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Abstract—In this paper, a novel Sparsely Encoded Local 
Descriptor (SELD) is proposed for face recognition. Compared 
with K-means or Random-projection tree based previous 
methods, sparsity constraint is introduced in our dictionary 
learning and sequent image encoding, which implies more stable 
and discriminative face representation. Sparse coding also leads 
to an image descriptor of summation of sparse coefficient vectors, 
which is quite different from existing code-words appearance 
frequency(/histogram)-based descriptors. Extensive experiments 
on both FERET and challenging LFW database show the 
effectiveness of the proposed SELD method. Especially on the 
LFW dataset, recognition accuracy comparable to the best 
known results is achieved. 

Keywords-local descriptor; Random-projection tree; Sparse 
coding;  face verification; face identification 

I.  INTRODUCTION 
In the past few decades, face recognition has attracted 

significant attention due to its wide potential applications in 
public security, law enforcement, etc. Numerous methods or 
techniques have been presented as surveyed in [1], and 
considerable progress had been achieved. Currently, many face 
recognition systems have been able to work well under well-
controlled conditions with cooperative users. However, as 
discovered by MBGC [2] and LFW evaluation [3], face 
recognition under uncontrolled environment with 
uncooperative users remains a great challenge. To successfully 
address this problem, how to represent faces plays the key role. 

In the past decade, local descriptor based face 
representation, which models image micro-patterns, has formed 
a blowout [4,5,6,7,8,9,10,11,12,13,14,15], due to their 
robustness to extrinsic variations. A large portion of these 
methods are based on manually designed local patterns. For 
example, by combining the sign of the difference of central 
pixel intensity from those of its neighboring pixels, LBP [7] 
implicitly encodes the micro-patterns of the input image such 
as flat areas, spots, lines and edges. Since the sign is invariant 
to monotonic photometric change, LBP is robust to lighting 
variation to some extent. Many LBP variations or extensions 
have also been proposed. Zhao and Pietikäinen extended LBP 
to the spatial-temporal domain [12]. In order to make LBP 
robust to random and quantization noise in near-uniform face 

regions, Local Ternary Patterns (LTP) [13] have also been 
proposed. By combining Gabor filtering with LBP, Local 
Gabor Phase Patterns (LGBP) [9] was proposed to extend LBP 
to multiple resolution and orientation. Later on, Histogram of 
Gabor Phase Patterns [8] and Local Gabor XOR Pattern [14] 
were further proposed to exploit the Gabor phase information. 
In addition, some local descriptors originally proposed for 
other object recognition tasks were also introduced for face 
recognition, such as Histogram of Oriented Gradients (HOG) 
[10] or SIFT [11,15]. Manually designing local pattern avoids 
complicated learning process. Nevertheless creating an optimal 
descriptor is non-trivial. One has to balance between the 
discriminative power and the robustness against data variance.  

In contrast to the above handcrafted approaches whose 
patterns are predefined manually, the texton-based methods 
typically learn some visual primitives as code-words from a 
large number of local face image patches and utilize the 
frequency of the code-words as face representation. 
Considering that high-level facial semantic features consist of 
those low-level micro visual structures, Meng et al. proposed 
Local Visual Primitives (LVP) for modeling and recognition 
[16], which learns LVP by K-means clustering. Xie et al. [17] 
further applied the K-means clustering approach to patch sets 
sampled from the Gabor filtered face images and then 
quantized codes of each patch,  at last concatenated block-
based histograms of patterns to describe the whole face. 
Ahonen et al. [18] also tried K-means cluster to build local 
filter response codebook. More recently, Cao et al. [6] pointed 
that quantized codes based on K-means usually tend to have 
uneven distribution, so the resulting code histogram would be 
less informative and less compact. So they applied Random-
projection tree [19] to replace K-means clustering. 

Another recent progress in face recognition field is the 
sparse representation based method. In [20], Wright et al. 
proposed to recognize a face through finding its sparse 
coefficients with respect to the whole training set as the 
dictionary and seeking for the face whose samples result in the 
smallest reconstruction error by using their corresponding 
sparse coefficients. In case of multiple well-aligned samples 
per person, the method reports impressive accuracy, especially 
when faces are partially occluded. Zhang et al. [21] 
incorporated the face labels in the dictionary-learning stage to 
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Figure 1.   Overview of the proposed SELD-based face representation extraction

obtain an efficient dictionary that retains the representative 
power while making the dictionary discriminative. Yang et al. 
[22] used the image local Gabor feature for sparse 
representation, and proposed an associated Gabor occlusion 
computing algorithm to handle the occluded face image. Above 
methods are all holistic representation based methods, thus not 
as robust as local methods. Furthermore, the sparse 
representation method proposed in [20] can work only for 
scenario where each face has multiple enrolled face images. 
Therefore, it can not be applied to face verification scenario as 
evaluated by the FRGC or LFW protocol. 

