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1 INTRODUCTION 

According to Booch et al. (1999), a software design 
framework is “an architectural pattern that provides an 
extensible template for applications within a domain.”  A 
framework provides a set of classes that can be extended via 
sub-classing or used directly to solve a particular problem 
within a particular domain.  This paper discusses a software 
design framework for developing object-oriented 
simulations. The concepts in the framework have been 
implemented in open source software called the Java 
Simulation Library (JSL) under the GNU General Public 
License (www.gnu.org).  

Numerous organizations and individuals have developed 
object-oriented simulation software tools.  These tools have 
been implemented using languages such as C, C++, and 
Java.  For example, Schwetman’s (1986) CSIM++™ is an 
extensive set of classes for performing process and event 
based simulations in C++. Joines and Roberts’ YANSL 

(1996) supports the development of C++ simulations using 
the network modelling view. Marzolla (2004) supports the 
process view in C++.  Healy and Kilgore (1997) describe 
Silk™, a comprehensive commercial extension of the Java 
simulation language for developing process-based 
simulations. In addition, Borshchev et al. (2000) describe 
the beginning architecture for AnyLogic™, a 
comprehensive commercial product built on Java that does 
discrete-event, agent-based, and dynamic simulation. 

The paper by Rossetti et al. (2000) describes an object-
oriented framework that is the predecessor for the software 
discussed in this paper.  Some other discrete event libraries 
implemented in Java include L’Ecuyer et al. (2002), Page 
and Kreutzer (2005), Jacobs and et al. (2002), Garrido 
(2001), Kacer (2001), and Sánchez (2006).   

It is not the purpose of this paper to contrast the JSL with 
the plethora of other Java based simulation libraries; 
however, some similarities and differences are worth 
pointing out.  Both SSJ from L’Ecuyer et al. (2002) and 
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DesmoJ from Page and Kreutzer (2005) describe software 
that has very similar overall capabilities as the software 
discussed in this paper.  That is, the ability to model 
discrete-event systems in Java using the event and process 
world-views with full support for random variate generation 
and statistical output collection.   DesmoJ has an experiment 
and modelling paradigm that is similar in concept to the 
JSL’s.  The statistical and random utilities for both of those 
libraries are on par with what is provided within the JSL.   

The libraries PSIM-J by Garrido (2001), J-SIM by Kacer 
(2001), SSJ by L’Ecuyer et al. (2002) and DesmoJ from 
Page and Kreutzer (2005) all focus on the process 
interaction approach implemented on top of Java’s thread 
mechanism.  While the JSL originally had process 
interaction support based on threads, see Rossetti et al. 
(2000), that implementation has been depreciated due to 
problems with the use of Java’s threads. Perhaps the final 
difference with respect to other libraries has been the 
emphasis on designing the JSL to be flexible and extendable 
under an open-source paradigm. For example, the reliance 
on observer-based collection of statistics is somewhat 
unique to the JSL and provides great flexibility.  In addition, 
as will be noted in the following sections, the JSL can 
readily use different random number generators, different 
event scheduling calendars, different statistical collection 
techniques, etc., which facilitated research of these topics 
within a consistent platform. 

The Java Simulation Library (JSL) has been used in a 
number of research and educational settings; however, its 
implementation has not been fully described in the literature 
except through its many applications.  Examples of the use 
of the JSL include, Hobbs et al. (2006), which used it to 
model radio frequency tracking on an air base and Rossetti 
and Chan (2003), which developed a prototype framework 
for simulating supply chains.  Building on that work, 
Rossetti and Thomas (2006) developed a framework to 
simulate supply chains involving spare parts in a multi-
echelon, multi-indentured setting.  The work in Rossetti, 
Miman et al. (2006) extends the JSL’s capabilities to handle 
large-scale multi-echelon inventory systems with any type 
of inventory policy.  Finally, the supply chain work was 
integrated with a transport layer for modelling 
transportation networks (e.g. full-truck-load networks) in 
Rossetti and Nangia (2007).  Since the JSL is open source, 
these implementations are also freely available. 

The purpose of this paper is to describe the JSL’s design 
and to illustrate how to use the JSL for basic discrete-event 
modelling.  This paper is primarily explicative in nature.  
The notion of simulation libraries is not new; however, 
much can still be learned by examining the design and 
implementation of such software systems.  This is especially 
relevant in an educational and research environment.  
Students of simulation can develop a deeper understanding 
of how simulation technology works by studying such 
designs.  This is one of the primary reasons for this paper 
and why the software is open-source. 

Since the JSL is divided into a number of Java packages 
(random, statistic, modelling, calendar, observer, etc), the 

paper is organized around the capabilities of these packages.  
Then, through the use of some examples and a textbook 
problem, the use of the software is illustrated. Finally, the 
paper summarizes some ideas for future expansion and use 
of the JSL. 

2 JSL PACKAGES 

The general purpose simulation support within the JSL is 
organized into four major packages: utilities, calendar, 
modeling, and observers.  While Java does not support the 
notion of sub-packages, the modeling, observer, and utilities 
packages can be conceptualized as having sub-packages.  
The utilities package contains the random and statistic 
packages for random number generation and statistical 
collection.  The modelling package has packages for 
modelling queues, resources, etc., essentially elements that a 
user would find in a simulation model.  The observer 
package is built off of Java’s notion of the 
Observer/Observable pattern to facilitate statistical 
collection and reports, as well as writing spreadsheet and 
database output.  This section briefly overviews each of the 
major packages and their sub-packages starting with the 
utilities package. 

2.1 The Utilities Package  

The utilities package consists of classes that support the JSL 
in a general manner.  It consists of sub-packages for 
reporting, forecasting, numerical computation, sampling 
random variables, and statistical collection.  The following 
subsections provide an overview of the random and statistic 
packages. 

2.1.1 The Random Package  

The classes and interfaces within the random package 
support the sampling of random variables within the JSL.  
Figure 1 illustrates a few of the key interfaces and classes 
within the random package.  The ability to generate random 
numbers is represented by the RngIfc interface.  This 
interface combines the generation of pseudo-random 
numbers (via the randU01() method within the 
RandU01Ifc interface) with stream control via the 
RandomStreamIfc interface. Stream control, see 
L’Ecuyer (2001), allows the user to restart a pseudo-random 
sequence, jump to sub-sequences, and produce antithetic 
variates. The RngStream class (based on L’Ecuyer 
(2001)) provides a concrete implementation of the RngIfc 
interface. The organization of these interfaces also 
facilitates the incorporation of pseudo-random number 
generators that do not easily allow for the manipulation of 
streams. 

Because of the flexibility of the RngIfc interface users 
of the random package can also easily generate correlated 
pseudo-random numbers.  The generation of correlated 
processes is discussed in Law (2007).  For example, the 
AR1CorrelatedRng class uses the Normal-to-Anything 
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Transformation as discussed in Banks et al. (2006), Cario 
and Nelson (1996, 1998), and Biller and Nelson (2003).  To 
use correlated random numbers in a simulation, the user can 
simply supply an instance of the AR1CorrelatedRng 
class wherever an instance of the RngIfc interface is 
required.  Other correlation induction algorithms can be 
easily added to the library by implementing the RngIfc. 

