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Abstract—We study multiuser detection for direct-sequence
code-division multiple-access systems in a multipath environment.
Systems with unknown channel information are considered and
the well-known result for maximum likelihood multiuser detector
is directly used in our work. Due to the high computational cost
of the maximum likelihood detector, most existing works have
investigated simplified, linearized, and/or suboptimal solutions
that have less computational requirements. In our approach, we
use the Taguchi method that involves the use of orthogonal arrays
in estimating the gradient of the likelihood function. The Taguchi
method has been widely used in experimental designs for problems
with multiple parameters where the optimization of a cost function
is required. In this work, we choose the likelihood function as
the cost function in the Taguchi method. The use of the Taguchi
method for multiuser detection is a novel idea, and it leads to
efficient algorithms that can find a satisfactory solution by maxi-
mizing the likelihood function in a small number of iterations. One
of the advantages of the present Taguchi method is that it is blind
since no channel estimation is required to detect the transmitted
data, which is not the case in many existing methods. Simulation
results show that the Taguchi multiuser detector significantly out-
performs the conventional receivers, is insensitive to initial values
of parameters, and has performance close to that of minimum
mean square error detectors and decorrelating detectors. In ad-
dition, our algorithm is suitable for parallel implementations.

Index Terms—Direct-sequence code-division multiple-access
(DS-CDMA), maximum likelihood, multiuser detection, orthogo-
nal array, Taguchi method.

I. INTRODUCTION

THE Taguchi method of experimental design has been
widely used in industry for the purpose of finding fac-

tors that are most important in achieving useful goals in a
manufacturing process [4], [7], [14], [25]. Several factors that
are related to the goals and are under the user’s control are
selected. These factors are varied over two or more levels in
a systematic manner. Experiments are then designed according
to an orthogonal array to show the effects of each potential
primary factor. The Taguchi method involves an analysis that
reveals which of the factors are most effective in reaching
the goals and the directions in which these factors should be
adjusted to improve the results. The control over achieving the
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goals will be best obtained by changes in these primary factors
in the direction indicated by the analysis. The present paper ap-
plies the Taguchi method to the maximization of the likelihood
function for multiuser detection in wireless communications.

Wireless communications for mobile telephone and data
transmission are currently undergoing very rapid develop-
ment. Many of the emerging wireless systems will incorporate
considerable signal processing intelligence in order to pro-
vide advanced services such as multimedia transmission. As
a result, a technique named direct-sequence code-division
multiple-access (DS-CDMA) has become very popular in re-
cent years. In DS-CDMA communication systems, different
users employ distinct spreading codes and transmit at the
same time and frequency. Therefore, multiple access interfer-
ence (MAI) exists in the received signal, reducing the per-
formance and creating “near-far” effects [23]. As the number
of users increases, the MAI becomes substantial and the
system capacity as well as the performance become interference
limited.

Multiuser detectors [30] exploit the underlying structure
induced by the spreading waveforms of the DS-CDMA user
signals for interference suppression. Various linear and non-
linear multiuser detectors have been developed over the past
decade. It has been well established that the optimal multiuser
detector can substantially enhance the receiver performance and
increase the capacity of CDMA systems. Optimum maximum
likelihood multiuser detectors perform joint maximum likeli-
hood estimation of the symbols transmitted by different users
and are implemented using the Viterbi algorithm for single
path channels in [18] and [29] and for multipath channels in
[19]. In addition, optimum noncoherent maximum likelihood
detectors for generalized multiuser diversity communications
are studied in [26]. However, the implementation of optimum
maximum likelihood multiuser detectors is prohibitively com-
plex when the number of users is large. Thus, many subopti-
mal maximum likelihood detectors with lower computational
complexity have been explored. A successive multistage joint
detector is proposed in [6] for performing suboptimal maximum
likelihood multiuser detection. Other suboptimal maximum
likelihood multiuser detectors include: 1) the decorrelating
detectors [10], [12], [13], [15] in which nulls in the space–time
domain are directed at the interfering users; 2) an M -estimator-
based multiuser detector [21] for flat-fading CDMA channels
with impulsive non-Gaussian noise; 3) blind group multiuser
detectors [24] using interference identification; 4) Hopfield
neural-network-based multiuser detector [11]; and 5) genetic-
algorithm-based algorithm [37] for estimating the transmitted
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symbols and fading channel coefficients based on the maximum
likelihood principle. Beside the detectors based on maximum
likelihood estimation, there are many nonmaximum likelihood
multiuser detectors as well. The minimum mean square error
(MMSE) receiver [8], [9], [16], [17], [39] is a popular linear
nonmaximum likelihood detector, which minimizes the mean
square error between the filter output and the transmitted bit
and also maximizes the output signal-to-interference ratio. A
blind adaptive multiuser detector based on constant modulus
algorithm is presented in [20], and a blind adaptive detector
based on minimum output energy is proposed in [27] and
[36]. Both of these two blind detectors are shown to approx-
imate the MMSE solutions. It is shown in [33] that based on
signal subspace estimation, both decorrelating detectors and
linear MMSE detectors can be obtained blindly. The decision
feedback detector [28] is a nonlinear nonmaximum likelihood
detector that cancels the in terference from the users that have
already been decoded and suppresses interference from the
users that have not yet been decoded. Nonlinear turbo soft in-
terference cancellation multiuser detectors are developed in [5]
and [34], which make use of both soft interference cancellation
and instantaneous linear MMSE filtering. An iterative nonlin-
ear detector based on multistage soft interference cancelers is
proposed in [38]. The energy learning technique, called support
vector machines is proposed in [1] as a method for obtaining
a nonlinear multiuser detector from a relatively small training
data block.

