
A Restless Bandit Formulation of Opportunistic
Access: Indexablity and Index Policy

Keqin Liu, Qing Zhao
University of California, Davis, CA 95616

kqliu@ucdavis.edu, qzhao@ece.ucdavis.edu

Abstract—We focus on an opportunistic communication system
consisting of multiple independent channels with time-varying
states. With limited sensing, a user can only sense and access
a subset of channels and accrue rewards determined by the
state of the sensed channels. We formulate the problem of
optimal sequential channel probing as a restless multi-armed
bandit process, for which a powerful index policy–Whittle’s index
policy–can be implemented based on the indexability of the
system. Exploiting the underlying structure of the multi-channel
opportunistic access problem, we establish the indexability and
obtain the Whittle’s index in closed-form, which leads to a direct
implementation of Whittle’s index policy with little complexity.
Furthermore, we show that Whittle’s index policy is equivalent
to the myopic policy when channels are statistically identical.

Index Terms—Opportunistic access, optimal channel probing,
restless multi-armed bandit, Whittle’s index policy, indexability.

I. INTRODUCTION

We consider an opportunistic communication system with
N parallel channels. These N channels are modeled as inde-
pendent but not necessarily identical Gilbert-Elliot channels
[1] as illustrated in Fig. 1. The state of a channel — “good”
(1) or “bad” (0) — indicates the desirability of accessing
this channel and determines the resulting reward. With limited
sensing and access capability, a user chooses M out of these
N channels to sense and access in each slot, aiming to
maximize its expected long-term reward. Such an opportunistic
communication system arises in the applications of cognitive
radios for spectrum overlay (also referred to as opportunis-
tic spectrum access), where secondary users search in the
spectrum for idle channels temporarily unused by primary
users [2]. Other applications include transmission over fading
channels and resource-constrained jamming and anti-jamming.
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Fig. 1. The Gilber-Elliot channel model.
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A. Restless Multi-armed Bandit Problem

The optimal design of a sensing policy for channel probing
can be formulated as a partially observable Markov decision
process (POMDP), where channels can be generally corre-
lated [3]. For independent channels, the problem can also be
viewed as a restless multi-armed bandit process as shown in
section II. Unfortunately, the optimal solution to a restless
multi-armed bandit problem is often intractable: the problem
has been shown to be PSPACE-hard in general [4].

Whittle in 1988 proposed an index policy (referred to as
Whittle’s index policy) for the restless multi-armed bandit
problem and introduced the concept of indexability [5]. The
remarkable nature of Whittle’s index policy lies in that it
decomposes the N -dimensional problem into N 1-dimensional
problems. Furthermore, Whittle’s index policy is optimal if
the constraint is on the average number of arms to activate
at a given time. Under the strict constraint where a constant
number of arms are activated at a given time, Whittle’s index
policy is shown to be asymptotically optimal under certain
conditions [6]. In a large range of empirical studies, the near-
optimal performance of the Whittle’s index policy has been
demonstrated in non-asymptotic regimes, see for example [7],
[8].

Unfortunately, Whittle’s index policy does not always exist.
It is necessary that a restless bandit is indexable in order to
use Whittle’s index policy, and the indexability of a general
restless bandit can be complicated to establish [9].

B. Contribution

Indexability We formulate the design of the optimal sensing
policy as a restless multi-armed bandit problem where the state
of each arm is defined as the belief value (or the information
state) of each channel, i.e., the conditional probability that this
channel is in the good state given the entire observation and
decision history. The state of each arm is thus uncountable,
which further complicates the establishment of indexability.
By exploiting the rich structure of the problem, we prove that
the restless bandit formulation of multi-channel opportunistic
access is indexable.

Whittle’s index in closed-form Even when the indexability
of a restless bandit problem can be established, Whittle’s index
is generally difficult to obtain even numerically. In this paper,
we show that for the problem at hand, Whittle’s index can
be obtained in closed-form. Whittle’s index policy can then
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be implemented with simple evaluations of the closed-form
expressions.

Equivalence between Whittle’s index policy and myopic
policy for identical channels When channels are statistically
identical, we show that the myopic policy coincides with the
Whittle’s index policy. Interestingly, the myopic policy has a
simple structure and is shown to be optimal under certain con-
ditions [10]–[12]. As a consequence, this equivalence provides
examples under which Whittle’s index policy is optimal.