In stochastic simulations, users require the generation of 
many kinds of random quantities or values (e.g. time series, 
stochastic processes, etc). For example, the random package 
provides a class, AR1Normal, which implements the 
RandomIfc interface to generate values from an 
autoregressive order 1 normal process. The RandomIfc 
interface supports this generation via its implementation of 
the GetValueIfc, ParametersIfc, and 
RandomStreamIfc interfaces.  A class that implements 
the RandomIfc interface has the ability to manipulate 
streams and through its getValue() method return a 
value that is random.  The ParametersIfc interface 
permits a general mechanism for setting the parameters of 
whatever stochastic process is being utilized to implement 
the underlying randomness.  The RandomIfc interface 
also provides a method, getSample(), which should 
return an array of doubles that are generated by the 
underlying random process.   

Insert Figure 1 about here 

The random package provides support for random variable 
sampling based on probability distributions through the 
DistributionIfc interface. Any probability 
distribution that works within the JSL must adhere to this 
interface. An abstract base class, Distribution, is 
provided to facilitate the development of concrete 
implementations of the DistributionIfc interface. The 
Distribution class takes in an instance of the RngIfc 
interface to use as its source of pseudo-random numbers.   

The JSL currently implements the following continuous 
distributions: beta, gamma, uniform, lognormal, normal, 
exponential, triangular, loglogistic, and Weibull.   Other 
distributions can be easily added. In addition, the random 
package includes a general method to sample from truncated 
distributions via the TruncatedDistribution class.  
Truncated distributions are discussed on page 432 of Law 
(2007).  The beta and gamma distributions also include 
static methods for computing the beta function, the gamma 
function, and the logarithm of the gamma function.  

From a class hierarchy perspective, the JSL does not 
distinguish between continuous and discrete distributions as 
is done in other libraries (e.g. SSJ).  Sub-classing from the 
Distribution class also provides a number of discrete 
distributions:  Poisson, Constant, DUniform, 
DEmpirical, NegativeBinomial, Geometric, 
Bernoulli, and Binomial.  The Binomial class also 
provides a numerically stable method for computing 
binomial coefficients.  The current implementation of these 
distributions utilizes the inverse transform method for 
generating random variates but overriding the methods can 
easily provide other algorithms. 

The random package also provides support for shifted 
distributions, generating permutations, and a number of 
other useful procedures. 

2.1.2 The Statistic Package  

The statistics package provides functionality to compute a 
variety of statistical functions (e.g. summary statistics, 
histograms, etc.) on data. The AbstractStatistic 
class has been designed to tabulate data that is presented to 
its collect() method.  The AbstractStatistic 
class provides a series of accessor methods that allow the 
user to retrieve information from the underlying statistics.  
These methods implement the StatisticAccessorIfc 
interface, which provides a read only view of the statistical 
information. Thus, users can sub-class from 
AbstractStatistic to more readily implement this 
interface. Figure 2 shows the basic functionality of the 
AbstractStatistic class.  Instances can return the 
number of observations, the sample average, sample 
variance, the minimum, the maximum, etc. for the 
observations presented via the collect() method.  The 
collect() method has been overridden to collect 
Boolean values (true = 1.0, false = 0.0) and can also collect 
weighted statistics. 

Insert Figure 2 about here 

The statistic package, as shown in Figure 3. allows for 
standard statistical collection through the Statistic 
class, as well as statistical collection algorithms designed 
for simulation data (e.g. standardize time series and batch 
means methods).  Users can easily implement the 
AbstractStatistic base class to provide additional 
statistical collection algorithms. 

Insert Figure 3 about here 

2.1.3 Example  

This section presents a simple example that utilizes the 
functionality of the random and statistic packages. For a 
single server queueing system, Lindley’s equation, see 
Gross and Harris (1998), allows the computation of the 
waiting times of each of the customers based on knowledge 
of the arrival and service times.  Let 
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the ith customer.  Code Listing 1 presents an implementation 
of a simulation based on Lindley’s equation using constructs 
from the random and statistic packages. 

Insert Code Listing 1 about here 
 

In lines 3 and 4, the inter-arrival time and the service time 
distributions are defined.  For illustrative purposes, the more 
general interfaces RandomIfc and DistributionIfc 
have been used.  By default each distribution is given its 
own stream of random numbers when constructed.  Thus, as 
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indicated in lines 3 and 4, there is no need to create a 
random number generator. Lines 6-8 specify the number of 
replications, number of customers, and the customer number 
to serve as a warm up period indicator.  Lines 9-12 define 
the across replication statistics and the within replication 
statistics.  For illustrative purposes, avgw has been declared 
as type AbstractStatistic.  Thus, any sub-class of 
AbstractStatistic could have been used when 
creating the instance.  The object wbar collects each 
customer’s waiting time, while avgw collects the average 
waiting time for customers across replications.  Line 16 
implements Lindley’s equation.  Lines 17 and 18 collect the 
within replication statistics.  Notice how, in line 18, the 
Boolean expression (w > 0.0) is observed.  Because the 
collect method of the Statistic class treats true = 1.0 
and false = 0.0, the statistics on this indicator are easily 
tallied.  Lines 19-22 implement the resetting of the within 
replication statistics when the warm up indicator is reached.  
Lines 25 and 26 collect the end of replication averages for 
the waiting time and the probability of wait, before they are 
cleared/reset in lines 28-29.  After all replications have been 
executed, the statistics are printed in lines 31-32.  Exhibit 1 
presents the sample statistical output from the program.  

Insert Exhibit 1 about here 
 

This program can be easily modified to use different 
distributions for the inter-arrival and service times by 
modifying lines 3 and 4.  For example, by replacing line 3 
with: 

 
RngIfc rng = new AR1CorrelatedRng(0.8); 
RandomIfc y = new Lognormal(1.0, 0.5, rng); 

 
the inter-arrival times will be correlated lognormal random 
variables.  Notice that the distribution takes in an instance of 
classes that implement the RngIfc interface.  Thus, any 
correlation induction strategy can be easily accommodated 
simply by ensuring that it implements the RngIfc.  Also 
note that the underlying random number streams (created 
within the distributions) continue for each replication from 
where they left off.   Thus, each replication is independent.  
The streams for the distributions can be easily manipulated 
by using the RandomStreamIfc interface. 

Code Listing 2 indicates how easy it is to perform an 
analysis using batch means and standardized time series.  In 
this example, the within replication observations of the 
customer wait times from Lindley’s equation are captured. 
Lines 1 and 2 declare instances of the BatchStatistic 
and StandardizedTimeSeriesStatistic classes 
to be used to directly observe the waiting time for each 
customer.  Complete statistics based on these methods can 
easily be reported (not shown here due to space limitations).  
The default batching algorithm is essentially the same as th 
algorithm used in Arena™.  See the discussion in Fishman 
(2001) or Kelton et al. (2006) for a description of the 
algorithm.  The important point is that any simulation output 
analysis technique can be easily incorporated and used by 

adhering to the structure imposed by the framework’s 
classes and interfaces. 

Insert Code Listing 2 about here 
 
Both the random and statistic packages have been 

designed to enable their use outside of the JSL as a general-
purpose utility (e.g. for pure Monte-Carlo studies).  The JSL 
also facilitates discrete-event modelling.  The next section 
briefly describes the JSL’s support for scheduling and 
executing events. 

