
ReMod3D: A High-Performance Simulator for Autonomous,
Self-Reconfigurable Robots

Thomas Collins, Nadeesha Oliver Ranasinghe, Wei-Min Shen

Abstract— Three-dimensional, physics-based simulators are
important to the field of self-reconfigurable robotics because
they allow researchers to approximate the physical interactions
and autonomous behaviors of large numbers of modules in
a low-cost, safe, and highly-controlled manner. This paper
presents a novel, high-performance, general-purpose simulator
for autonomous, self-reconfigurable robots called ReMod3D
(RM3D) that overcomes the speed and scalability limitations of
existing self-reconfigurable simulators while, at the same time,
allowing for realistic module structures, complex environments,
and high physical simulation fidelity. While most existing self-
reconfigurable simulators view modules as actuated physical
bodies with programmable controllers, RM3D views them as
embodied agents, defined not only by their physical bodies

(links, joints, docks, sensors, actuators) but also by their minds

(actions, percepts, behaviors, world models) and the noise
inherent in the interaction between sensors, actuators, and the
environment. RM3D also simulates inter-module dock connec-
tion breakage, something novel for self-reconfigurable robot
simulators. Additionally, we present experimental evidence
showing that this novel architecture makes RM3D well-suited
to locomotion, manipulation, reconfiguration, and embodied
intelligence research.

I. INTRODUCTION

The successful development of an autonomous robotic
system suitable for deployment in the real world requires
the careful design and evaluation of both hardware and
control software. Hardware failures, power limitations, and
manufacturing costs are just a few of the difficulties inherent
in performing design-build-test iterations for robotic hard-
ware in the physical world. Building and evaluating robotic
control software using real hardware is also challenging;
unpredictable real-world environments may make validating
the software difficult, and there is always a risk of software
bugs causing damage to potentially expensive prototype
hardware.

Developing robotic systems that are modular and self-
reconfiguring amplifies these challenges. Such systems [1]–
[7] often require a large number of physically-interacting
modules to achieve reconfigurability, which increases hard-
ware costs, power requirements, and the likelihood of
hardware damage or malfunctions. In addition, many self-
reconfiguring robotic systems, such as ATRON [1] and
SuperBot [4], utilize sophisticated distributed control algo-
rithms that may be difficult to develop, debug, and validate
without the aid of a simulator. When hardware is in limited
supply due to cost or time constraints, researchers may be

Thomas Collins, Nadeesha Oliver Ranasinghe and Wei-Min Shen are with
Information Sciences Institute, The University of Southern California, Los
Angeles, U.S.A. collinst@usc.edu, nadeeshr@usc.edu, and shen@isi.edu

unable to evaluate the effectiveness of control software on
large populations of modules without simulation tools.

It is apparent, then, that three-dimensional, physics-based
simulators are of vital importance to the field of self-
reconfigurable robotics. Self-reconfigurable robot simulators
must meet a number of criteria: (1) they must be highly
scalable in terms of the number of modules that can be
simulated simultaneously; (2) they must provide good per-
formance (simulation speed), even on a single computer;
(3) they must support complex module structures in order
to represent real-world hardware faithfully; (4) they must
have high physical fidelity so that there is a high degree of
similarity between simulated module behavior and real-world
module behavior as well as between simulated environments
and real-world environments; (5) they must simulate the
autonomous docking and undocking of modules and provide
inter-module communication facilities that are aware of the
connections between modules; (6) they must provide general
and powerful mechanisms for specifying module intelligence
(behaviors) in order to be useful in embodied intelligence
research; (7) they must be highly extensible to support new
simulated hardware and software.

It is in compliance with these requirements that we de-
signed and built ReMod3D (RM3D). RM3D is a general-
purpose, three-dimensional, physics-based simulator for au-
tonomous, self-reconfigurable robots built in C++ that uti-
lizes the NVIDIA R� PhysX R� physics engine1. RM3D is
novel in terms of its scalable performance and fidelity,
its ability to simulate dock connection breakage, and its
architecture, making it well-suited to many diverse types of
research in the field, including locomotion, manipulation, re-
configuration, and embodied intelligence. Figure 1 provides
some example uses of RM3D.