The goal of this paper is to develop for multiuser CDMA
wireless systems receivers with reduced complexity by employ-
ing the Taguchi method based on orthogonal arrays. One of
the advantages of the present Taguchi method is that it is blind
since no channel estimation is required to detect the transmitted
data, which is not the case in many existing methods. We
recursively maximize the likelihood function [30] to recover
the transmitted information. It turns out that the maximization
of the likelihood function in [30] is an NP-hard optimization
problem. However, in our approach, the objective function
is optimized using the Taguchi method, in which only very
limited computations are needed, assuming the knowledge of
the desired users’ spreading codes and delays. The present
approach can be classified as a nonlinear suboptimal maximum
likelihood method and it is of practical interest, for example,
at a base station receiver where users’ codes and delays are
known but channel parameters are not known. We believe that
the present work is the first systematic investigation into the
Taguchi experimental approaches for multiuser detection in
DS-CDMA systems. Overall, the present Taguchi multiuser
detectors will be shown to provide significant performance im-
provements over conventional DS-CDMA detectors and have
performance close to that of MMSE detectors and decorrelating
detectors [35] when they are applied at a base station.

This paper is organized as follows. In Section II, the DS-
CDMA system model is presented. In Section III, the Taguchi
method is described, and multiuser detection algorithms based
on the Taguchi method are developed. In Section IV, simulation
results are presented, which demonstrate the potential of the
present multiuser detection scheme. Finally, several pertinent
remarks are given in Section V to conclude this paper.

II. RECEIVED SIGNAL MODEL AND NOTATION

Consider a synchronous DS-CDMA system with K users,
employing normalized spreading waveforms s1(t), . . . , sK(t),
and transmitting sequences of binary phase-shift keying
(BPSK) symbols through their respective multipath channels.
The transmitted baseband signal during the ith symbol due to
the kth user is given by

xk(t) = Akbk(i)sk(t − iT ), k = 1, . . . , K

where T is the symbol interval, Ak denotes the transmitted
amplitude of the kth user and bk(i) = ±1 is the ith transmitted
symbol by the kth user and is assumed to be independent
identically distributed (i.i.d.). It is assumed that sk(t) is sup-
ported only on the interval [0, T ]. It is also assumed that
user symbol sequences, {bk(i), i = 1, 2, . . .}, k = 1, 2, . . . ,K,
from different users are independent. In DS-CDMA systems,
the user spreading waveforms are of the form

sk(t) =
N−1∑
j=0

ck( j)φ(t − jTc), 0 ≤ t ≤ T

where N is the processing gain, φ is a normalized chip
waveform of duration Tc = T/N , and ck = [ck(0), ck(1), . . . ,
ck(N − 1)]T is a signature chip sequence of ±1/

√
N assigned

to the kth user. Likewise, we shall assume i.i.d. random spread-
ing sequences with

P

[
ck( j) = ± 1√

N

]
=

1
2
.

Consider a slow fading channel with channel impulse re-
sponse given by

hk(t) =
L∑

l=1

gk,lδ(t − τkl)

where L is the number of paths in each user’s channel, gk,l and
τkl are, respectively, the real or complex gain and the delay of
the lth path of the kth user’s signal. It is assumed that τkl is an
integer multiple of Tc [36] and is smaller than T [8], [17]. In
this case, the received signal is given by

r(t) =
∑

i

K∑
k=1

xk(t) ∗ hk(t) + ν(t)

=
∑

i

K∑
k=1

L∑
l=1

gk,lxk(t − τkl) + ν(t)

=
∑

i

K∑
k=1

Akbk(i)
L∑

l=1

gk,l

N−1∑
j=0

ck(j)

× φ(t − jTc − iT − τkl) + ν(t)

where i is the index for information symbols and ν(t) is a white
Gaussian noise with double-sided power spectral density of σ2.
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Note that, due to the channel dispersion, when each user
transmits a sequence of information bits, there is intersymbol
interference (ISI). For ISI suppression, we consider the use of
“zero padding” as described in [2] and [32]. We assume that the
path delays are given by τkl = (l − 1)Tc for l = 1, . . . , L as in
[8]. In the case when this assumption does not hold, i.e., when L
is larger than the actual number of paths, we can consider to add
some paths with zero gains so that the above assumption still
holds. For example, if there are actually two paths in a system
with τk1 = 0 and τk2 = 3Tc and with gk,1 and gk,2 as the
associated channel gains, we can add two paths with zero gains
and with time delays τ ′

k2 = Tc and τ ′
k3 = 2Tc, respectively.

Thus, the number of paths becomes L = 4 and the path delays
are 0, Tc, 2Tc, and 3Tc, respectively. The corresponding vector
of channel gains is [g′k,1, g

′
k,2, g

′
k,3, g

′
k,4]

T, where g′k,1 = gk,1,
g′k,2 = g′k,3 = 0 and g′k,4 = gk,2. In this case, to eliminate the
ISI, we need to use spreading code of length P = N + L − 1 to
spread the user symbols. This redundancy is the key to avoiding
ISI, as we will see below. The new spreading code for the kth
user is given by

uk = [uk(0), uk(1), . . . , uk(P − 1) ]T ∆= F0ck

where F0 is a P × N matrix (which will be determined later).
In this case, the received signal is given by

y(t) =
∑

i

K∑
k=1

Akbk(i)

×
L∑

l=1

gk,l

P−1∑
j=0

uk( j)φ(t − jTc − iT − τkl) + ν(t).