To address above problems, in this paper, we enhance 
texton-learning based local descriptor method by introducing 
sparse coding, thus propose Sparsely Encoded Local Descriptor 
(SELD). Simply speaking, in our SELD method, sparsity 
constraint is introduced during the local visual primitive 
dictionary learning and sequent image encoding, which is 
distinctly unlike K-means clustering or Random-projection tree 
as in previous methods [6, 16, 17]. As is validated recently by 
many researchers, sparsity implies more discriminative power 
and stableness of the representation.  

Another big difference of our SELD method from previous 
texton-based methods [6, 16, 17] is that, our description is 
sparse coefficient vector based, rather than code-words 
frequency (or histogram) based. Specifically, during the image 
encoding stage, the coefficient vector of the sparse coding is 
computed at each image position, and then summed together to 
form the local descriptor of some image blocks. Compared 
with frequency (or histogram) based methods, coefficient 
vector is similar to some soft clustering, thus implies more 
robustness to variations in image appearance.  

Compared with sparse representation method in [20], our 
SELD method is a more general face representation. As a face 
descriptor, our method can be easily applied to face verification 
and face identification with single sample per person, which are 
impossible for methods like in [20].  

The proposed SELD method is extensively validated by 
experiments on two face databases: the Labeled Faces in the 
Wild (LFW) [3] which is designed for unconstrained face 
verification, and the FERET database [23] which is used for 
face identification. Especially on the LFW, besides the 
comparisons of our method with previous methods based on K-
means or Random-projection tree, we also compare with 

existing state-of-the-art approaches that reported best known 
results on LFW. Comparable accuracy is achieved by our 
methods. 

II. SPARSELY ENCODED LOCAL DESCRIPTOR 
In this section, we first present the flowchart of the 

proposed SELD method for face recognition. Then we describe 
the critical steps of our method in detail, including how to learn 
the sparse dictionary and how to sparsely encode a face image. 

A. Overview of SELD for face recognition 
As mentioned above, our method is essentially an enhanced 

texton-based method. Therefore, it follows similar idea to bag-
of-words method. The main difference lies in the sparsity 
constraint in dictionary learning and the non-frequency based 
descriptor. Intuitively, the overall flowchart of the proposed 
SELD-based face representation method is illustrated in Fig.1 
and explained as follows.  

As shown in Figure 1, we first align and normalize the 
original images geometrically and filter it using a DoG filter to 
remove both high-frequency noise and low-frequency 
illumination variations. Then, at each pixel, an intensity vector 
is formed by sampling its neighbor pixel’s intensity according 
to a pre-defined sampling template. In the next step, the 
intensity vector at each pixel is sparsely encoded with the 
offline-learned sparse dictionary under non-negative constraint, 
which generates a sparse code vector, i.e., the sparse coefficient 
vector. With these sparse code vectors computed, the face 
image is spatially partitioned into some blocks, and the sparse 
code vectors in each block are summed together to form a 
descriptor of the block. Next, the accumulated vectors of all the 
blocks are concatenated together to form a single vector, which 
is finally reduced in dimensionality by principal component 
analysis (PCA) to generate the SELD feature of the input face 
image. For face recognition or verification, cosine similarity of 
two SELD features can be used to match two face images. 

B. Sparse Dictionary Learning 
Research on general over-complete dictionaries mostly 

commenced over the past decade and is still intensely ongoing. 
Such dictionaries bring the prosperity in the definition of a 
signal representation. Given an over-complete dictionary 
matrix D=[d1,d2,…,dk]∈Rn×K, K>n that contains K prototype 



 

 

signal-atoms, a signal y∈Rn can be represented as a sparse 
linear combination of these atoms.  

In this paper, we use the K-SVD algorithm [24] to train the 
over-complete dictionary. K-SVD is an iterative method that 
alternates between sparse coding of the examples based on the 
current dictionary and a process of updating the dictionary 
atoms to better fit the data. Formally, given a training set with 
N samples, K-SVD’s objective function is  
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where X=(x1,x2,…,xN) with xi∈Rn  are the sparse coefficient 
vectors for training sample yi, k is the number of code-words in 
the dictionary, and ‖·‖0  is the l0 norm. 