This paper is organized as follows: in Section II, we
discuss previous work related to RM3D. In Section III, we
discuss the software architecture of the RM3D simulator.
Section IV gives results and describes the novel simulation
abilities provided by RM3D. Section V concludes with future
research directions.

II. RELATED WORK

Building simulators for self-reconfigurable robots is a
challenging endeavor because it requires knowledge of
robotics, 3D graphics, the inner workings of physics engines,
and software engineering. This difficulty is heightened by the
fact that the criteria for these simulators (Section I) are often

1http://www.geforce.com/hardware/technology/physx



Fig. 1. Example uses of ReMod3D. From top left to bottom right: (a) a complex structure made of SuperBot [4] modules; (b) part of a simulation
scene populated with 1000 autonomous SuperBot modules moving all their motors simultaneously; (c) part of a chain made of 1000 autonomous SuperBot
modules connected front-to-back executing a sinusoidal snake motion; (d) a 9-DOF manipulator made of SuperBot modules and elongated docks; (e) a
6-module SuperBot rolling track; (f) 7 ATRON [1] modules connected in an 8-shape; (g) a 5-module SuperBot snake in a complex environment with a
custom height field terrain, 1000 fluid particles in a pool, and over 200 rigid body obstacles; (h) a mobile robot (Wheelbot) with a visualized range sensor
and four wheels, each of which has its own independent velocity drive. With the exception of (b) and (c), which were scalability tests, all simulations in
this figure run in real-time (60 frames per second with a time-step of 1/60th of a second). Simulations (b) and (c) run at 1/10th real-time speed (3 frames
per second with a time-step of 1/30th of a second). These experiments were run on a MacBook Pro with a 2.4 GHz Intel Core i7 and 8 GB of RAM.

difficult to meet simultaneously. For example, increasing
physical fidelity tends to decrease performance, and allowing
complex module structures often adversely affects scalability.
In this section, we explore the existing general-purpose and
specialized robot simulators that are related to RM3D with
a particular focus on the three-dimensional physics engines
they use and the module frameworks they support.

A. Physics Engine

The 3D physics engine of a simulator greatly affects
its scalability, performance, its ability to support complex
module structures, and its physical fidelity (criteria 1-4). The
three most popular and powerful physics engines available
to researchers today are the Open Dynamics Engine (ODE)2,
Bullet3, and PhysX R�.

Open Dynamics Engine. ODE is an open-source 3D rigid
body dynamics solver. It has been used as the primary 3D
physics engine in many robotics simulators including the
popular mobile robot simulator Gazebo [8], the proprietary
mobile robot simulator Webots [9], the swarm robot sim-
ulator ARGoS [10], and Robot3D [11] (part of the Repli-
cator/Symbrion project [12]). Using ODE, these simulators
have produced high-fidelity, three-dimensional simulations of
smaller numbers of complex robots in realistic environments,
which suits their intended purposes well. However, the
authors have extensive experience with ODE in the form
of the ODE-based Superbot Simulator [13]–[15]4 and have
observed that its performance and fidelity rapidly break
down as the number of autonomous modules increases,
making it a poor candidate for the physics engine in a
self-reconfigurable robot simulator. The Superbot Simulator
suffers from extremely poor performance with as few as 20
SuperBot modules, and is completely unusable with 100 or

2http://www.ode.org
3http://bulletphysics.org/wordpress/
4Videos available at http://www.isi.edu/robots/media-superbot.html

more SuperBot modules due to collision detection failures
and incredibly slow simulation speeds stemming from ODE’s
inefficiencies. ODE is also hampered by its lack of built-in
GPU and multithreading support for physics calculations, its
lack of built-in support for simulating particle systems such
as fluids, and its lack of soft-body physics. For these reasons,
we chose not to extend any ODE-based simulator for our
purposes.

Bullet. In contrast to ODE, the open-source Bullet physics
engine offers solid performance and fidelity in a way that
is scalable, even with complex robotic modules in complex
environments. Bullet also features multithreaded physics
calculations, soft body physics, particle systems, and fluids.
The most notable simulators making use of Bullet are the
mobile robot simulators V-REP5 and MORSE [16] as well
as the Unified Simulator for Self-reconfigurable Robots
(USSR) [17], a general-purpose self-reconfigurable robot
simulator.