2.2 The Calendar Package 

Within discrete-event simulation, the ability to schedule and 
execute events is a necessity.  This ability is found within 
the Scheduler class and within the calendar package 
within the JSL. The Scheduler class only provides for 
processing the events (e.g. scheduling, executing the next 
event, cancelling events, updating simulated time, tracing 
events, etc.). The Scheduler class does not provide the 
data structure to hold events.  The calendar package 
provides the data structures to hold events. 

An event is a one-way transmission of information from 
one object to another that causes an action resulting in a 
change in state at a given instant in time.  Within the JSL, 
this concept is represented within the JSLEvent class. 
JSLEvent holds a reference to an object that implements 
the ActionListenerIfc interface, which requires a 
method (action(JSLEvent e)) that supplies the 
actions associated with the event (in essence the event 
routine).  Besides setting the time of the event, the user can 
set a priority, a name, and a type.  In addition, the 
JSLEvent class has a reference to an Object, which can 
be used to send information along with the event when it is 
scheduled.  JSLEvent implements the Java Comparable 
interface to provide an ordering first by smallest time, then 
by smallest priority, and finally by the order of creation. 

Events are held within a data structure that is represented 
by the CalendarIfc interface.  When constructing an 
instance of the Scheduler class an instance of a class that 
implements the CalendarIfc interface must be supplied. 
The calendar package provides four standard event calendar 
data structures based on a priority queue, a tree set, a skew 
heap, and a linked list. The default calendar is based on 
Java’s PriorityQueue class.  Users can easily supply 
their own calendar by implementing the CalendarIfc 
(add(JSLEvent e), nextEvent(), isEmpty(), 
cancelAll(), cancel(), and size()) and using the 
compareTo() method of JSLEvent to properly order 
the data structure.  Thus, the testing and use of different 
future event data structures can be easily accomplished 
within the JSL.   
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2.2.1 Scheduling and Executing Event Actions 

As mentioned, the actions associated with an event should 
be contained within a class that implements the 
ActionListenerIfc interface. Within the JSL, this is 
usually accomplished by using an inner class that 
implements the ActionListenerIfc interface.  Then, 
an instance of that class is supplied when scheduling the 
event.  Code Listing 3 illustrates the event routines (in the 
form of action listeners) for a discrete event implementation 
of a simple M/M/1 queue. 

Insert Code Listing 3 about here 

Line 3 shows how events can be scheduled.  An inherited 
scheduleEvent() method is used to schedule the 
arrival of the first customer.  The object reference variable, 
myArrivalListener, represents an instance of the 
inner class, ArrivalListener, shown in lines 6-18.  
The object reference, myArrivalRV, is used to get the 
value of the time between arrivals when scheduling the 
event. 

As shown in lines 6-18, the logic for handling an arrival to 
the system is placed in the action listener.  This logic is very 
standard:  if the number of busy servers is less than the 
number of available servers, then the number of busy 
servers is incremented and an end of service event is 
scheduled, else the number in queue is incremented (see 
lines 8-14.)  Line 16 simply schedules the next arrival.  
Similar logic is presented in lines 20-30 for handling the end 
of service for a customer and scheduling the next customer 
to be served if there are customers waiting in the queue. 

Code Listing 3 uses a number of object references, e.g. 
myNumBusy on lines 8 and 9.  This object is a reference to 
a time weighted statistical collection variable represented by 
the TimeWeighted class.  It is an example of a sub-class 
of ModelElement. The modelling of these types of 
objects within the JSL is accomplished with the modeling 
package and its sub-packages, which is discussed in the next 
section. 

2.3 The Modeling and Model Element Packages 

The key packages within the JSL for simulation modelling 
are the model package and its sub-package elements.  The 
model package has classes that implement the functionality 
associated with simulation events and models.  The 
elements package has classes that define objects that can be 
added to a simulation model (e.g. queues, resources, 
variables, etc.). The development of a simulation model is 
based on sub-classing the ModelElement class that 
provides the standard recurring actions within a simulation 
as well as allowing access to an instance of the 
Scheduler class. 

  Standard recurring actions are provided so that every 
model element can execute code prior to an experiment, 
prior to a replication, upon model initialization, upon warm 
up, after a replication, and after an experiment.  For 
example, every sub-class of model element should 
implement an inherited protected method called 

initialize() to provide logic when the overall model 
is initialized that is specific to that model element. In Code 
Listing 3, lines 1-4 illustrate the initialize() method 
for the surrounding model element.  This code is 
automatically called when the containing model is 
initialized at the start of each replication.  For this example, 
this ensures that the first customer’s arrival is scheduled 
when the model is initialized. 

Insert Figure 4 about here 

Figure 4 shows that a ModelElement may contain other 
instances of sub-classes of ModelElement.  In addition, it 
shows that Model is a sub-class of ModelElement and 
that every ModelElement has a reference to a Model.  
The key to understanding and effectively using the JSL is to 
understand the recursive composite pattern implemented in 
Figure 4. It is helpful to conceptualize this type of 
association as a parent/child relationship.  The parent is the 
composite (the thing that contains) and the children are the 
things that are contained. The composite pattern implies an 
object hierarchy.  That is, a tree of objects. Within the JSL, 
an instance of Model serves as the base (root) of the tree, 
with each node being an instance of a sub-class of 
ModelElement.  This allows model elements to be 
“hooked” into the model and then to react to standard 
simulation actions, such as initialization.  This is a common 
pattern in simulation languages. For example, users of the 
simulation language Arena™ can implement visual basic for 
application code that occurs prior to and after a replication. 

2.1.2 Building and Running a JSL Simulation Model  

To build and run a JSL simulation model, the user must first 
design sub-classes of ModelElement that represent the 
modelling situation.  Then, the user must create instances of 
their model elements and add them to an instance of a 
Model.  For example, in Code Listing 4, line 4 creates an 
instance of Model, line 6 creates and instance of JobShop 
(a sub-class of ModelElement) and supplies the model as 
its parent.  The JobShop model will be discussed further in 
the next section.  Lines 8-12 perform this same procedure 
for the model element called WorkStation.  In this 
manner, the model’s object hierarchy is built.  For readers 
that are familiar with other simulation languages, this is in 
concept similar to opening a model building window 
(creating a model) and dragging and dropping simulation 
constructs into the model.  Within the JSL this process is 
code oriented; however, it should be clear that a graphical 
user interface could be constructed to perform such model 
building activities.  Once a model has been constructed, it 
must be executed. 

Code Listing 4 about here 

 
The modeling package has three classes that facilitate the 

running of simulation models: Replication, 
Experiment, and ExperimentRunner.  These classes 
are built upon an abstract base class that embodies the 
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notion of an iterative process (class 
IterativeProcess) in a general design pattern. One 
can think of an iterative process as an object-oriented 
implementation of the general notion of a do-while loop.   
An iterative process embodies a sequence of steps that can 
be executed.  Prior to executing the steps, the iterative 
process must be initialized, then the steps can be executed, 
and finally some clean up code can be executed after the 
iterative process has been ended. Each step can be run 
individually or all steps can be run until a condition is met.   

