequent tapers (see fig. 2). Also multi-taper methods 
result in a reduction of the variance of the spectral estimate (hence MFCC feature) by 
weighted averaging the individual estimate of each taper. 
Determination of the suitable tapers ( )pw j (p is the taper index and j is the time or 

sample index) used in a multitaper method (Thomson, Multi-peak or SWCE 
multitaper method) and the weights ( )λ p corresponding to these tapers does not 

increase the system complexity because they can be pre-computed. Since in a 
multitaper method the final spectrum estimate is obtained by taking weighted average 
of M individual spectral estimates, compared to the classical single tapered direct 
spectral estimate, multi-tapering results in a small increase in processing time as 
shown in table 7. The execution time is calculated using MATLAB on a Intel (R) core 
(TM) i7 CPU having clock speed 2.93 GHz. The benefit of using the SWCE 
multitaper method over the other two multitaper methods is that it has a closed form 
mathematical expression for the computation of the tapers and the weights 
corresponding to these tapers [9, 51]. 
 
Table 7. Execution time of the classical Hamming windowed direct spectrum 
estimator and multi-tapered direct spectrum estimator for a speech signal having an 
average duration of approximately 300 seconds. Execution time reported in this table 
is obtained by averaging the execution times obtained for 100 speech signals of 
different durations taken from the NIST SRE 2006 microphone speech data.  
 

 
 

Average duration of the 
speech signal 

Windowed 
periodogram 

estimator 

Multitaper 
estimator 

300 seconds (5 
minutes) 

0.85 seconds 1.89  seconds 



 
 

Fig. 5. Relative improvements (in %, averaged over the all det condition and over 
female-male trails) obtained by the multitaper methods over the baseline Hamming 
windowed direct spectrum estimation method in terms of the EER, DCFold, and 
DCFnew. The higher the relative improvement the better the system is. The relative 
improvement is the ratio of the difference in performances between the baseline and 
multitaper system to the performance of the baseline system. 
 

 
Fig. 6. Single tapered (e.g., Hamming) spectrum estimate and multi-tapered (with six 
tapers) spectrum estimate demonstrating large variance reduction. Sampling 
frequency of the speech signal is 8 kHz, analysis frame length = 25 msec with a frame 
shift of 10 msec. The variance of an estimator measures how much variability an 
estimator has around its mean (i.e., expected) value. 

6 Conclusion 

In multi-taper spectrum estimation, data are more evenly weighted and it has a 
reduced variance when compared to single-taper (e.g., Hamming window) estimates. 
In this paper we have used three multi-taper spectrum estimation approaches for low-
variance Mel-frequency cepstral coefficient (MFCC) features computation and 
compared their performances with the single window technique, in the context of 
speech recognition and speaker verification. Experimental speech recognition and 



speaker verification results on the AURORA-2 small vocabulary task, AURORA-4 
large vocabulary task, and NIST 2010 speaker recognition evaluation (SRE) corpora, 
respectively, depict that an improvement in recognition performance can be obtained 
by applying multi-tapering, with only a small computational load and processing time 
increase, compared to the overall recognition process. The relative improvements 
obtained in speech recognition and speaker verification using multi-taper MFCC 
features are very encouraging. Therefore, multi-taper methods can be an alternative to 
the conventional single window technique for the estimation of low variance MFCC 
features for speech and speaker recognition.  
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