Both V-REP and MORSE simulate complex mobile robots
in realistic environments. However, MORSE’s scalability is
limited by design; it is intended to support only approxi-
mately 15 autonomous modules simultaneously on a single
computer at 20 frames per second. V-REP, on the other
hand, is proprietary, which severely limits its extensibility.
The USSR offers good performance and supports complex
module structures, but its scalability and physical fidelity are
its limiting factors. The USSR has been shown to simulate
only up to 303 Odin modules [18] at 1/10th real-time speed
on a 2.4 GHz dual-core MacBook Pro with 4 GB of RAM.
Importantly, these simulated Odin modules are made of
simple spheres, cylinders and cones, which are much easier
for physics engines to simulate than more general convex
meshes. Additionally, to the best of our knowledge, the
USSR does not allow users to create realistic environments

5http://www.coppeliarobotics.com



involving height field terrains and particle systems (debris,
fluids) that can interact with simulated modules, limiting its
fidelity. At the time of this writing, the USSR’s physical
fidelity and scalability limitations also stem from Bullet’s
primary downside: its lack of built-in multi-GPU support for
accelerating physics calculations.

PhysX R�. PhysX R� is a commercial-grade physics en-
gine developed by NVIDIA R�. PhysX R� has been used in
a number of robot simulators, both general-purpose and
specialized. These include USARSim [19], designed for
simulating search and rescue operations with mobile robots;
Microsoft Robotics Developer Studio6, designed for high-
fidelity mobile robot simulations in realistic environments;
and SwarmSimX [20], a recent real-time, multi-robot simula-
tor. PhysX R� provides excellent scalability, performance and
fidelity, native multi-GPU support, native multithreading sup-
port, soft body physics mechanisms, and GPU-accelerated
particle, fluid and cloth simulations. These features make it
the most well-suited of the three major physics engines for
use in a self-reconfigurable robot simulator; however, none
of the existing PhysX R� simulators meet all the criteria for
self-reconfigurable robot simulators, nor can they be easily
modified to do so.

As [10] point out, USARSim’s architecture was not de-
signed to provide easy access to underlying models, meaning
that it would be very difficult to extend it to support general-
purpose docking mechanisms and connection-aware commu-
nication between modules in a way that facilitated further
extensibility by users. As was the case with V-REP, the
proprietary nature of Microsoft Robotics Developer Studio
severely limits its extensibility. Finally, SwarmSimX was
designed explicitly to model physically-independent multi-
robot systems. Though its design makes it extensible and it is
open-source, most of the simulator’s core functionality would
have to be dramatically altered to add self-reconfigurable
functionality, saving minimal, if any, work.

B. Module Framework
The module framework provided by a self-reconfigurable

robot simulator is the set of abstract software mechanisms
that allows users to define new modules by specifying their
properties and basic functionality and provides users with an
application programming interface (API) to populate simu-
lated scenes with them. The module framework is largely
responsible for how well a simulator meets criteria 5-7
(Section I).

Existing self-reconfigurable simulators, such as the USSR,
focus heavily on body research (locomotion, manipulation,
reconfiguration) while providing only minimal support for
mind research (reasoning, planning, learning), which is in-
tegral to self-reconfigurable robotics research. The USSR
architecture views self-reconfigurable modules as physical
robots with controllers. Such a simulation design is well-
suited to locomotion, manipulation, and physical reconfigu-
ration research, but it is not as well-suited to embodied intel-
ligence research. For instance, to the best of our knowledge,

6http://www.microsoft.com/robotics

the USSR does not provide any generalized capabilities for
adding sensor and actuator noise, nor does it support sensors
that do not return floating point values. This would make it
difficult to simulate reasoning and planning under varying
degrees uncertainty or to create abstract sensors (such as an
obstacle sensor that returns a set of features about the nearest
obstacle). These module intelligence limitations also limit the
USSR’s extensibility.

As discussed in subsequent sections, RM3D overcomes
the speed and scalability limitations of existing self-
reconfigurable simulators while, at the same time, allowing
for realistic module structures, complex environments, and
high physical simulation fidelity (criteria 1-4) primarily by
utilizing the PhysX R� engine, which, importantly, utilizes
the supported GPUs on the user’s computer to accelerate
calculations.