At the receiver, we use chip-matched filtering followed by
chip rate sampling to collect P measurements of y(t) for the
kth user during the ith symbol period and form a vector

yk = [ yk(0), yk(1), . . . , yk(P − 1) ]T .

Channel dispersion gives rise to ISI between successive sym-
bols and renders yk dependent on both b(i) and b(i − 1). In
this case, yk becomes

yk = H0
kukAkbk(i) + H1

kukAkbk(i − 1) + νk

where νk is the noise vector corresponding to the kth user. The
P × P matrices H0

k and H1
k are defined as follows:

H0
k =




gk,1 0 · · · · · · · · · · · · 0
gk,2 gk,1 · · · · · · · · · · · · 0

...
...

. . .
...

...
...

...

gk,L gk,L−1 · · · . . . · · · · · · 0

0 gk,L · · · · · · . . . · · · 0
...

...
. . .

...
...

. . .
...

0 0 · · · gk,L · · · · · · gk,1




H1
k =




0 0 · · · gk,L · · · gk,3 gk,2

0 0 · · · 0
. . . gk,4 gk,3

...
...

. . .
... · · · . . .

...
0 0 · · · 0 · · · 0 gk,L

...
... · · · ...

. . .
...

...
0 0 · · · 0 · · · 0 0
0 0 · · · 0 · · · 0 0




.

The vector of equalized received data rk is given by

rk = T0yk

where T0 is an N × P matrix.
The ISI will be eliminated if we impose a structure on F0

and T0 so that

T0H1
kF0 = 0.

One choice for F0 and T0 is given by [2], [32]

F0 =
[

IN

0(L−1)×N

]
and T0 = [ IN 0N×(L−1) ]

where I is an identity matrix and 0 is a matrix of zeros.
The vector of equalized received data for the kth user can be
written as

rk =T0yk

=T0H0
kF0ckAkbk(i) + T0H1

kF0ckAkbk(i − 1) + T0νk

=T0H0
kF0ckAkbk(i) + T0νk.

We will rewrite rk for each symbol of the kth user as

rk = HkckAkbk + T0νk

where the N × N matrix

Hk =T0H0
kF0

=




gk,1 0 · · · · · · · · · · · · 0
gk,2 gk,1 · · · · · · · · · · · · 0

...
...

. . .
...

...
...

...

gk,L gk,L−1 · · · . . . · · · · · · 0

0 gk,L · · · · · · . . . · · · 0
...

...
. . .

...
...

. . .
...

0 0 · · · gk,L · · · · · · gk,1




.

We can also rewrite rk as

rk = CkgkAkbk + T0νk (1)

where gk = [gk,1, . . . , gk,L]T is the channel gain vector for the
kth user, Ck is the N × L spreading code matrix of the kth
user defined by Ck

∆= [c1
k

... c2
k

... · · · ... cL
k ], and cl

k,
k = 1, . . . , K, l = 1, . . . , L, are acyclic shifted ck with time
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shift indicated by τkl (i.e., τkl/Tc) [3], [17]. For example, if
τ32 = 3Tc, we have

c2
3 = [ 0, 0, 0, c3(0), c3(1), . . . , c3(N − 4) ]T.

Equation (1) holds since Hkck = Ckgk for all k. We can now
determine the combined received signal within a symbol period
T as [20]

r = CGAb + n =
K∑

k=1

Akbk

L∑
l=1

gk,lc
l
k + n (2)

where

C ∆= [C1, . . . ,CK ]

=
[
c1
1

... c2
1

... · · · ... cL
1

... · · · ... c1
K

... · · · ... cL
K

]

is the N × KL data spreading code matrix. Matrix G in (2) is
the block diagonal KL × K channel matrix defined by

G = diag







g1,1

...
g1,L


 , . . . ,




gK,1

...
gK,L







=







g1,1

...
g1,L


 O · · · O

O




g2,1

...
g2,L


 · · · O

...
...

. . .
...

O O · · ·




gK,1

...
gK,L







where each O is a matrix of zeros with appropriate dimen-
sion. Matrix A in (2) is a real K × K diagonal matrix of ampli-
tudes of the transmitted signals, i.e., A = diag[A1, . . . , AK ].
We use b = [b1, b2, . . . , bK ]T to denote the real K vector of
input data symbols (typically BPSK) and n to denote the zero-
mean Gaussian noise vector with i.i.d. components.

III. TAGUCHI METHOD FOR MULTIUSER DETECTION

A. Introduction to the Taguchi Method

For parameter optimization problems with a given com-
putable objective function, the Taguchi method of experimental
design [14] is a suitable method that can rapidly optimize
the varying factors to get a desired outcome. Since the goal
of this research is to maximize a likelihood function of op-
timal multiuser detector [30], it is appropriate to employ the
Taguchi method. In the following, the Taguchi method will be
described.

TABLE I
INITIAL VALUES OF THE FOUR FACTORS

Suppose that an experimental outcome J is a cost func-
tion of several variables h1,1, h1,2, . . . , hm,n, whose values
can be controlled. We write J = J(h1,1, h1,2, . . . , hm,n). The
controlled variables hk,l, k = 1, . . . ,m and l = 1, . . . , n, are
called factors. The goal is to find the optimal values ĥk,l,
k = 1, . . . ,m and l = 1, . . . , n, to minimize the cost function
J . This can be done by varying the factors simultaneously in a
disciplined manner and recording the corresponding values of
J until we get the optimal ĥk,l, k = 1, . . . , m and l = 1, . . . , n.
The Taguchi method involves a disciplined method of varying
two or more factors simultaneously.