II. PROBLEM FORMULATION

Consider N independent Gilbert-Elliot channels with band-
width Bi (i = 1, · · · , N ). The state of channel i–“good”(1)
or “bad”(0)– evolves as a Markov chain from slot to slot as
shown in Fig.1. The transition matrix of the Markov chain is

denoted by Pi (Pi =
[

p
(i)
00 , p

(i)
01

p
(i)
10 , p

(i)
11

]
).

At the beginning of slot t, the user selects M out of N
channels to sense. If the state Si(t) of sensed channel i is
1, the user transmits and collects Bi units of reward from
this channel. Otherwise, the use collects no reward and waits
for the next slot to make another selection of M channels.
Our objective is to maximize the long-term total reward by
choosing a policy which sequentially selects M channels to
sense in each slot based on the decision and observation
history.

A. Restless Multi-armed Bandit Formulation

Due to limited sensing, the channel state S =
[S1(t), ..., SN (t)] ∈ {0, 1}N is not fully observable. If we treat
S as the system state, then we have a POMDP formulation of
this problem [13]. In a restless multi-armed bandit formulation,
the system state has to be fully observable. Thus we cannot
treat S as the system state of the restless bandit. However,
it has been shown that the conditional probabilities that each
channel is in state 1 given all past decisions and observations
is a sufficient statistic for optimal decision making [3]. The
vector Ω(t) � [ω1(t), ..., ωN (t)] which comprises of the
conditional probability ωi(t) that Si(t) = 1 is called the belief
vector. Moreover, given the sensing action and the observation
in slot t, the belief vector Ω(t+1) for slot t+1 can be obtained
as follows:

ωi(t+1) =




p
(i)
11 , i ∈ I(t), Si(t) = 1

p
(i)
01 , i ∈ I(t), Si(t) = 0

ωi(t)p
(i)
11 + (1 − ωi(t))p

(i)
01 , i /∈ I(t)

,

(1)
where I(t) is the set of the M channels sensed in slot t.

We formulate the problem as a restless multi-armed bandit
problem. Each channel is considered as an arm. The state of
arm i in slot t is ωi(t). The user chooses an action in each
slot: activate (sense) M out of N channels and make others
passive (not sense). The expected reward obtained from the
activated arm i in slot t is ωi(t)Bi. And the system state Ω(t)
transits as a Markov chain as given in (1). Our objective is
to design the optimal policy which maps the belief vector to

action in each slot in order to maximize the expected total
discounted reward.

Formally, we have the following restless multi-armed bandit
(Ω, {Pi : 1 ≤ i ≤ N}, R, β) as defined below.

(i) The user takes action I(t) in slot t (t = 0, 1, 2, ...), where
I(t) denotes the set of the M arms which the user activates
in slot t.

(iii) The user collects an expected reward

R(t) = Σi∈I(t)ωi(t)Bi

in slot t.

(iv) The state of each arm transits as a Markov chain according
to (1).

(v) A policy π : Ω(t) → I(t) specifies the action to take in
each slot given the current belief state Ω(t).

The objective is to maximize the expected total discounted
reward over an infinite horizon:

max
π

{Eπ{Σ∞
t=0β

tR(t)}}, (2)

where 0 ≤ β < 1 is the discount factor.

B. Value Function

Let Vt(Ω) be the value function, which denotes the maxi-
mum expected total remaining reward obtained starting from
slot t given the current belief vector Ω. Given that the user
takes action I and observes O = {Si : i ∈ I}, the reward
that can be accumulated starting from slot t consists of two
parts: the immediate reward RI(t) = Σi∈I(t)ωi(t)Bi and the
maximum expected future reward Vt+1(Ω(t + 1)|I(t), O(t)).
Averaging over all possible observations O and maximizing
over all action I , we have the following optimality equation:

Vt(Ω) = max
I(t)

{RI(t) + βEO(t)(Vt+1(Ω(t + 1)|I(t), O(t)))}. (3)

It has been shown that Vt(Ω) does not depend on t under
the criterion of discounted reward over an infinite horizon [14].
Thus we can drop the subscript t of Vt in (3):

V (Ω) = max
I(t)

{RI(t) + βEO(t)(V (Ω(t + 1)|I(t), O(t)))}. (4)

C. Myopic Policy

A myopic policy ignores the impact of the current action on
the future reward, focusing solely on maximizing the expected
immediate reward RI . The myopic action Î under belief state
Ω = [ω1, · · · , ωN ] is simply given by

Î(Ω) = arg max
I

Σi∈IωiBi. (5)
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Interestingly for identical channels under single-channel
sensing1, it has been shown in [10] that the myopic policy has
a simple structure that does not need the update of the belief
vector or the precise knowledge of the transition probabilities.