The module framework of RM3D, which views modules
as embodied agents - autonomous entities associated with a
physical body (links, joints, docks), a model of the world
(actions taken, observations), a behavior (program), a set
of sensors, a set of percepts, a set of actuators, and a
set of actions - facilitates extensibility and makes RM3D
suitable for many diverse types of research in the field of
self-reconfigurable robotics, including both body and mind
(intelligence) research. The way in which RM3D’s software
architecture (Section III) makes use of this module frame-
work demonstrates that RM3D does, in fact, meet criteria
5-7 for a self-reconfigurable robot simulator as well.

III. SOFTWARE ARCHITECTURE

Architecturally speaking, RM3D is comprised of a simu-
lation core that manages populations of modules connected
in arbitrary ways via their docks, an interface to the PhysX R�

engine, and an OpenGL7 renderer. To run simulations, users
instantiate experiments, which are C++ programs with a
main function (to initiate the simulation) and a subclass of
the Experiment class, which defines an init function and
a shutdown function. The init function is used to create
instances of existing module types, configure simulation
environments (using the Environment class), and load module
behaviors. The shutdown function is used to release dynamic
memory. The simulation core calls these functions at the
appropriate time. Figure 2 visualizes this architecture.

A. The Simulation Core

The simulation core contains the primary step function of
the simulator as well as the renderer runloop. The step func-
tion allows modules to read their sensors, execute actions,
send and receive messages, and execute their behaviors.
It also manages all interactions between modules (such
as messaging, docking and undocking). The step function
interfaces with PhysX R� to simulate the physical phenomena
of a scene for a user-defined period of time, called a time-
step, and update the simulation state. The step function is
integrated with the renderer runloop such that one time-step

7http://www.opengl.org



Fig. 2. The simplified software architecture of the ReMod3D simulator.

Algorithm 1: Simplified simulator step function
Input: None
Output: None

1 if program not paused then
2 foreach module do
3 module.step();

/

*

Module reads sensors, executes

behavior, sends/receives

messages, executes actions,

updates model.

*

/

4 route messages to message boxes;
5 foreach pair of docked modules do
6 if either dock in connection no longer enabled

then
7 destroy joint between modules;
8 update connections;

9 foreach pair of enabled, un-engaged docks do
10 if within distance/orientation tolerances then
11 create joint between modules;
12 update connections;

13 physicsEngine.simulate(time-step);

of time is simulated immediately before each renderer frame
update. Thus, the most up-to-date simulation state is always
available for the renderer to display to the user. Pseudocode
for this function is given in Algorithm 1.

The simulation core handles inter-module communication
by establishing message boxes for each module and updating
which docks (of which modules) are connected to one
another each time the step function is called. This allows
RM3D to provide connection-aware communication between
modules. More specifically, modules send messages to docks
rather than to one another, and the simulation core routes
these messages to the correct message boxes using each
dock’s pointer to the module that owns it. This facilitates
homogeneity and anonymity amongst modules, which is
important when designing distributed algorithms for self-
reconfigurable robots. Particularly important is the time-step

message propagation delay: if module i sends a message to
one of its docks at time t, the module (if any) attached to that
dock will receive the message at time t +1. If the receiving
module (module j) in turn sends a message to one of its
docks, the receiving module (module k) will receive the mes-
sage at time t +2, and so on. When messages are read, they
are consumed (deleted from the appropriate message box),
but they can be read by the receiving module at any time after
they become available. Likewise, message sending is done
at the discretion of each module’s behavior. By making the
sending and receiving of messages stochastic and utilizing
the built-in noise mechanisms of RM3D, users can easily
model more complex, hardware-specific communication.

By continuously updating connection information, the
simulation core is also able to facilitate run-time docking and
undocking of modules. Docks have two primary attributes:
an engaged status (currently connected to another dock) and
an enabled status (able to connect). Whenever two enabled
but un-engaged docks come acceptably close to one another
(Euclidean distance tolerance) and are acceptably lined up
with one another (dock frame orientation tolerance), they
are automatically pulled together and connected with a joint.
Since module behaviors can disable docks at any point via an
action execution, the simulation core may find that two docks
are still connected, even though one or both of them is no
longer enabled. When this happens, the joint between them
is destroyed, disconnecting them. Thus, RM3D supports a
”magnetic” docking system that module behaviors can enable
or disable on a per-dock basis.