The class Replication is an iterative process that 
executes events until there are no more events or until some 
other stopping condition is met.  Within the JSL, it is even 
possible to run experiments for a length of real clock time.  
The Experiment class is also an iterative process, but its 
steps are instances of the class Replication. Thus, an 
experiment is simply a sequence of replications.  The user 
has full control over setting the length of the replications, 
the length of the warm up period, running until a condition 
is set (e.g. a half-width is reached), etc.  

In Code Listing 4, line 34 constructs an instance of an 
Experiment, passing in a reference to the model.  Then, 
in lines 36-38, the experiment’s running conditions are set. 
Line 40 turns on some default text file reporting to capture 
all statistical information from the experiment. Finally, line 
42 tells the experiment to run all of its replications via the 
method runAll().  

Individual (single) instances of the class Replication 
can also be run in this manner. Finally, the class 
ExperimentRunner is also an iterative process whose 
steps are instances of the class Experiment.  The user 
provides an iterator that returns experiments, which then 
will each be run in turn until all the experiments have been 
executed.  In this manner, a set of experimental scenarios 
can be easily constructed and run within the JSL. 

The JSL has a large number of already constructed model 
elements for use in simulations.  Due to space limitations, 
only a few are described in this paper.   

 
• Variable – A class that represents the use of 

variables within a model. Variables have an initial 
value and will be reset to the initial value automatically 
at the beginning of each replication. 

• RandomVariable – A sub-class of Variable that can 
take on a random value within the simulation model.  
The JSL handles stream control for its random 
variables.  At the end of each replication, the streams of 
each random variable are advanced to the next sub-
stream; thereby, improving synchronization for the 
purpose of using common random numbers. 

• ResponseVariable – A sub-class of Variable 
that provides observation-based statistical collection. 

• TimeWeighted – A sub-class of 
ResponseVariable that facilitates the use of time-
based variables. As indicated in Code Listing 3, these 
variables can be incremented (line 13) and decremented 
(line 24).  This enables the automatic collection of 
time-weighted statistics on the variable. 

• Counter – A sub-class of ResponseVariable 
that facilitates the definition of a variable that can be 
used to count occurrences and to stop the simulation 
when the counter reaches a limit.  Other actions can 
also be triggered when the counter reaches its limit. 

• ResponseVariableAverageObserver, 
AggregateTimeWeightedVariable, 
AggregateCounter – These classes are examples 
that allow for the automatic collection of aggregate 
statistics across responses within a simulation.  For 
example, by attaching an instance of 
AggregateTimeWeightedVariable to multiple 
instances of TimeWeighted variables an aggregate 
time weighted total is collected.  This is facilitated 
through the use of the Observer/Observable pattern.  
Whenever, the value of the variable changes (e.g. line 
24), any listeners will be notified. 

• Queue – This class models a queue for holding objects 
that must wait within a simulation and provides for 
automatic collection of time in queue and number in 
queue statistics. The Queue model element 
automatically empties any queued entities when it is 
initialized at the beginning of a replication.  The 
runtime switching of queue disciplines is provided 
within the framework. 

• Resource – This class models a resource having a 
common set of units that can be allocated and 
automatically tabulates resource usage statistics. 

• ResourceSet – This class models a set of resources 
that may be requested via various resource selection 
rules. 

• EventGenerator – This class allows the user to 
define a recurring pattern of events, specify the time 
between events, the number of events to occur, etc. 
This provides the functionality similar to a CREATE 
module found in many simulation languages.   

 
In addition to these model elements, the JSL has a 

package that facilitates the modelling of objects that move 
through space.  For example, the user defines a spatial 
model (essentially a coordinate reference frame) and uses 
model elements that implement the 
SpatialElementIfc interface.  The modelling of 
mobile resources is facilitated with classes 
(MobileResource, Transporter, 
TransporterSet, etc.).  In addition, as mentioned in the 
literature review section, the JSL has packages for 
modelling queuing networks, inventory systems, supply 
chains, and transportation networks. 

Once a JSL model has been built the user can register 
observers to any model element within the model.  These 
observers can be notified when the model element indicates 
a change.  This mechanism is facilitated within the JSL via 
the observers package. 
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2.4 The Observers Package 

The observers package within the JSL is predicated on 
exploiting, to the extent possible, the already existing 
Observer/Observable pattern (see Gamma et al. (1995)) 
implemented within the Java system libraries. With the 
Observer/Observable pattern, the data is separated from the 
view of the data.  In this pattern, an observable object (an 
instance of a class that extends the Java class 
Observable) can be observed by one or more objects 
called Observers, which implement the Observer 
interface.  The Observable class has methods that allow 
the registration and management of observers. 
ModelElement extends from Observable and thus 
inherits all of its methods. Sub-classes of ModelElement 
can use the notifyObservers() method to notify any 
registered observers that it has changed in some manner. 
This pattern allows for loose coupling between the 
Observer and the Observable classes.  In fact, the 
Observable object does not need to know the type of 
the object that is observing it.  An observer could be a 
graphical user interface component, a class that writes to a 
database, a statistical collection object, etc.  This provides 
for extreme flexibility when extending and developing 
models based on the JSL. 

Statistical collection and output reporting are implemented 
using the observers package within the JSL.  The previously 
mentioned classes (ResponseVariable and 
TimeWeighted) both are observed by instances of the 
StatisticalObserver class.  In this case, whenever 
the value of the variable changes, the instance of a 
StatisticalObserver is notified.  It then is 
responsible for tabulating the appropriate statistics (batch, 
within replication, across replication, etc.)  

The observer package has many other classes that observe 
parts of the JSL.  Some examples include: 

 
• TimeWeightedObserver – This class observes and 

collects statistics on TimeWeighted variables. 
• VariableTraceTextReport – This class can be 

used to write the value of variables and the time that the 
variable changes to a text file.   

• SchedulerTraceReport – This class is used by 
the Scheduler class to write each event to a text file 
for tracing events. 

• BatchReport – This class facilitates the reporting in 
a text file the replication batch statistics. 

• ExperimentReport – This class reports in a text 
file statistics and information about the running of an 
experiment. 

• ReplicationReport – This class is used to report 
information to a text file about the running of a 
replication and its statistics. 

• AccessDBReport, AccessDBBatchReport, 
AccessDBReplicationReport, 
AccessDBSummaryReport – These classes 
provide examples for how to write the statistical 
information collected during a simulation (e.g. batch 
statistics, replication statistics, experiment statistics, 

etc.) to a Microsoft Access™ database.  Since Java 
facilitates the usage of any database through its Java 
database connectivity functionality, any database can be 
easily used. 

Of course, because there can be multiple observers on the 
same element, additional observers (e.g. user interface dials, 
animation, etc) can be easily registered to meet a variety of 
user needs.  Thus, the framework provided by the JSL can 
be readily extended.  

The next section presents an example of a relatively 
interesting model to illustrate how to model with the JSL. 