The K-SVD algorithm has two stages: in the first stage, D 
is fixed, and the above optimization problem is a search for 
sparse representation with coefficients summarized in the 
matrix. It may be solved by any pursuit algorithm; the second 
stage is updating the dictionary together with the non-zero 
coefficients. In this stage, the algorithm updates each column in 
the dictionary, dk, and the coefficients, xR

i, the i-th row in X. 
The objective function (1) can be re-written as 
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Then SVD is applied to Ek and get Ek=U△V. Then, we choose 
the first column of U and the first column of V multiplied by  
△11 as the updated dk ,  xR

k  respectively. 

With the above K-SVD method, our sparse dictionary is 
learned by the following steps: 

1) Preprocess each normalized image in the training face 
image set by DoG filtering.  

2) Sample patches of size p×p pixels from DoG filtered 
images to form the patch set S. If we have N training images 
and sample c patches from each image, there are c×N patches 
in S. All sampled patches are normalized to zero mean and 
unit length.  

3) For patch set S, K-SVD algorithm is utilized to 
construct the sparse dictionary Dn×K, where K is the nunber of 
codewords in the dictionary. 

In the above learning algorithm, one of the problems might 
be how many patches should be sampled for training. In 
principle, it seems that we should sample as densely as possible 
to obtain a large number of patches. However, this implies very 
time-consuming K-SVD. Fortunately, we empirically find that 
only thousands of patches are sufficient for our purpose. So, the 
patches can be sampled rather sparsely in each image.  

C. SELD-based face representation 
After the sparse dictionary D is learned, we then describe in 

this section how to utilize it to extract SELD feature for any 
input testing face image. As shown in Fig.1, given an input 
image already normalized and filtered by DoG, we first sample 
patches centered at each pixel and normalize the sampled 
intensity vectors to zeros mean and unit length. Then, we apply 

sparse coding to encode the sampled intensity vectors to sparse 
code vectors.  Formally, let the sampled intensity vector at 
pixel (i,j) be yij. Its sparse code vector αij is then computed by 
the following optimization:  
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where ‖·‖1 is the l1 norm. As shown in (3), in our implement, 
non-negative constraint is introduced to guarantee all the 
entries of the sparse coefficient α non-negative. The reason we 
impose this constraint is that intuitively we need an additive 
combination of the code-words to represent each patch.  This is 
also consistent with our sequent summation of the sparse code 
vectors in each image block.  

After encoding, the input image is converted to “sparse 
code” map. The encoded image is then divided into an m×n 
grid of blocks. Then, we add all the nonnegative codes in each 
block to form one sparse code vector for this block. Next, the 
accumulated vectors of all the blocks are concatenated together 
to form a single vector describing the whole face image. 

If we use the concatenated vector as the final descriptor, the 
dimension of the resulting face feature may be very high. A 
high-dimensional feature not only results in curse of 
dimensionality but also large complexity in memory and 
computation. Therefore, Principle Component Analysis (PCA) 
is further applied to further reduce the dimensionality and 
obtain the final SELD feature.  

With the extracted SELD feature, many metrics can be 
used to compute the similarity or distance between two face 
images for face verification by threshold or identification by 
nearest neighbor. In this paper, we select the most commonly 
used cosine similarity. 

III. EXPERIMENTS 
In order to evaluate the proposed approach, we carry out 

extensive experiments on LFW benchmark [3], where we not 
only compare our method with previous methods based on K-
means or Random-projection tree but also compare with 
existing state-of-the-art approaches that reported best known 
results on LFW. Finally, we also compare our method with K-
means method for face identification on FERET database [23].  

A. Experimental setting  
The LFW benchmark is designed for unconstrained face 

verification with face images containing large variations in 
pose, age, expression, race and illumination.  There are two 
evaluation modes proposed by the LFW organizer: the image-
restricted and the image-unrestricted training mode. This paper 
only considers the restricted mode. Under this mode, the whole 
standard testing set consists of ten subsets and each subset 
contains 300 same-person pairs and 300 different-person pairs. 
The performance of an algorithm is measured by a 10-fold 
cross validation procedure. The final average recognition rate 
serves as the evaluation criterion. For face identification, we 
used FERET database and its evaluation protocol to evaluate 
our method. 

In all experiments, DoG filters withσ1=1.0 andσ2= 2.0 are 
used. The size of the sampling template is set to 5×5. Default 



 

 

dictionary size is set to 256. The PCA preserves 98% of the 
total energy. 