B. Modules

In RM3D, each experiment is populated with one or
more modules. Each module has a physical body defined
in terms of PhysX R� rigid bodies and joints, and a set of
data structures representing their docks, actuators, sensors,
actions, percepts, and models. Modules also have associated
code, called a behavior, that they use to select what actions to
take based on their current model of the world. Each module
has a step function that is called within the main simulator
step function. This function can be used to read sensor data,
read pending messages, send new messages, execute a step of
the module’s behavior, update the module’s model, execute



Fig. 3. Simulated (left) and actual (right) SuperBot modules. Fig. 4. Simulated (left) and actual (right) ATRON modules.

actions, etc. This function allows module creators to easily
specify base functionality that applies to all instances of a
module type, preventing the need for users to replicate it in
all behaviors. Sensor values are read through percepts, which
optionally corrupt readings according to any custom noise
model. In a similar way, actuator commands are executed
through actions that may add arbitrary noise to the command
the actuator performs. The simulation core provides helper
methods to populate the simulated scene with predefined
modules and initially connect them (when necessary). This
extremely general design is equally well-suited to body and
mind research as it is based on the most fundamental ideas
in artificial intelligence, machine learning, and modular, self-
reconfigurable robotics.

C. Extensibility

Almost every aspect of RM3D was designed to be ex-
tensible. RM3D is primarily implemented in abstract and
templated C++ base classes designed to provide general
simulation functionality. Users create concrete subclasses
of these base classes to implement functionality that is
specific to a particular type of module or experiment. For
example, the authors implemented the simulated SuperBot
and ATRON modules shown in many of the figures in
this paper as concrete subclasses of the Module base class.
Sensors, actuators, percepts, and actions were all defined as
subclasses of their respective base classes. Users can easily
add new types of modules or extend existing modules using
these base classes.

We achieved an additional level of extensibility in RM3D
using the popular Boost8 C++ framework. This framework
adds dynamic data typing functionality to C++ in the form
of the boost::any data type, which can hold a value of any
C++ data type. Boost provides mechanisms to cast values
to and from the boost::any type. The boost::any type was
used throughout RM3D to ensure that we did not make any
assumptions about the type of values that users would want
to use in sensors, actuators, noise models, etc.

IV. EVALUATION

A. Simulated Module Construction

RM3D is general enough to support all types of self-
reconfigurable robots, including both chain-based and lattice-
based modules. To demonstrate this, we simulated both
SuperBot and ATRON modules.

SuperBot. In RM3D, each simulated SuperBot module
consists of four rigid bodies connected by three joints. The

8http://www.boost.org

four rigid bodies consist of ten simulated shapes, including
two rectangular solids and eight convex meshes specified
by a total of 624 3D data points. The simulated SuperBots
are built to scale and have the same three actuated degrees
of freedom (including joint limits) as the real SuperBot
modules. Each module can be fitted with up to six docks
(white) with which it can connect to docks on other SuperBot
modules or on specialized elements in the environment. Of
importance is the fact that the outer two rigid bodies (gray)
are flush against the inner two rigid bodies (red and green),
generating intra-module friction. Figure 3 shows a visual
comparison between simulated and actual SuperBot modules.

ATRON. The simulated ATRON module consists of two
symmetrical hemisphere-like rigid bodies (approximately
built to scale), each composed of a single convex mesh shape
specified using 276 3D data points, for a total of 552 3D
data points per module. Like the real ATRON module, each
simulated ATRON has an actuated, free-spinning revolute
joint connecting its hemispheres. The simulated ATRON
module has eight docks (four per hemisphere), with which
it can attach to other ATRON modules. Four of these
docks are male (blue) and four of them are female (white).
RM3D ensures that docking only occurs between male and
female docks. Figure 4 shows a visual comparison between
simulated and actual ATRON modules.