In a full experimental design, all possible combinations of
the values of factors must be tried. In a fractional design,
such as the Taguchi method, a subset of the possible value
combinations is used. To reduce the time consumed in con-
ducting experiments while taking advantage of the performance
of full factorial method, the Taguchi method based on or-
thogonal arrays was introduced. It is a method of setting up
experiments that only requires a fraction of the full factor-
ial combinations. The experiment combinations are chosen to
provide sufficient information to determine the effects of each
factor.

We illustrate next an example of design involving four fac-
tors. The four factors are denoted by h1,1, h1,2, h2,1, and h2,2,
and Table I gives the three initial values (which are called
levels) for each of the four factors. Generally speaking, these
initial values are selected randomly in an ascending order, i.e.,
level 1 < level 2 < level 3.

We will use the orthogonal array shown in Table II for the
purpose of demonstration. In the present example, each factor
has three different levels, and they are denoted by h

(1)
k,l = −0.3,

h
(2)
k,l = 0.1, and h

(3)
k,l = 0.5 for k, l = 1, 2. If we use the full

factorial method to discover the optimal combination of these
factors, we need to conduct 34 = 81 tests, whereas the orthog-
onal array L9(34) in Table II allows us to set up experiments
with only nine tests. The orthogonal array in Table II is in the
form of LM (qm), where q is the number of levels each factor
has, m is the maximum number of factors the table can handle,
and M is the total number of tests required using this table. In
general, M is much smaller than the value of qm, which is the
total number of combinations for m factors with each having
q levels (choices). A cycle in the present Taguchi method is
defined as a complete set of tests according to the orthogonal
array, consisting of a total of M tests. In an orthogonal array
(e.g., Table II), the numbers under each factor in a test indicate
the level of the factor to be used in the test. For example, in
test number 4, we would use: h

(2)
1,1 (level 2 of h1,1); h

(1)
1,2 (level

1 of h1,2); h
(2)
2,1 (level 2 of h2,1); and h

(3)
2,2 (level 3 of h2,2).

Orthogonal arrays are readily composed and are available from
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TABLE II
ORTHOGONAL ARRAY L9(34)

many texts (e.g., [4], [7]). The way that they are constructed [7]
is to have each level of every factor appear the same number of
times in every column of the array (e.g., three times in Table II),
and each combination of factors between any two columns, i.e.,
each (i, j), i, j = 1, 2, 3, appears the same number of times
[e.g., each pair (i, j) between every two columns in Table II
appear one time].

Using the orthogonal array L9(34), each cycle consists of
nine individual tests. After each cycle of tests, a minimum cost
can be found. While this cost may not be the optimal cost,
more cycles are needed until the minimum cost of each cycle
converges.

In the present example with four factors, after each cycle of
tests, we perform an analysis to determine the trend of the cost
function for each factor. The values of the cost function from
the nine tests are calculated and denoted by Ji, i = 1, 2, . . . , 9.
For each of the four factors, we calculate the total contribution
of each level to the cost function V

( j)
k,l as the sum of the cost

values corresponding to the tests involving that particular level.
For example, after nine tests are completed, for factor h2,1, we
calculate

V
(1)
2,1 = J1 + J6 + J8

V
(2)
2,1 = J2 + J4 + J9

V
(3)
2,1 = J3 + J5 + J7 (3)

where V
( j)
k,l indicates the total contribution of the jth level

of the factor hk,l to the cost function. V
(1)
2,1 is the summation

of J1, J6, and J8 since the three tests involving the first
level of h2,1 are test numbers 1, 6, and 8. We will then have
three total contributions that correspond to the three levels for
each factor calculated according to Table II. These three total
contributions can be plotted versus the three levels for each
factor to determine the trend of the cost function as shown in
Fig. 1. In this figure, the numbers “1,” “2,” and “3” along the
horizontal axis represent the three levels of each factor, and
V (1), V (2), and V (3) are the total contributions of each level
of a factor.

From these figures for the trend of the cost function, we know
whether we need to increase or decrease the value for each
factor. If the trend of the cost function is as shown in Fig. 1(a) or
(b), this means that the value of this factor should be increased

in order to further reduce the value of the cost function. In this
case, we can choose a step size (e.g., 0.01) and increase all three
levels of the factor by the chosen step size. Alternatively, we
can also use the estimated gradient (see Appendix) information
to determine the direction for each factor to move in and the
amount to adjust. Likewise, for trend as shown in Fig. 1(d) or
(e), the parameter values should be decreased. In the Appendix,
we will show that the gradient of the cost function J with
respect to the factor hk,l can be estimated from the experi-
ments using

∇k,lJ =
3

2M

(
V

(3)
k,l − V

(1)
k,l

) 1
δ

where M = 9 and δ = 0.4 in the present example. This indi-
cates that if the trends of cost function from the experiments
are given as in Fig. 1(a), (b), (d), or (e), we have a very
good estimate of the gradient of the cost function. Note that to
minimize a cost function, the key is to determine its gradient
with respect to varying parameters. If the trend is as shown
in Fig. 1(c), this means that the parameter value should be set
closer to the middle level or the center of the parabolic curve.
In case of Fig. 1(f), we can randomly select a direction, which
means either increase or decrease the parameter value. The
analysis based on Fig. 1(c) and (f) implies that using three levels
for each parameter in the experiments will provide better results
than using two levels as in [31]. If two levels for each parameter
are used in the experiments, for cases as shown in Fig. 1(c) and
(f), the decisions about the next move in the parameter space
will often be incorrect. This is especially true for the case as
shown in Fig. 1(c). The analysis in Fig. 1(c) of the experimental
results indicates that we should stay in the neighborhood of the
current value and shrink the interval of search toward the center
of the parabolic curve. From the three points shown in Fig. 1(c),
we can fit a parabolic function between the cost values and the
factor values using

V = αx2 + βx + γ.