B. Face verification evaluation on LFW 
The original size of each image in LFW is 250×250 pixels. 

All face images are cropped to 80×150 pixels just by simply 
cutting out the center of the aligned version images provided by 
Wolf et al. [25]. In the block-wise SELD feature extraction 
stage, the face images are divided into 5×10 blocks to obtain 50 
summed sparse code vectors. 

The first experiment aims to validate the discriminative 
power and stableness of the proposed SELD by evaluating on 
LFW according to the LFW image-restricted evaluation mode.  
We compare the proposed sparse dictionary learning method 
with previous methods, i.e., K-means and Random-projection 
tree [19]. In the experiment, 500 images are randomly selected 
from the LFW training set to train the dictionary. Note that we 
find the size of training set has little influence on the final 
performance.  

Experiment 1: comparison with K-Means and Random-
projection tree 

The mean accuracy curves of the three methods are shown 
in Fig.2, with the horizontal axis different number of code-
words in the dictionary. Meanwhile, the ROC curves of the 
three methods are also plotted in Fig.3 when the number of 
code-words is 256. From these two figures, it is clear that the 
proposed method outperforms the other previous methods in 
terms of both mean accuracy and ROC. Especially, from the 
ROC curves, we can see that, our method works impressively 
better than the other two methods especially when false 
positive rates are small. Please note that, we have tried our best 
to rigidly implement the Random-projection tree algorithm as 
in the [19], but its performances are still slightly inferior to the 
K-means, which seems slightly different from results in [6].  

In addition, from Fig.2, we can find that the performances 
of the three methods all increase with the increase of the code 
number. However, to balance the computational cost, we select 
256 as the default code number in our following experiments. 

 

Figure 2.  Performance comparison vs. learning method.  We studied the 
mean accuracy of the learned descriptors using three learning method: K-
means, Random-projection tree and the proposed sparse coding with different 
code number. Note that here we do not use PCA in order to reflect the 
comparison essentially. 

 
Figure 3.  Demonstrate the effects of three different encoding methods in 
terms of ROC curves.  

 
Figure 4.  The effects of removing the first R dimensions of SELD feature 
generated by PCA 

In the second experiment, we investigate the effects of 
removing the first R dimension from the SELD feature 
obtained by PCA. The reason that we focus on this point lies in 
the fact that, there are large variations in the LFW images, 
which implies the leading eigenvectors encode mostly 
variations in lighting, pose, and other large variances rather 
than those in identity. Therefore, we guess removing some of 
the leading eigenvectors should lead to performance 
improvement. The results are plotted in Fig.4. From the figure, 
it is clear that our above-mentioned guess is validated: by 
removing the first several dimensions, about 4 percents’ 
improvement can be achieved.  

Experiment 2: effect of removing some leading PCA features 

In above experiments, a fixed block partitioning method, 
i.e., 5×10 blocks, is used to extract single SELD feature. 
Intuitively, we have other choices to partition the image and 
extract multiple block-wise SELD features. Thus, when 
matching a pair of images, multiple similarities can be 
computed and fused together by sum rule or SVM. Following 
this idea, we tried five different block partitioning modes: 5×10, 
4×8, 3×6, 2×4, 1×10, which is similar to the hierarchical spatial 
pyramid structure [26]. We name this method as “Multiple 
block-wise SELD fusion” in short.  

Experiment 3: fusion of multiple block-wise SELD  

 



 

 

 
Figure 5.  Our face verification methods compared with one of the state-of-
the-art methods in [6], which learn dictionary based on Random-projection 
tree.  

 
Figure 6.  Face verification comparison on the LFW benchmark in restrict 
protocol. 

In Fig.5, above method and single SELD are evaluated on 
LFW under image-restricted mode and compared with one of 
the best known method on this testing [6]. In Fig. 5, the method 
“Single LE+holistic” means using the single best LE to 
represent the holistic face, where the encoder is Random-
projection tree. The method “Multi LE+comp”, reporting the 
best performance in [6], not only divides the holistic face into 9 
components by component-level face alignment, but also fuses 
four different encoded local descriptors to fed into linear SVM. 
It also exploits pose-adaptive adjustment. In contrast, our 
“Multiple block-wise SELD fusion” method only exploits 
single sampling template and single dictionary. And the sparse 
coding is also conducted only once. So, it is evidently more 
elegant than “Multi LE+comp”.  