3 JOB SHOP SIMULATION EXAMPLE 

This example is based on the job shop model in Law (2007) 
page 140.  A job shop is essentially a queueing network 
where the jobs are the customers that must visit a sequence 
of workstations in order to get some processing completed.  
Each workstation has a queue and a resource with a 
specified capacity.  A sequence consists of a number of job 
steps, with each job step representing the machine and the 
processing time distribution for the given step.  There can 
be a number of different job types in the system, with each 
job type being assigned a particular sequence to follow 
through the shop.  Jobs that arrive to the shop are assigned a 
particular job type according to a probability distribution 
and then the jobs begin to follow the sequence associated 
with that job type.  The system time (total time from 
creation to exiting the system) must be collected by job 
type.   

For this example, there are 5 workstations in the shop and 
the job arrival process is Possion with a mean rate 4 per 
hour.  The distribution of job types is (0.3, 0.5, and 0.2) for 
the respective job types 1, 2, and 3.  There are 3 sequences, 
with job type 1 requiring workstations (3, 1, 2, 5), job type 2 
requiring workstations (4, 1, 3), and job type 3 requiring 
workstations (2, 5, 1, 4, 3).  Jobs that arrive to a workstation 
require 1 unit of the resource and if it is not available will 
wait in a first in first out queue.  The service times at each 
station are all Erlang order 2 random variables with the 
mean depending on the type of job and the current station. 

To model this situation using the JSL it is useful to 
conceptualize the classes of objects within the system and 
how they relate.  Then, the model can be built by 
developing new sub-classes of ModelElement and/or by 
directly using already existing classes.  Figure 5 presents a 
class diagram for the job shop model.  The class JobShop 
represents the entire system and can hold instances of 
WorkStation, Sequence, and JobGenerator.  The 
WorkStation class represents the location within the job 
shop where processing occurs and as indicated in the figure 
consists of an instance of Queue and an instance of a 
Resource.  The class Sequence represents the sequence 
of workstations to be visited using job steps (represented by 
the class JobStep).  The class JobStep knows the 
workstation and a reference to an object that implements the 
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RandomIfc. This reference will be used to hold the 
service time at the workstation.  The class, 
JobGenerator, is responsible for creating the jobs and 
introducing them into the model.  The class 
JobGenerator uses an instance of RandomList (part 
of the random package) to allow for randomly assigning the 
type of job.  The class JobType represents the notion that 
jobs have specific types and will collect system time 
responses by job type via the relationship to 
ResponseVariable. 

 

Insert Figure 5 about here 
 
The following presents part of the implementation of this 

model; however, many details have been omitted due to 
limitation on space.  From a simulation modelling 
standpoint, the JobGenerator, WorkStation, 
JobType, and Job classes are the most interesting.  Thus, 
the discussion will concentrate on these classes.   

The Job class is like the concept of an entity found in 
many simulation languages.  It represents the things (jobs) 
that flow through the system.  Code Listing 5 presents and 
excerpt from the JobGenerator class.  Both the Job and 
JobType classes are implemented as inner classes within 
JobGenerator.  Lines 10-14 show that a job type has a 
name, a sequence, and a response variable associated with 
it.  The class Job, shown in lines 16-38, shows that they are 
a sub-class of Request and that each job knows its job 
type (line 17) and has an iterator to represent its process 
plan (line 18).  A Request is used when interacting with 
the Resource class to represent the thing that uses the 
resource.  This iterator is determined by the job’s sequence 
via line 23. The job type is determined randomly in line 22.  
The object reference, myJobTypes, is an instance of a 
RandomList that returns job types according to a user 
specified probability distribution across the elements in the 
list. 

Code Listing 5 about here 
 
JobGenerator is a sub-class of EventGenerator 

(not shown).  Every instance of an EventGenerator 
must have a generate() method, see lines 1-8.  The 
generate() method is called every time the event occurs 
for EventGenerator.  As can be seen in line 4, this 
method creates an instance of a Job and then tells the job to 
perform its next job step (line 6).  As per lines 27-37, when 
a job performs its next job step it first checks to see if it has 
another job step (via line 29).  Then, in lines 30-33, it gets 
the appropriate step, sets the service time for the step (line 
31) and then tells the workstation associated with the step to 
process the job (line 33).  If there are no more job steps, 
then line 35 is invoked to collect statistics on the total time 
spent by the job in the system. 

 

Code Listing 6 about here 
 

The WorkStation class performs in a similar manner as 
previously described for the single server queue code 
described in Code Listing 3.  Code Listing 6 presents the 
WorkStation class in its entirety.  In line 1, WorkStation 
extends from the class SchedulingElement.  This class 
provides convenient methods within the JSL for scheduling 
events.  The structure of the class is very standard. First, in 
lines 3-5 the necessary object references are declared. Then 
in lines 13-15, the objects are created.  For example, line 14 
creates an instance of a Resource with the workstation 
serving as the resource’s parent model element.  Lines 18-
28, implement the logic to handle the arrival of jobs to the 
workstation.  This is similar to the previously mentioned 
customer arrival logic.  In this case, the job is first enqueued 
in line 19.  Then, if the resource is idle, the job is removed, 
the units of the resource allocated to the job (line 24), and 
then the job is started into service.  Lines 36-47 implement 
the end of service logic.  In line 38, the currently departing 
job is retrieved as an object attached to the event.  Then, it is 
used in line 39 to release the resource.  If there is a waiting 
job, then lines 40-44 remove the job and start the job into 
service.  Finally, the departing job is asked to perform its 
next job step in line 45. This sends the job to the next station 
in its sequence. 

Code Listing 4 already illustrated how to construct and 
run this model.  Recall that each of the individual elements 
of the model (e.g. JobGenerator, WorkStation, etc.) 
must be created and associated with an instance of the 
Model class.  Then, an instance of the experiment can be 
made and executed.  Running the model produces statistical 
output for each queue (time in queue and number in queue), 
each resource’s number busy statistics, system time by job 
type, etc.   

Table 1 presents the results (sample average (Avg.) and 
95% confidence interval half-widths (HW)) from running 
the model for 100 replications with a warm up period of 
5000 hours and a run length of 10000 hours.  These settings 
were chosen arbitrarily for illustrative purposes.  The same 
situation was modelled using Arena™ and executed under 
the same settings.  As can be seen from the table, the results 
are essentially the same.  No formal statistical test was done 
because it is well known that if enough samples are 
collected a statistical test of the difference can be made to 
reject the hypothesis of equality because each system was 
run under different random numbers.  While no formal 
testing of time to execute was examined, it is interesting to 
note that the Arena™ model took 2.85 minutes to execute 
while the Java program took 3.26 minutes on the same 
computer. 

2.1.3 Process View Modelling  

To wrap up the modelling capabilities of the JSL, an 
overview of how the JSL handles process view modelling is 
presented.  In Rossetti et al. (2000) a prototype for using the 
Java language’s thread mechanism to implement the process 
interaction approach within the JSL was discussed.  The 
initial testing of this concept proved disappointing.  Because 
of the way that Java implements its threading, the constant 
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context switching that occurs within a simulation model 
makes the overhead of using threads in this manner very 
problematic.  In fact, L’Ecuyer et al. (2002) describe this 
similar problem in their thread-based implementation for 
processes.  Simulations using Java’s thread mechanism take 
significantly longer to execute.  Even Java’s recent revisions 
of its thread packages have not made an improvement in this 
regard.  The fact is, Java’s thread mechanism was never 
meant for this use. Weatherly and Page (2004) also discuss 
this issue and present a very reasonable argument for adding 
co-routine support to the Java language.  Co-routines are the 
basic mechanism that the languages Simscript™ and 
ModSim use for their process interaction approach to 
simulation modelling. Indeed, this would be great 
improvement for the use of Java for simulation modelling if 
it was realized.  Jacobs and Verbraeck (2004) also discuss 
the issues related to using threads as the underlying 
mechanism for performing process interaction in Java.  
They develop formalisms for mapping process routines on 
to the event scheduling formalism via a Java interpreter. 
Their approach is based on class reflection.  