The coefficients α, β, and γ can easily be determined by plug-
ging the values of (x(1), V (1)), (x(2), V (2)), and (x(3), V (3))
into the above expression, where x(i) is the value of level i in
Fig. 1(c). The center of the fitted parabolic curve will be chosen
as the new x(2), i.e., x(2)

new = −β/(2α). The new values of level
1 and level 3 are chosen as x

(1)
new = x

(2)
new − 0.5η(x(3) − x(1))

and x
(3)
new = x

(2)
new + 0.5η(x(3) − x(1)), where η is a shrinking

coefficient (e.g., η = 0.9).
According to the trend determined for each factor, we choose

a new set of three initial levels for each factor, and we start a
new cycle and perform again nine tests according to Table II.
The procedure is repeated until the value of the cost function
is converged. To determine the convergence of the present
iterative algorithm, we compute the minimum cost in each
cycle. Define

Jmin( p) = min
i=1,...,M

{Ji( p)}

where M is the number of tests in each cycle according to
the orthogonal array, Ji( p) is the cost for the ith test in the
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Fig. 1. Six different trends of the cost function.

pth cycle. The difference between the Jmin of two consecutive
cycles of the Taguchi method will be used to decide whether
to stop the algorithm. In particular, the convergence criterion in
the present case is Jmin( p − 1) − Jmin( p) ≤ 10−2, i.e., when
the improvement of the cost function from one cycle to the
next is less than 10−2, we stop the algorithm. Clearly, such a
procedure will achieve the minimization of the cost function
J(h1,1, h1,2, h2,1, h2,2) through repeated cycles of tests and
analyses according to Table II and Fig. 1. Such a method
based on orthogonal arrays is usually referred to as the Taguchi
method [4], [14], [25], which we will use for multiuser detec-
tion in DS-CDMA wireless systems.

B. Taguchi Multiuser Detection in Complex Channels

In this section, the problem of multiuser detection for DS-
CDMA systems is solved using the Taguchi method. We con-
sider the case of complex channels where parameters do not
change in a period of information frame.

The maximum likelihood multiuser detector for single path
channels was derived in [18] and [29]. The extension to
multipath channels was presented in [35] to obtain optimal
multiuser detector as follows: From (2), the jointly optimum
detector finds the symbol vector estimate b = [b1, . . . , bK ]T,
which maximizes the likelihood function given by [30]

exp
[
−

(
1

2σ2

)
‖r − CGAb‖2

]
.

This is equivalent to minimizing the negative of the exponential
function’s argument, which in turn is equivalent to minimizing

J = −2Re(bTAGHCTr) + bTAGHCTCGAb. (4)

Since the second term does not depend on the received signal,
if the channel is not known, a vector of sufficient statistics [20]
can be formed at the output of the code matched filters as

y ∆= CTr = CTCGAb + CTn = Rh + λ (5)

where R ∆= CTC is the spreading code correlation matrix, λ
∆=

CTn is the resulting noise vector, and h ∆= GAb. Getting the
optimal b that minimizes (4) is equivalent to obtaining an h
given by

h = [h1,1, . . . , h1,L, h2,1, . . . , hK,1, . . . , hK,L ]T

= [ g1,1A1b1, . . . , g1,LA1b1, g2,1A2b2, . . . ,

gK,1AKbK , . . . , gK,LAKbK ]T

which minimizes the following cost function

−2Re(hHy) + hHRh. (6)

Note that (6) is equivalent to (4). Since hk,l
∆= gk,lAkbk, with-

out loss of generality, we assume that all users have equal
unit transmitted power, i.e., A1 = · · · = AK = 1. With this
assumption, we have hk,l = ±gk,l since bk = ±1. The received
signal powers will be unequal due to the unequal strength
of the multipath gain gk,l for each user. The optimal multi-
user detection algorithm calculates the estimated ĥ by mini-
mizing (6)

ĥ = arg min
h

{−2Re(hHy) + hHRh
}

. (7)
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In (7), h = [h1,1, . . . , h1,L, h2,1, . . . , hK,1, . . . , hK,L]T and
hk,l stands for the candidates of the estimated ĥ and y =
[y1,1, . . . , y1,L, . . . , yK,1, . . . , yK,L]T stands for the multiuser
spreading code matched filter output given by (5).

We can see that the minimization of (6) can be achieved by
using

ĥ = R−1y (8)

because

−2Re(hHy) + hHRh = −yHR−1y + (h − ĥ)HR(h − ĥ).

The detector in (8) is known as the decorrelating detector. In
this case, we have to assume that the spreading code correlation
matrix is nonsingular. On the other hand, the inversion of the
matrix R may be computationally prohibitive in systems with
large number of users. Since R = CTC and C is an N × KL
matrix, the matrix R is not invertible when KL > N . To
avoid calculating the inverse of the correlation matrix R, other
approaches can be considered. After h is determined as

ĥ = [ ĥ1,1, . . . , ĥ1,L, . . . , ĥK,1, . . . , ĥK,L ]T

assuming that the transmitted bit sequence is differentially
encoded, we follow the procedure in [8] and [21] to get the
suboptimal estimate b̂ = [b̂1, . . . , b̂k] for the ith transmitted
bit as

b̂k(i) = sgn

{
L∑

l=1

Re
[
ĥk,l(i)ĥ∗

k,l(i − 1)
]}

, k = 1, . . . , K

which in fact is a noncoherent equal gain RAKE combiner
[8], [22].