Specifically, when p11 ≥ p01, the myopic action is to stay
in the same channel if the channel in the current slot is in
state 1. Otherwise, the user switches to the channel visited the
longest time ago. The channel selection is thus in a round robin
fashion as illustrated in Fig. 2: sense N channels in turn with
a random switching time (when the current channel transits to
state 0).

Ch 1 Ch 2 Ch 3

when observe 0

when observe 0when observe 0

Fig. 2. The structure of the myopic policy for p11 ≥ p01 (N = 3).

When p11 < p01, the myopic action is to stay in the same
channel when the channel is in state 0 and switch otherwise.
When a channel switch is needed, the user chooses, among
those channels to which the last visit occurred an even number
of slots ago, the one most recently visited. If there are no such
channels, the user chooses the channel visited the longest time
ago.

Surprisingly for identical channels with single-channel sens-
ing, the myopic policy with such a simple and robust structure
achieves the optimal performance for N = 2 [10]. In a
recent work [12], the optimality of the myopic policy has
been extended to N = 3, and N > 3 under the condition
of p11 > p01.

However for independent but not identical channels, the
myopic policy suffers from a performance loss as shown in
section IV.

D. Whittle’s Index Policy

Whittle introduced a heuristic policy referred to as Whittle’s
index policy. The basic idea is to introduce an index that
measures how attractive it is to activate a particular arm at its
current state, and then activate those M arms with the largest
index at each time. Whittle’s index for an arm at state ω is
defined as the extra amount of reward ν that we should provide
to the passive action (referred to as the subsidy for passivity) in
order to make the active and passive actions equally attractive
at the current state ω.

The significance of Whittle’s index policy and its strong
performance have been discussed in section I. The main
challenge is that a restless multi-armed bandit may not have
a well-defined Whittle’s index. We present the definition of
indexability as follows.

Consider arm i of the bandit (Ω, {Pi : 1 ≤ i ≤ N}, R, β).
In each slot, the user either activates the arm or not. Assume
that a constant subsidy m for passivity is obtained if the

1It has been shown in [15] that a similar structure of the myopic policy
holds with multi-channel sensing.

user makes the arm passive. The objective is to maximize
the expected total discounted reward. Let Ui(m) denote the
passive set consisting of states (belief values) in which the
optimal action is to make the arm passive.

Definition 1: Bandit (Ω, {Pi : 1 ≤ i ≤ N}, R, β) is
indexable if Ui(m) is monotonically increasing from ∅ to
the whole set [0, 1] as m goes from −∞ to +∞, for all
i ∈ {1, 2, .., N}.

Definition 2: If a bandit (Ω, {Pi : 1 ≤ i ≤ N}, R, β) is
indexable, the Whittle’s index W (ωi(t)) of arm i in slot t is
the subsidy m such that it is optimal to make the arm either
active or passive in slot t given the current belief ωi(t).

Definition 3: In each slot, the user activates M arms with
the largest Whittle’s index. This policy is called Whittle’s index
policy.

III. INDEXABILITY AND WHITTLE’S INDEX POLICY

In this section, we present our main theorem which shows
the above restless multi-armed bandit problem is indexable.
Furthermore, we give the Whittle’s index in closed-form.

To prove the indexability, we only need to consider a single
arm. To simplify the notation, we assume that the arm has
bandwidth B, subsidy m for passivity, and transition matrix
P (P =

[
p00, p01
p10, p11

]
). Theorems 1-3 given below summarize

the results on the indexability and Whittle’s index policy for
multi-channel opportunistic access.

Theorem 1: The optimal policy for a single-armed bandit
(ω, P,B,m, β) is a threshold policy: there exists a ω∗(m) ∈ R

such that it is optimal to activate the arm if the current belief
ω > ω∗(m); otherwise it is optimal to make the arm passive.

Theorem 2: The bandit (Ω, {Pi, 1 ≤ i ≤ N}, R, β) is
indexable.

Theorem 3: Whittle’s index W (ω) ∈ R as a function of
the belief state ω ∈ [0, 1] for arm i of bandit (Ω, {Pi, 1 ≤ i ≤
N}, R, β) is given as follows.

Let T k
i (π) denote the k−step transition of a belief state π

of arm i under passive actions:

T k
i (π) =

p
(i)
01 − (p(i)

11 − p
(i)
01 )k(p(i)

01 − (1 + p
(i)
01 − p

(i)
11 )π)

1 + p
(i)
01 − p

(i)
11

.