For the moment, the original implementation of the JSL’s 
process interaction approach based on Java’s threads has 
been depreciated; however, the JSL does support the 
process description approach to implementing the process 
view.  The approach taken by the JSL is similar (in spirit) to 
what was done in Jacobs and Verbraeck (2004).  The JSL 
maps the process interaction to a state transition diagram 
that functions based on event scheduling.  The advantage of 
the JSL’s mechanism is that it does not require an 
interpreter.  The disadvantage is that entity state and its 
relationship to the process state is more difficult to maintain.  
For example, the JSL does not store context like a co-
routine implementation does. 

Simulation languages like Arena™ are built upon the 
notion of describing the process (or life of an entity) through 
a series of commands.  This is often built via a network 
representation of the flow of entities as described in Joines 
and Robert (1996) (e.g. YANSL).  The JSL implements the 
process view by allowing the user to describe the flow of an 
entity through a series of commands.  Essentially, the 
commands are held in a list and the current command that 
the entity is executing is always noted so that the next 
command can be executed.  This is similar to Jacobs and 
Verbraeck’s notion of a control state. The user uses the 
ProcessDescription class to add various commands 
(ProcessCommands) to the process.  Then, the client can 
create a process executor (ProcessExecutor) that will 
iterate through the commands for a given entity.  This 
executes the process for the entity. 

The ProcessExecutor is the real workhorse in 
implementing the JSL’s process description approach.  In 
essence, an instance of a ProcessExecutor acts as a 
separate “process” that runs an entity through the list of 
commands associated with a particular 
ProcessDescription.  The ProcessExecutor 
keeps track of the current state of the “process”, i.e. whether 
it is created, initialized, suspended, executing, or terminated.  

In addition, a ProcessExecutor keeps track of the 
currently executing command, which enables the 
suspension, resumption, jumping within, and the 
termination of the execution of the commands.  The 
ProcessExecutor relies heavily on a rigorous state 
pattern, Gamma et al. (1995) (see Figure 5) to properly 
implement the legal processing of the commands.  The key 
to this pattern is the ability to suspend and resume the 
iteration through the process commands.  In the figure, 
when an instance of a ProcessExecutor is constructed 
it is immediately placed in the Created state.  Then, it may 
only be initialized.  Once in the Initialized state, it is ready 
to be executed.  This is accomplished with the use of the 
start(command index) method, which tells the 
executor to start executing the command at the provided 
index.  Once in the Executing state, the process can 
transition normally to the next command in the process 
description or jump to other commends.  In addition, the 
process, can be suspended at the current command.  If the 
process has been suspended, it can then be resumed at a 
particular command.  Finally, the process can be terminated.  
Once terminated the process can be re-used again by using 
the initialize() method. 

Insert Figure 5 about here 

Due to space limitations, the coding details of how all this is 
implemented are omitted; however, Code Listing 7 shows 
how easy it is to develop a model using these constructs. 

Insert Code Listing 7 about here 

In lines 4-17 of the listing, the major model elements 
necessary to model job type 2’s process within the job shop 
model are constructed and added to the model.  In lines 12-
17, an instance of a Resource and an instance of a Queue 
are used to represent a workstation in the job shop.  Then, in 
line 19, an instance of a ProcessDescription is 
created.  This will be used to describe the life of a type 2 
job.  In line 23, an instance of an 
EntityProcessGenerator is created.  This class will 
create the entities according to an inter-arrival time and 
instantiate an instance of the ProcessExecutor class to 
have the entity execute the process described by the 
ProcessDescription class. 

In lines 26-36, a series of process commands (e.g. Seize, 
Delay, and Release) are created and attached to the 
instance of ProcessDescription.  These represent the 
sequence of visits to workstations 4, 1, and 3 required by 
job type two. When the simulation model is run, entities will 
be created and flow through these commands according to 
the process description.   

Since the JSL is open source, anyone can add to the 
features of the process modelling by implementing 
additional process commands.  The JSL process description 
architecture also supports the use of macro commands 
(commands consisting of other commands).  For example, 
the three commands Seize, Delay, and Release can be 
combined into a single command (e.g. like Arena™’s 
Process module) without much difficulty. 
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4 FUTURE RESEACH AND DEVELOPMENT 

The JSL represents a readily extendable and useful open 
source software implementation for developing discrete 
event simulation models. The only code that is not licensed 
under the GNU GPL is the random number generator from 
L’Ecuyer (2001). This code can be found at 
(http://www.iro.umontreal.ca/~simardr/indexe.html) and is 
freely available for non-commercial purposes. 

Because of the JSL’s extendibility, there always remains 
room for future software development.  The key areas for 
future development include 1) adding to the range of 
statistical output techniques, 2) adding to the variety of 
random number distributions, 3) providing distribution 
fitting utilities, 4) adding more process commands to the 
process description modelling elements, 5) re-implementing 
the process view based on threads for educational and 
testing purposes, 6) adding animation, and 7) adding 
graphical user interface support. 

Future research within the JSL involves adding to the 
modelling capabilities for supply chains, queueing 
networks, and transportation networks.  Other addition 
research work involves adding support packages for 
simulation optimization techniques, studying the efficiency 
and memory usage of different JSL design implementations, 
and integrating other simulation paradigms into the JSL 
architecture (e.g. agent based modelling and continuous 
simulation). 

A number of tutorial examples for the JSL have been 
developed based on examples within Law (2007). In 
particular, there are implementations of the time-shared 
computer model, the (s, S) inventory system, the job shop 
model, and other queuing models.  Thus, the JSL would be 
an excellent complement to the use of Law (2007) for 
teaching simulation. A complete set of JavaDocs has been 
generated for the library, and of course, the source is 
available.  The author also plans a textbook based on the 
JSL. 
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Figure 1: Key Interfaces and Classes in Random Package 
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Figure 2: AbstractStatistic and its Read-Only Interface 
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Figure 3: Classes in the Statistics Package 
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Figure 4: Key Modelling Classes 
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Code Listing 1: Lindley’s Equation Example 