Since y and R are known in (6), we can use the Taguchi
method to obtain a solution that minimizes the cost function in
(6). The function in (6) is therefore chosen as our cost function
in the Taguchi method described earlier. The number of factors
to be determined depends on the product of the number of
users K and the number of multipath components L. Note
that, compared to real channels, the number of factors will be
doubled in complex channels, because for each parameter hk,l,
both real and imaginary parts, will be determined. The real part
and the imaginary part of hk,l will be treated as two independent
factors using the Taguchi method, i.e., each complex parameter
hk,l will occupy two columns in the orthogonal array. Each
factor is with three levels, and thus three initial values have
to be set for each factor. Without loss of generality, we set the
same initial levels to all factors. Then we repeat the experiments
after adjusting the three levels according to the trend of the
cost function, until a satisfactory solution is obtained, which
corresponds to the case where one of the three levels is close to
or equal to the optimal solution.

As with most experimental methods for optimization, there is
a concern that the present Taguchi method may also get stuck in
local minima in some cases. To avoid local minimum solutions,
we rotate the orthogonal array so that different variations of the

Fig. 2. Flow diagram of the Taguchi multiuser detection algorithm.

array are used in different cycles. In the first cycle, we use the
array as it is, e.g., as in Table II. In the next cycle, we move
the second column of the orthogonal array to the first, the third
column to the second,. . ., and the first column to the last, so
that different level combinations are tested for each factor in
different cycles. In this way, we can reduce the possibility of
getting stuck in local minima. When the orthogonal array is
rotated from one cycle to the next, different factors will be used
in different dimensions when tests are designed according to
the array. We will use an example to show the effect of such
rotations in Section IV (cf. Example 2).

From the discussion of the Taguchi method above, a flow
diagram of the Taguchi multiuser estimator is shown in Fig. 2.
When hk,l is complex, such procedure will be applied to both
the real part and the imaginary part of hk,l.

C. Taguchi Multiuser Detection in Real Channels

In this subsection, we consider applying the above procedure
to real channels. In particular, we consider the case where the
channel gains are real and positive [6], [30]. Taking into account
that r and G are real variables, we have the following function
to minimize:

J = −2(bTAGTCTr) + bTAGTCTCGAb.
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Similarly, a vector of sufficient statistics can be formed at the
output of the code matched filters as

y ∆= CTr = CTCGAb + CTn = Rh + λ.

Thus, we have the following cost function [cf. (6)] to minimize:

−2hTy + hTRh.

We still assume that all users have equal unit transmitted power.
Under this assumption, we have hk,l = ±gk,l, since bk = ±1.
Similarly, the suboptimal estimate b̂ = [b̂1, . . . , b̂k] for the ith
transmitted bit can be determined by

b̂k(i) = sgn

{
L∑

l=1

[
ĥk,l(i)ĥk,l(i − 1)

]}
, k = 1, . . . , K

assuming that the transmitted bit sequence is differentially
encoded. We follow the same procedure as described in the
previous subsection to apply the Taguchi method to multiuser
detection.

D. Advantages of the Taguchi Multiuser Detection Method

The Taguchi method provides us with a systematic and effi-
cient method for conducting experimentations to determine
near optimum values of the controllable factors hk,l. By us-
ing orthogonal arrays, the Taguchi method searches in the
parameter space with a small number of experiments. The
savings will be greater when the number of factors in the prob-
lem is larger. For example, in our simulations, by using an
array L27(322), 20 factors each with three levels are opti-
mized by running only 27 tests as opposed to a total of
320 ≈ 3.4868 × 109 required by a full experimental design in
each cycle. It will be shown in Section IV that the multi-
user detector developed in this paper reaches convergence
within 12 cycles, which implies that only a total of 324
(= 27 × 12) iterations are needed to obtain the final satisfac-
tory solution.

There are several important features of the Taguchi method
developed in this paper. They are enumerated below.

1) No channel estimation required. The present Taguchi
method is blind since no channel estimation is required
to detect the transmitted data, which is not the case in
many existing methods.

2) Insensitivity to the choice of initial values of parameters
hk,l. In most algorithms, if the initial values are far
away from the optimal value, their complexities increase
greatly. Thus, how to choose initial values that are close
to the optimal values is a big concern to many existing
algorithms. The Taguchi method is insensitive to the
choice of initial values, which eases this concern. In
Section IV, we will show using an example that the
present multiuser detector is insensitive to the choice of
initial values of hk,l. Using the present algorithm, the

randomly chosen initial levels (h(1)
k,l , h

(2)
k,l , h

(3)
k,l ) may or

may not cover the actual value of hk,l in its range, i.e.,

it may happen that h
( j)
k,l > hk,l for all j or h

( j)
k,l < hk,l for

all j. Simulation results reveal that the performance of
the present algorithm is insensitive to the choice of initial
levels used in the experiments.

3) Easy implementation and fast convergence. The calcula-
tions of the values of the cost function J in (4) [or in (6)]
are straightforward given all the required information. In
Section IV, we will show that the present algorithm for
multiuser detection has a very fast convergence speed.
Furthermore, the more complicated the cost function, the
more obvious this advantage is.