B. Locomotion
Figure 1 shows several examples of simulated locomotion

achieved in RM3D: snake (Figure 1(c),(g)), rolling track
(Figure 1(e)), and wheeled (Figure 1(h)). RM3D has been
used to achieve sinusoidal snake locomotion on chains of
anywhere between 3 and 1000 simulated SuperBot mod-
ules connected front-to-back. RM3D has also been used to
create a six-module rolling track that moves autonomously
by utilizing a simulated accelerometer. The code for these
gaits was adapted from code that controls actual SuperBot
modules, and the same behavior was observed on the sim-
ulated SuperBot modules as was observed on the actual
modules. This is evidence of RM3D’s physical fidelity. It
also illustrates RM3D’s inter-module communication facil-
ities because some of these gaits require synchronization
amongst modules. RM3D was also used to achieve wheeled
locomotion using both simulated ATRON modules (Fig-
ure 5(bottom)) and Wheelbot (Figure 1(h)) by controlling
the wheel velocities of these modules.

C. Manipulation
As part of the DARPA Phoenix project [21], RM3D was

used to create a 9-DOF manipulator using three Super-



Fig. 5. Examples of self-reconfiguration in RM3D. Top: A single SuperBot module docking with nearby modules to form a 3-SuperBot module arm.
Middle: A 6-SuperBot module rolling track reconfiguring into a snake. Bottom: Two ATRON cars docking before a 3-ATRON car undocks and drives
away.

Bot modules connected by elongated docks (to extend the
manipulator’s reach). Both forward and inverse kinematics
were applied successfully to the manipulator. We performed
numerous experiments in which our arm was able to reach
desired positions within 5mm of the intended target using the
damped least squares inverse kinematics methodology [22].
This is further evidence of the simulator’s physical fidelity.
Figure 1(d) shows an image of the simulated SuperBot arm.

D. Self-Reconfiguration

Figure 5 shows three experiments illustrating the self-
reconfiguration abilities of RM3D. The top sequence of
images shows a SuperBot arm (docked to a base) docking
with nearby SuperBot modules to make itself longer. The
middle sequence of images shows a rolling track of SuperBot
modules reconfiguring into a snake. To achieve this, one
of the modules disables one of its engaged docks, causing
the simulator to destroy the joint in which that dock was
involved. This undocking begins the reconfiguration. The
bottom sequence of images shows two ATRON cars docking
with one another to produce a 15-module car. In the last
image of the sequence, one of the male docks near the rear
of the long car is disabled, and a mini-car of three ATRON
modules undocks and drives away from the larger car.

E. Realistic Environments

Figure 1(g) illustrates RM3D’s ability to support complex
and realistic user-defined environments, a key component in
physical simulation fidelity. In this example, a five-module
SuperBot snake traverses a height field terrain specified using
a 30 ⇥ 30 pixel grayscale image. Each pixel value corre-
sponds (through a scaling factor) to a sample of the height
field. Also shown in this figure are 1000 fluid particles in a
pool and over 200 rigid body obstacles of various shapes and
sizes. Users can easily add fluid and debris particle systems
of any size as well as any number of obstacles (including
cloths) to any environment. If the user’s GPU(s) support
PhysX R�, they will automatically be utilized to accelerate
all particle and cloth calculations. As an example, utilizing a

mid-range NVIDIA R� GeForce R� GT 650M GPU, we were
able to realistically simulate 20,000 moving particles of
fluid at 51 frames per second, 50,000 moving particles of
fluid at 15 frames per second, and 100,000 moving particles
of fluid at 7 frames per second, all with a time-step of
1/60th of a second. In addition, 100,000 debris particles were
simulated at 16 frames per second with the same time-step.
See Figure 7 for an example of fluid simulation in RM3D.

F. Dock Connection Breakage

Docking mechanisms are an important aspect of the field
of self-reconfigurable robotics. It is important for researchers
and practitioners to be able to simulate not only docking
and undocking using these mechanisms but also how much
force they can withstand before they break. This enables
researchers to validate gaits and reconfiguration strategies
in terms of how much force they apply to the docks holding
modules together. Importantly, performing this validation in
simulation is safer and less costly than real-world experimen-
tation because there is no risk of damaging robotic hardware.
Figure 6 shows five spheres of high mass colliding with a
grid of 45 connected SuperBot modules in zero gravity and
the resulting dock connection breakage.