From Fig.5, it is clear that “Multiple block-wise SELD 
fusion” performs impressively better than “Single SELD”, 
which implies that different block partitioning strategies are 
complementary mutually. From Fig.5, the proposed “Single 
SELD” consistently outperforms “Single LE” by a 4~5 
percents improvement. Our “Multiple block-wise SELD 
fusion” is also comparable to “Multiple LE+comp”. However, 
as mentioned above, “Multiple LE+comp” in [6] is more 
complicated than our “Multiple block-wise SELD fusion” 
method.  

To better validate our method, we also compare our 
methods with other previous state-of-the-art approaches 
[5,6,27,28, 29] on the same LFW evaluation, as shown in Fig. 6. 
From the figure, it is clear that our method is among the best 
ones. In addition, it is worth pointing out that, besides the 
training data in LFW, the method in [27] utilized an external 
large-scale datasets for feature extraction and classifier 
designing.  

Comparison with other best known results on LFW  

C. Face identification on FERET 
LFW evaluation focuses on face verification. In this section, 

we perform experiments on the FERET dataset [23] to verify 
the performance of our approach for face identification.  

According to the FERET evaluation protocol, algorithms 
were evaluated against different categories of images including 
some variations such as lighting change, people wearing 
glasses, and the time between the acquisition dates of the 
database image. This database consists of one standard gallery 
(1196 images of 1196 subjects) and four probe sets: Fb (1195 
images of 1195 subjects), Fc (194 images of 194 subjects), 
Duplicate I (722 images of 243 subjects) (abbreviated as DupI), 
and Duplicate II (234 images of 75 subjects) (abbreviated as 
DupII).  

On this database, we align and normalize the face image 
into 80×88 pixels. 300 frontal images are randomly selected 
from the FERET training CD as the training set to learn the 
dictionary. In our method, the sampling patch size is 5×5 pixels, 
and the face images are divided into 6×6 blocks.  

The results of our method are compared with K-means and 
LVP method [16] in Table 1. In order to compare with LVP, 
we apply the histogram intersection as similarity measure. 
From Table 1, we can get several major observations. First, all 
method have almost equal performance on Fb dataset. Second, 
the SELD method is superior to local encoded method based 
K-means, 8, 4 and 4 percentage points improvement on Fc, 
DupI and DupII dataset respectively. Third, our method also 
significantly outperforms LVP method [16] except on Fb 
dataset.  

D. Discussion 
As evaluated in above experiments, the proposed SELD 

method works impressively better than similar method based 
on K-means or Random-projection tree. So, what is the source 
of the performance gain? To answer this question, we need to 
analyze the main different between our method and previous 
ones. As mentioned above, the main difference lies in two 
points: 1) sparsity constraint is introduced in our method during 
the dictionary learning, as well as during the image encoding 
using the dictionary; 2) block-wise summation of the sparse 
coding coefficients are used rather than the appearance 
frequency (histogram) of the code-words.  

TABLE I.  RECOGNITION PERFORMANCE ON THE FERET DATABASE 

Descriptor Fb Fc DupI DupII 
LVP [16] 0.97 0.70 0.66 0.50 
K-means 0.95 0.76 0.64 0.58 
SELD 0.95 0.84 0.68 0.62 



 

 

The key of the first difference is “sparsity”, which has been 
proved in recent literature very effective for both representation 
and discrimination. Compared with K-means or Random-
projection tree which learn local visual patterns that most 
frequently appears, sparse dictionary learning focuses more on 
the effective representation of the local patches, which endow 
the code-words more representation power.  

The second difference actually reflects the difference of 
exclusive model selection and additive model summation. Give 
a sampled patch, traditional methods always encode it to one 
single code-word by vector quantization. However, our method 
encodes it to a vector associated with all the code-words. In 
other words, traditional methods use single code-words to 
express a patch, while our method expresses it with a linear 
combination of all the code-words, which we believe can lead 
to a more stable representation. 

IV. CONCLUSION 
In this paper, we propose sparsely encoded local descriptor 

(SELD) for robust face recognition. Unlike traditional K-means 
or Random-projection tree based dictionary learning method, 
sparse dictionary is leaned by introducing sparsity constraint. 
The encoding procedure is also changed from exclusive code-
word assignment to sparse coding. Correspondingly, code-
words frequency based descriptor is replaced by block-wise 
summation of sparse coding coefficients vector. The above 
characteristics endow the proposed SELD better performance, 
as validated by the LFW evaluation. Results comparable to the 
best known results are achieved.  

In this paper, the proposed SELD method is only validated 
on face recognition problem. Nevertheless, SELD is not limited 
to face recognition, since it is not specially designed for face 
recognition. Therefore, we will apply it to other possible 
applications, e.g., object categorization. 
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