4) Suitability for parallel implementation. In every cycle of
tests in the present algorithm, the computations required
for all the tests can be done in parallel on different proces-
sors. For example, in the case of using the orthogonal
array L9(34), the nine tests in every cycle compute the
values of the cost function J . In these computations, the
structure of the detector remains the same, and we only
choose to test different value combinations of parameters.
Therefore, these computations can be done in parallel to
achieve even faster convergence.

5) No constraints on parameters (factors). The present al-
gorithm does not rely on any imposed constraints, as
opposed to, e.g., techniques described in [27] and [36],
whose performance may be sensitive to the satisfaction
of some constraints on parameters.

IV. SIMULATION RESULTS

In this section, we assess the performance of the Taguchi
multiuser detector developed in the previous section using
computer simulations. As opposed to the solutions considered
in [6], the present technique does not require the knowledge of
channel parameters, including the fading coefficients. However,
we still assume the knowledge of users’ codes and delays since
we assume that we use the present Taguchi multiuser detectors
at a base station. Throughout this section, TMUD shall refer
to the present Taguchi multiuser detector. Synchronous DS-
CDMA transmission in multipath environments will be con-
sidered in our simulation studies. The simulated systems used
in Examples 1 and 2 consist of five users (K = 5) with a
spreading gain 31 (N = 31). The systems in Examples 3 and 4
consist of ten users (K = 10). Each user’s propagation channel
consists of two paths. Our simulation results are obtained
by averaging over 500 independent runs in each example. In
each run, channel gains are generated randomly using zero-
mean Gaussian distribution with variance given by 1/L (L
is the number of paths) and multipath delays are generated
using uniform distribution in [1, 6Tc) [17]. A total of 1000
symbols are randomly generated and transmitted in each run.
Furthermore, the additive noise is generated using zero-mean
Gaussian distribution with appropriate variance depending on
the required SNR in each run of our simulation. The three
initial levels of each factor hk,l (real part and imaginary part
in Examples 1 and 2) are chosen as −0.5, 0.1, and 0.5, unless
indicated otherwise. Finally, the long code (random code) se-
quence [6] is used in our examples. In all examples, we detect
all the users in the system unless indicated otherwise. We use a
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Fig. 3. Comparison of bit error rate versus SNR for four detectors over a complex frequency-selective Rayleigh slow-fading channel: TMUD, multiuser MMSE,
decorrelating detector, and optimum ML detector. SNRi/SNR2 is fixed at 6 dB (i = 1, 3, 4, 5).

fixed step size of 0.01 and η = 0.9 for parameter updates in our
examples.
Example 1: The system used in the present example consists

of five users (K = 5). Each user’s propagation channel is
a complex frequency-selective Rayleigh slow-fading channel,
and each consists of two paths. The channel parameters used
in this example are generated using the approach in [36]. The
channel parameters for user number 2 are obtained by sampling
the following function generated from a two-ray Rayleigh
fading model [23], [36]

h(t, τ) = Aα1(t)δ(τ) + Bα2(t)δ(τ − τ1)

where α1(t) and α2(t) are two independent complex Gaussian
processes with unit power, and τ1 is the delay between the two
paths. For user number 2, we choose A = 0.4 and B = 0.7.
Other user parameters are obtained with different values of A
and B. Because in a complex case, unknown factors are dou-
bled, the same orthogonal array used in the complex case can
handle twice as many users as in the real case. The present sim-
ulation results are shown in Fig. 3. In this example, we compare
the present TMUD with the well-known multiuser detection
techniques, i.e., the linear multiuser MMSE detector [35], the
linear decorrelating detector [35], and the optimum maximum
likelihood detector using the Viterbi algorithm. There are five
users in the system. User number 2 is the weakest. The other
four users have equal power, and SNRi/SNR2 = 6 dB, i =
1, 3, 4, 5, is fixed in the simulation. In Fig. 3, we can see that
the performance of TMUD, MMSE, and decorrelating detectors
are close to each other. We also noticed that the computational
complexity of the Taguchi method is comparable to that of
MMSE and decorrelating detectors. In this case, the multiuser
MMSE detector [35], the linear decorrelating detector [35], and

the optimum maximum likelihood detector assume that at the
base station, it is possible to know the spreading sequences
and delays as well as channel gains of all users, while the
present TMUD assumes no knowledge about users’ channel
parameters. We record the minimum value of the cost function
in each cycle. If the minimum cost value from one cycle to the
next does not reduce by more than 0.01, we stop the algorithm
and we consider that the algorithm has converged. In this
example and in all examples to follow, our algorithm converged
within 12 cycles of tests.
Example 2: In this example, we will show the effects of

rotating the orthogonal array on the performance of TMUD.
The system is the same as the one used in Example 1. The
orthogonal array will be rotated from one cycle of tests to
the next. In the first cycle, we use the orthogonal array as it
is. In the next cycle, we move the second column of the or-
thogonal array to the first, the third column to the second,. . .,
and the first column to the last. After each cycle of tests, we
perform the rotation again in the same way, so that different
level combinations are tested for each factor in different cycles.
In Fig. 4, we can see that with the help of rotating the orthogonal
array, the Taguchi method can avoid local minima and results
in much better performance.
Example 3: The system used in the present example consists

of 10 users (K = 10). Each user’s propagation channel is real
and consists of two paths. Fig. 5 compares the performance
of our algorithm and the optimum maximum likelihood detec-
tor, the decorrelating detector, and the conventional detector
(i.e., matched filter detector) over a real frequency-selective
Rayleigh slow-fading channel. We can see that the present
TMUD significantly outperforms the conventional receiver,
and the performance of TMUD is very close to that of the
decorrelating detector. We note that in the results shown in
Fig. 5, both the optimum maximum likelihood detector and the
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Fig. 4. Effect of rotating the orthogonal array on the performance of the Taguchi multiuser detector.