G. Scalability and Performance

In our extensive experiments, RM3D has proven to be
very scalable, even with complex modules such as simulated
SuperBot and ATRON modules. Figure 1 shows two such
experiments done with SuperBot modules. The first exper-
iment, shown in Figure 1(b), involved 1000 disconnected,
autonomous SuperBot modules in a single simulated scene.
Each SuperBot module executed a simple behavior that
moved all of its motors between two states in an alternating
pattern. The simulation ran at about 4 frames per second.
We also performed an experiment (Figure 1(c)) in which we
connected 1000 autonomous SuperBot modules front-to-back
in a long snake. Each module executed a sinusoidal snake
motion behavior. This simulation ran at 3 frames per second.
Additionally, a simulation of 1500 disconnected ATRON



Fig. 6. Example of the novel RM3D dock connection breakage feature. Fig. 7. A simulation of 40,000 moving fluid particles.

modules (each continuously spinning its middle motor) ran
at 3 frames per second. These experiments were performed
on a MacBook Pro with a quad-core 2.4 GHz Intel Core i7
processor and 8 GB of RAM with a simulation time-step of
1/30th of a second, meaning that they all ran at or over 1/10th
real-time speed. Simulations of 200 autonomous SuperBot
modules (disconnected), 275 autonomous ATRON modules
(disconnected), and snakes of 150 autonomous SuperBot
modules ran at 30 frames per second (real-time) on the same
MacBook Pro with the same simulation time-step (1/30th of
a second).

V. CONCLUSIONS AND FUTURE WORK

In this paper, we presented a three-dimensional, high-
performance self-reconfigurable robot simulator called Re-
Mod3D. RM3D is novel in terms of its design, its scalable
performance and fidelity, and its ability to simulate dock
connection breakage. We presented the results of numerous
experiments showing how RM3D meets all the criteria for a
self-reconfigurable robot simulator and how it is applicable
to wide range of mind and body research in the field.

We plan, as the next step, to perform a cross-validation of
RM3D’s simulation fidelity with actual physical hardware.
We were able to successfully port code from real SuperBot
modules to simulated ones and observe the same results.
Next, we will implement a gait developed in RM3D on actual
hardware. We also plan to add support for more types of
physical docking mechanisms, such as docks with actuated
clamps or teeth. Finally, we plan to optimize RM3D to
take advantage of the multithreading capabilities of PhysX R�.
We are confident that this will increase RM3D’s scalability
and performance. The RM3D simulator (which runs on Mac
OSX, Linux, and Windows) along with its source code and
videos, are available at http://www.isi.edu/robots/remod3d.

REFERENCES

[1] M. W. Jrgensen, E. H. stergaard, and H. H. Lund, “Modular atron:
Modules for a self-reconfigurable robot,” in In Proc. of the 2004
IEEE/RSJ Int. Conf. on Intelligent Robots and Systems. IEEE
Computer Society Press, 2004, pp. 2068–2073.

[2] S. Murata, E. Yoshida, A. Kamimura, H. Kurokawa, K. Tomita,
and S. Kokaji, “M-tran: self-reconfigurable modular robotic system,”
Mechatronics, IEEE/ASME Transactions on, vol. 7, no. 4, pp. 431–
441, Dec.

[3] K. Kotay, D. Rus, M. Vona, and C. McGray, “The self-reconfiguring
robotic molecule,” in Robotics and Automation, 1998. Proceedings.
1998 IEEE International Conference on, vol. 1, May, pp. 424–431
vol.1.

[4] B. Salemi, M. Moll, and W.-M. Shen, “SUPERBOT: A deployable,
multi-functional, and modular self-reconfigurable robotic system,”
Beijing, China, Oct. 2006.

[5] V. Zykov, P. Williams, N. Lassabe, and H. Lipson, “Molecubes
extended: Diversifying capabilities of open-source modular robotics.”