For simplicity, let Ti(π) denote T 1
i (π).

Case 1: p
(i)
11 ≥ p

(i)
01

W (ω) =




ωBi, if ω ≤ p
(i)
01 or ω ≥ p

(i)
11 ;

ω

1−βp
(i)
11 +βω

Bi, if ωo ≤ ω < p
(i)
11 ;

ω−βTi(ω)+C(1−β)(β(1−βp
(i)
11 )−β(ω−βTi(ω)))

1−βp
(i)
11 −A(1−β)(β(1−βp

(i)
11 )−β(ω−βTi(ω)))

Bi,

if p
(i)
01 < ω < ωo;

where A = (1−βp
(i)
11 )(1−βL+1)

(1−βp
(i)
11 )(1−β)(1−βL+2)+(1−β)2βL+2T L+1

i (p
(i)
01 )

;
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C = (1−β)βL+1T L+1
i p

(i)
01

(1−βp
(i)
11 )(1−β)(1−βL+2)+(1−β)2βL+2T L+1

i (p
(i)
01 )

;

L =

⌊
log

p
(i)
01 −ω(1−p

(i)
11 +p

(i)
01 )

p
(i)
01 (p

(i)
11 −p

(i)
01 )

p
(i)
11 −p

(i)
01

⌋
;

ωo = p
(i)
01

p
(i)
01 +p

(i)
10

.

Case 2: p
(i)
11 < p

(i)
01

W (ω) =




ωBi, if ω ≤ p
(i)
11 or ω ≥ p

(i)
01 ;

βp
(i)
01 +ω(1−β)

1+β(p
(i)
01 −ω)

Bi, if Ti(p
(i)
11 ) ≤ ω < p

(i)
01 ;

(1−β)(1+βE)(βp
(i)
01 +ω(1−β))

1−β(1−p
(i)
01 )−D(1−β)(β2p

(i)
01 +βω−β2ω)

Bi,

if ωo ≤ ω < Ti(p
(i)
11 );

(1−β)(βp
(i)
01 +ω−βTi(ω))−E(1−β)β(βT (ω)−βp

(i)
01 −ω)

1−β(1−p
(i)
01 )+D(1−β)β(βTi(ω)−βp

(i)
01 −ω)

Bi,

if p
(i)
11 < ω < ωo;

,

where D = 1−β(1−p
(i)
01 )

1−β(1−p
(i)
01 )−β2Ti(p

(i)
11 )(1−β)−β3p

(i)
01

;

E = βTi(p
(i)
11 )(1−β)+β2p

(i)
01

1−β(1−p
(i)
01 )−β2Ti(p

(i)
11 )(1−β)−β3p

(i)
01

.

Corollary 1: If channels are identical, then the myopic
policy is equivalent to Whittle’s index policy.

IV. SIMULATION EXAMPLES

From Theorem 3, the mapping from belief to Whittle’s index
varies when the belief ω is in different regions. To illustrate
this mapping, we give an example as shown in Figure 3, where
we assume that the arm has bandwidth 1.
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Fig. 3. Whittle’s index in different regions.

Figure 4 compares Whittle’s index for different transition
probabilities. Assume that Bi = 1. This figure clearly shows
that when channels are non-identical, the channels with the
largest belief values may not have the largest Whittle’s index;
the myopic policy is thus different from Whittle’s index policy.
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Fig. 4. Whittle’s index for different network parameters.

Shown in Figure 5 is a simulation example where we evalu-
ate the performance of Whittle’s index policy for independent
but not identical channels. We observe that the Whittle’s index
policy yields a near-optimal performance.

1 2 3 4 5 6
0.65

0.7

0.75

0.8

0.85

0.9

Time Slot

T
ro

ug
hp

ut
(b

its
 p

er
 s

lo
t)

 

 

Optimal policy
Whittle’s index policy
Myopic policy

Fig. 5. Performance of the Whittle’s index policy (M = 1, N = 7, β =
0.999).

V. CONCLUSION

In this paper, we have formulated the multi-channel op-
portunistic access problem as a restless multi-armed bandit
problem. We proved the indexability of the restless bandit and
obtained Whittle’s index in closed-form. When channels are
identical, Whittle’s index policy coincides with the myopic
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policy. When channels are non-identical, the closed-form ex-
pression of Whittle’s index provides a simple low-complexity
index policy with near-optimal performance.
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