1 public static void main(String[] args) { 
2  // inter-arrival time distribution 
3  RandomIfc y = new Exponential(1.0); 
4  // service time distribution 
5  DistributionIfc x = new Exponential(0.7); 
6  int r = 30; // number of replications 
7  int n = 100000; // number of customers 
8  int d = 10000; // warm up 
9  AbstractStatistic avgw = new Statistic(“Avg waiting time"); 
10  Statistic avgpw = new Statistic("prob of wait"); 
11  Statistic wbar = new Statistic("Within rep avg waiting time"); 
12  Statistic pw = new Statistic("Within rep prob of wait"); 
13  for(int i=1;i<=r;i++){ 
14   double w = 0; // initial waiting time 
15   for(int j=1;j<=n;j++){ 
16    w = Math.max(0.0, w + x.getValue() - y.getValue()); 
17    wbar.collect(w);// collect waiting time 
18    pw.collect((w>0.0)); // collect P(W>0) 
19    if (j == d){// clear stats at warmup 
20     wbar.reset(); 
21     pw.reset(); 
22    } 
23   } 
24   //collect across replication statistics 
25   avgw.collect(wbar.getAverage()); 
26   avgpw.collect(pw.getAverage()); 
27   // clear within replication statistics for next rep 
28   wbar.reset(); 
29   pw.reset(); 
30  } 
31  System.out.println(avgw); 
32  System.out.println(avgpw); 
33 } 
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Exhibit 2: Sample Output for Lindley Equation Example 

ID 1 
Name Across rep avg waiting time 
Number 30.0 
Minimum 1.5523842361703213 
Maximum 1.7601221186157152 
Sum 49.42075879668269 
Average 1.6473586265560898 
Variance 0.001860191056515051 
Standard Deviation 0.04312993225725089 
Standard Error 0.007874412266988673 
Confidence Coefficient 1.965 
Half-width 0.015473220104632743 
Weighted Average 1.64735862655609 
Weighted Sum 49.4207587966827 
Sum of Weights 30.0 
Weighted Sum of Squares 81.46765887530192 
Last value collected 1.6325147072873045 
Last weighted collected 1.0 
Lag 1 Correlation -0.14736789218428864 
Von Neumann Lag 1 Test Statistic -0.8121440898730583 
Number of missing observations 0.0 
 
ID 2 
Name Across rep prob of wait 
Number 30.0 
Minimum 0.6895666666666654 
Maximum 0.7112333333333374 
Sum 21.026577777777817 
Average 0.7008859259259272 
Variance 1.563895217823943E-5 
Standard Deviation 0.003954611507877788 
Standard Error 7.220099763447277E-4 
Confidence Coefficient 1.965 
Half-width 0.00141874960351739 
Weighted Average 0.7008859259259272 
Weighted Sum 21.026577777777817 
Sum of Weights 30.0 
Weighted Sum of Squares 14.737685964444502 
Last value collected 0.7009333333333216 
Last weighted collected 1.0 
Lag 1 Correlation -0.1389880977659123 
Von Neumann Lag 1 Test Statistic -0.7830506130522926 
Number of missing observations 0.0 
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Code Listing 2: Batching and Standardized Time Series Analysis 
 

1 AbstractStatistic wbar = new BatchStatistic("Batch waiting 
time"); 

2 AbstractStatistic wbarSTS = new 
StandardizedTimeSeriesStatistic("STS waiting time"); 

3 double w = 0; // initial waiting time 
4 for(int j=1;j<=n;j++){ 
5  w = Math.max(0.0, w + x.getValue() - y.getValue()); 
6  wbar.collect(w);// collect waiting time 
7  wbarSTS.collect(w); 
8  if (j == d){// clear stats at warmup 
9   wbar.reset(); 
10   wbarSTS.reset(); 
11  } 
12 } 
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Code Listing 3: Example Event Routines 

 
1 protected void initialize() {// start the arrivals 
2   super.initialize(); 
3   scheduleEvent(myArrivalListener, myArrivalRV.getValue()); 
4 } 
5  
6 class ArrivalListener implements ActionListenerIfc { 
7   public void action(JSLEvent event) {// new customer arrived 
8     if (myNumBusy.getValue() < myNumServers) { // server available 
9       myNumBusy.increment(); // make server busy 
10       //  schedule end of service 
11       scheduleEvent(myEOSListener, myServiceRV.getValue());  
12     } else { // no server available 
13       myNQ.increment(); // place customer in queue 
14     } 
15     //  always schedule the next arrival 
16     scheduleEvent(myArrivalListener, myArrivalRV.getValue());  
17   } 
18 } 
19  
20 class EndServiceListener implements ActionListenerIfc { 
21   public void action(JSLEvent event) {// customer departing 
22     myNumBusy.decrement(); // customer is leaving server is freed 
23     if (myNQ.getValue() > 0) { // queue is not empty 
24       myNQ.decrement(); // remove from queue 
25       myNumBusy.increment(); // make server busy 
26       //  schedule end of service 
27       scheduleEvent(myEOSListener, myServiceRV.getValue()); 
28     } 
29   } 
30 } 
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Code Listing 4: Building and Running the Job Shop Model 

 

 
 

1 public static void main(String[] args) { 
2  System.out.println("Jobshop Example");      
3  // create the containing model 
4  Model m = Model.createModel(); 
5  // create the jobshop 
6  JobShop shop = new JobShop(m, "JobShop"); 
7   // create the workstations   
8  WorkStation w1 = shop.addWorkStation(3, "w1"); 
9  WorkStation w2 = shop.addWorkStation(2, "w2"); 
10  WorkStation w3 = shop.addWorkStation(4, "w3"); 
11  WorkStation w4 = shop.addWorkStation(3, "w4"); 
12  WorkStation w5 = shop.addWorkStation(1, "w5");   
13   // create the sequences 
14   Sequence s1 = shop.addSequence(); 
15  s1.addJobStep(w3, new Gamma(2.0, 0.5/2.0)); 
16  s1.addJobStep(w1, new Gamma(2.0, 0.6/2.0)); 
17  s1.addJobStep(w2, new Gamma(2.0, 0.85/2.0)); 
18  s1.addJobStep(w5, new Gamma(2.0, 0.5/2.0));            
19  Sequence s2 = shop.addSequence(); 
20  s2.addJobStep(w4, new Gamma(2.0, 1.1/2.0)); 
21  s2.addJobStep(w1, new Gamma(2.0, 0.8/2.0)); 
22  s2.addJobStep(w3, new Gamma(2.0, 0.75/2.0)); 
23  Sequence s3 = shop.addSequence(); 
24  s3.addJobStep(w2, new Gamma(2.0, 1.2/2.0)); 
25  s3.addJobStep(w5, new Gamma(2.0, 0.25/2.0)); 
26  s3.addJobStep(w1, new Gamma(2.0, 0.7/2.0)); 
27  s3.addJobStep(w4, new Gamma(2.0, 0.9/2.0)); 
28  s3.addJobStep(w3, new Gamma(2.0, 1.0/2.0)); 
29  JobGenerator jg = shop.addJobGenerator(new Exponential(0.25)); 
30  jg.addJobType("A", s1, 0.3); 
31  jg.addJobType("B", s2, 0.5); 
32  jg.addLastJobType("C", s3); 
33  // create the experiment to run the model 
34  Experiment e = new Experiment(m, "Job Shop"); 
35  // set the parameters of the experiment 
36  e.setNumberOfReplications(100); 
37  e.setLengthOfReplication(10000.0); 
38  e.setLengthOfWarmUp(5000.0); 
39  // turn on the desired reporting 
40  e.turnOnExperimentReport(); 
41  // tell the experiment to run 
42  e.runAll(); 
43  System.out.println("Done!"); 
44 } 
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Figure 5: Class Diagram for Job Shop System 
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Code Listing 5: Generating Jobs in the Job Shop Model 
1 protected void generate(JSLEvent event){ 
2   if (!myJobTypes.isEmpty()){ 
3     // create the job 
4     Job job = new Job(); 
5     // tell it to start its sequence 
6     job.doNextJobStep(); 
7   } 
8 } 
9  
10 class JobType { 
11   String myName; 
12   Sequence mySequence; 
13   ResponseVariable mySystemTime; 
14 } 
15  
16 class Job extends Request { 
17   JobType myType; 
18   Iterator<JobStep> myProcessPlan; 
19    
20   Job(){ 
21     super(); 
22     myType = myJobTypes.getRandomElement(); 
23     myProcessPlan = myType.mySequence.getIterator(); 
24     setName(myType.myName); 
25   } 
26    
27   public void doNextJobStep(){ 
28     initialize(); 
29     if (myProcessPlan.hasNext()){ 
30       JobStep step = myProcessPlan.next(); 
31       setTimeRequested(step.getProcessingTime()); 
32       WorkStation w = step.getWorkStation(); 
33       w.arrive(this); 
34     } else { 
35       myType.mySystemTime.setValue(getTimeSinceCreation()); 
36     } 
37   } 
38 } 
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Code Listing 6: The WorkStation Class in the Job Shop Model 
1 public class WorkStation extends SchedulingElement { 
2    
3   private Queue myQueue; 
4   private Resource myResource; 
5   private EndServiceListener myEndServiceListener; 
6    
7   public WorkStation(ModelElement parent){ 
8     this(parent, 1, null); 
9   } 
10    
11    public WorkStation(ModelElement parent, int numServers, String 