[6] M. Yim, K. Roufas, D. Duff, Y. Zhang, C. Eldershaw, and S. Homans,
“Modular reconfigurable robots in space applications,” Auton. Robots,
vol. 14, no. 2-3, pp. 225–237, Mar. 2003. [Online]. Available:
http://dx.doi.org/10.1023/A:1022287820808

[7] M. Yim, D. Duff, and K. Roufas, “Polybot: a modular reconfigurable
robot,” in Robotics and Automation, 2000. Proceedings. ICRA ’00.
IEEE International Conference on, vol. 1, pp. 514–520 vol.1.

[8] N. Koenig and A. Howard, “Design and use paradigms for gazebo,
an open-source multi-robot simulator,” in In IEEE/RSJ International
Conference on Intelligent Robots and Systems, 2004, pp. 2149–2154.

[9] O. Michel, “Cyberbotics ltd. webots tm : Professional mobile robot
simulation,” Int. Journal of Advanced Robotic Systems, vol. 1, pp.
39–42, 2004.

[10] C. Pinciroli, V. Trianni, R. O”Grady, G. Pini, A. Brutschy, M. Bram-
billa, N. Mathews, E. Ferrante, G. Di Caro, F. Ducatelle, T. Stirling,
A. Gutierrez, L. Gambardella, and M. Dorigo, “Argos: A modular,
multi-engine simulator for heterogeneous swarm robotics,” in In-
telligent Robots and Systems (IROS), 2011 IEEE/RSJ International
Conference on, Sept., pp. 5027–5034.

[11] A. van Rossum. (2011) Robot3d, open source modular swarm robot
simulation engine. [Online]. Available: https://launchpad.net/robot3d

[12] European Research Community. (2012, Jan.) Symbrion replicator.
[Online]. Available: http://www.symbrion.eu/tiki-index.php

[13] N. Ranasinghe, J. Everist, and W.-M. Shen, “Modular robot climbers,”
San Diego, CA, Nov. 2007, iROS 2007 Workshop on Self-
Reconfigurable Robots, Systems and Applications.

[14] M. Moll, P. Will, M. Krivokon, and W.-M. Shen, “Distributed control
of the center of mass of a modular robot,” Beijing, China, Oct. 2006.

[15] H. Chiu, M. Rubenstein, and W.-M. Shen, “’deformable wheel’-a self-
recovering modular rolling track,” Tsukuba, Japan, Nov. 2008.

[16] G. Echeverria, N. Lassabe, A. Degroote, and S. Lemaignan, “Modular
open robots simulation engine: Morse,” in Robotics and Automation
(ICRA), 2011 IEEE International Conference on, May, pp. 46–51.

[17] D. Christensen, D. Brandt, K. Stoy, and U. Schultz, “A unified
simulator for self-reconfigurable robots,” in Intelligent Robots and
Systems, 2008. IROS 2008. IEEE/RSJ International Conference on,
Sept., pp. 870–876.

[18] R. F. M. Garcia, K. Stoy, D. J. Christensen, and A. Lyder,
“A self-reconfigurable communication network for modular robots,”
in Proceedings of the 1st international conference on Robot
communication and coordination, ser. RoboComm ’07. Piscataway,
NJ, USA: IEEE Press, 2007, pp. 23:1–23:8. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1377868.1377897

[19] S. Carpin, M. Lewis, J. Wang, S. Balakirsky, and C. Scrapper,
“Usarsim: a robot simulator for research and education,” in Robotics
and Automation, 2007 IEEE International Conference on, April, pp.
1400–1405.

[20] J. Lächele, A. Franchi, H. H. Bülthoff, and P. Robuffo Giordano,
“Swarmsimx: real-time simulation environment for multi-robot
systems,” in Proceedings of the Third international conference on
Simulation, Modeling, and Programming for Autonomous Robots, ser.
SIMPAR’12. Berlin, Heidelberg: Springer-Verlag, 2012, pp. 375–387.
[Online]. Available: http://dx.doi.org/10.1007/978-3-642-34327-8 34

[21] DARPA. Darpa phoenix satellite servicing. [Online]. Available:
http://www.darpa.mil/our work/tto/programs/phoenix.aspx

[22] S. R. Buss, “Introduction to inverse kinematics with jacobian trans-
pose, pseudoinverse and damped least squares methods,” IEEE Journal
of Robotics and Automation, Tech. Rep., 2004.