name) { 
12     super(parent, name); 
13     myQueue = new Queue(this, getName() + "_Q"); 
14     myResource = new Resource(this, numServers, getName() + "_R"); 
15     myEndServiceListener = new EndServiceListener(); 
16   } 
17    
18   public void arrive(JobGenerator.Job job){ 
19     myQueue.enqueue(job); 
20     if (myResource.isIdle()){ 
21     Request nextJob = (Request)myQueue.peekNext(); 
22     if (job == nextJob){ 
23       myQueue.removeNext(); 
24       myResource.allocate(job); 
25         scheduleEndService(job); 
26     } 
27    } 
28   } 
29    
30   private void scheduleEndService(JobGenerator.Job job) { 
31     double t = job.getTimeRequested(); 
32     scheduleEvent(myEndServiceListener, t, 
33         "Job " + job.getId() + " End Service at " + getName(), job); 
34   } 
35    
36   class EndServiceListener implements ActionListenerIfc { 
37     public void action(JSLEvent event) {       
38       JobGenerator.Job job = (JobGenerator.Job)event.getMessage(); 
39       myResource.release(job); 
40       if (myQueue.size() > 0 ) {// queue has a job 
41       JobGenerator.Job nextJob = 

(JobGenerator.Job)myQueue.removeNext(); 
42     myResource.allocate(nextJob); 
43         scheduleEndService(nextJob); 
44       } 
45       job.doNextJobStep(); 
46     } 
47   }  
48 } 
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Table 1: Sample Output for Job Shop Model 

 JSL Event View Arena 
 Avg HW Avg HW 
Waiting time in Q1 3.415 0.18 3.539 0.21 
Waiting time in Q2 31.968 4.36 31.650 5.42 
Waiting time in Q3 0.188 0.00 0.186 0.00 
Waiting time in Q4 9.014 0.81 8.894 0.73 
Waiting time in Q5 0.965 0.02 0.961 0.02 
Number in Q1 13.688 0.75 14.164 0.87 
Number in Q2 64.157 8.85 63.675 11.07 
Number in Q3 0.752 0.01 0.746 0.01 
Number in Q4 25.286 2.29 24.916 2.05 
Number in Q5 1.929 0.04 1.92 0.03 
Number Busy at W1 2.883 0.00 2.881 0.00 
Number Busy at W2 1.979 0.00 1.978 0.00 
Number Busy at W3 2.902 0.00 2.900 0.00 
Number Busy at W4 2.922 0.00 2.920 0.01 
Number Busy at W5 0.799 0.00 0.798 0.00 
System Time Type 1 39.055 4.42 38.874 5.44 
System Time Type 2 15.264 0.83 15.262 0.81 
System Time Type 3 49.496 4.51 49.137 5.54 

 



JAVA SIMULATION LIBRARY (JSL): AN OPEN-SOURCE OBJECT-ORIENTED LIBRARY FOR DISCRETE-EVENT SIMULATION IN 
JAVA 25 

 

 
 
 

Created ExecutingInitialized

SuspendedTerminated

initialize ()

initialize ()
terminate()

terminate()

terminate()

start(command index)

jumpTo(command index)

resume(command index)
suspend()

Natural transition to 

next command

 

Figure 5: Process State Transition Diagram 
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Code Listing 7: Job Shop Model with Process View 

 
1 // create the containing model 
2 Model m = Model.createModel(); 
3 // create the elements in the model 
4 Variable v1 = new Variable(m, 1.0, "amt requested"); 
5 RandomIfc s2w4 = new Gamma(2.0, 1.1/2.0); 
6 RandomVariable sts2w4 = new RandomVariable(m,s2w4,"ST S2 W4"); 
7 RandomIfc s2w1 = new Gamma(2.0, 0.8/2.0); 
8 RandomVariable sts2w1 = new RandomVariable(m,s2w1,"ST S2 W1"); 
9 RandomIfc s2w3 = new new Gamma(2.0, 0.75/2.0); 
10 RandomVariable sts2w3 = new RandomVariable(m,s2w3,"ST S2 W3"); 
11 // create the resources and queues for each workstation 
12 Resource r1 = new Resource(m, 3, "W1"); 
13 Queue q1 = new Queue(m, "W1 Queue"); 
14 Resource r3 = new Resource(m, 4, "W3"); 
15 Queue q3 = new Queue(m, "W3 Queue"); 
16 Resource r4 = new Resource(m, 3, "W4"); 
17 Queue q4 = new Queue(m, "W4 Queue"); 
18 // create the process description 
19 ProcessDescription jt2 = new ProcessDescription(m,"Job Type 2"); 
20 // create the time btw arrivals 
21 DistributionIfc tbajt2 = new Exponential((10.0/5.0)*0.25); 
22 // create the model element to generate type 2 jobs 
23 new EntityProcessGenerator(m, jt2, tbajt2, tbajt2); 
24 // create the commands used in the process description 
25 // workstation 4 
26 jt2.addProcessCommand(new Seize(m, v1, r4, q4)); 
27 jt2.addProcessCommand(new Delay(m, sts2w4)); 
28 jt2.addProcessCommand(new Release(m, r4, q4)); 
29 // workstation 1 
30 jt2.addProcessCommand(new Seize(m, v1, r1, q1)); 
31 jt2.addProcessCommand(new Delay(m, sts2w1)); 
32 jt2.addProcessCommand(new Release(m, r1, q1)); 
33 // workstation 3 
34 jt2.addProcessCommand(new Seize(m, v1, r3, q3)); 
35 jt2.addProcessCommand(new Delay(m, sts2w3)); 
36 jt2.addProcessCommand(new Release(m, r3, q3)); 

 