Fig. 5. Bit error rate versus Eb/N0 with 10 users for a multipath synchronous DS-CDMA system over a real frequency-selective Rayleigh slow-fading channel.

decorrelating detector require the knowledge of channel gains,
while our TMUD assumes no knowledge about channel gains.
Example 4: Recall that in Section III, we mentioned that the

Taguchi method is insensitive to the choice of initial values. We
next consider the system performance with different choices of
initial values. Two extreme cases are compared to the case that
we used in Example 3: Case 1: the initial three levels are all
negative; and Case 2: the initial three levels are all positive.
Some of the choices for initial levels in the two cases could be
totally wrong, which may be considered as due to an incorrect
guess of the range of the actual hk,l. In Fig. 6, we can see that

the system performance is very close to each other no matter
what initial levels we choose. Fig. 7 displays the number of
cycles needed for convergence for different choice of initial
values, we can see that no matter what initial values are set, the
TMUD converges after approximately 12 cycles of tests.
Example 5: In this example, we illustrate how performance

varies with the number of users for both the multiuser
MMSE detector proposed in [35] and the present TMUD. The
simulated system has real channel parameters in this case and
has a processing gain of N = 15. The number of paths for
each user is two. The performance of the proposed MMSE
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Fig. 6. Bit error rate versus Eb/N0 with 10 users for a multipath synchronous DS-CDMA system over a real frequency-selective Rayleigh slow-fading channel.
Case 1: the initial three levels of parameters are all negative. Case 2: the initial three levels are all positive.

Fig. 7. Convergence behavior under different choices of initial levels. Case 1: the initial three levels are all negative. Case 2: the initial three levels are all positive.

in [35] and the present TMUD for user number 2 is plotted,
respectively, in Fig. 8, with the number of users K = 10
and 20, respectively. In the figure, we can see that in both
cases, the performance of TMUD is close to that of the MMSE
detector.

V. CONCLUSION

In this paper, we considered the problem of multiuser detec-
tion in multipath DS-CDMA channels. The Taguchi multiuser

detectors have been studied in synchronous multipath channels
without the knowledge of channel information. Our analysis
and numerical simulation results show that the present Taguchi
multiuser detectors are insensitive to channel noise and insen-
sitive to the choice of initial values for parameters. Another
advantage of the present Taguchi method is that it is blind since
no channel estimation is required to detect the transmitted data,
which is not the case in many existing methods. Combined
with their relatively low computational requirements as well
as their suitability for parallel implementation, we believe that
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Fig. 8. Multiuser detector performance for user number 2 under different number of users (N = 15, L = 2).

these features make the present Taguchi multiuser detectors a
viable option for improving the capacity of wireless DS-CDMA
systems.

APPENDIX

In this Appendix, we will show that the gradient of a cost
function can easily be estimated from experiments designed
according to orthogonal arrays. In particular, we confirm the
cases of trends considered in Fig. 1 used in our algorithm for
maximizing the likelihood function in multiuser detection. We
note that a previous proof has been provided in [31] for the
Taguchi designs using two levels, and we provide our proof
for three levels for completeness of our results. We also point
out that the use of three levels in the Taguchi method is more
efficient than the use of two levels.

Assume that a cost function J is a complicated nonlinear
function of m factors, J = J(η1, η2, . . . , ηm). Here, ηj , j =
1, . . . ,m are equivalent to the factors hk,l, k = 1, . . . , K and
l = 1, . . . , L, described in Section III (i.e., we have m = KL).
Choose the initial point as η0 = (η0

1 , η0
2 , . . . , η0

m) and small
interval as ∆ = (δ1, δ2, . . . , δm). Define

η
(1)
j = η0

j − δj η
(2)
j = η0

j η
(3)
j = η0

j + δj

where η
(1)
j is the lower level (level 1) of ηj , η

(2)
j is the middle

level (level 2) of ηj , and η
(3)
j is the upper level (level 3) of ηj .

To use the Taguchi method, all tests are designed according
to the orthogonal array, for example, as in Table II. We assume
the use of orthogonal array LM (3m), where M is the required
number of tests in the orthogonal array for each cycle of tests
and m is the total number of columns of the orthogonal array.
Define a matrix X = [xij ] ∈ RM×m, where xij = −1 corre-

sponds to level 1 in the orthogonal array, xij = 0 corresponds
to level 2, and xij = 1 corresponds to level 3. An orthogonal
array has the following properties [7]: 1) For every factor, each
level appears the same total number of times in each cycle
of tests. For example, we can see in Table II that each level
appears three times in each cycle of tests for every factor.
2) All factors’ different combinations of levels between any two
columns appear the same number of times in the tests. These
two properties imply that the sum of elements of matrix X in
every column is zero, i.e.,

M∑
i=1

xij = 0, for all j, j = 1, 2, . . . ,m

and the inner product of any two columns is zero

M∑
a=1

xaixaj = 0, for i, j = 1, 2 . . . , m; i 	= j.

Thus, we have

XTX = diag
[
2M

3
, . . . ,

2M

3

]
∈ Rm×m

where it can easily be verified that

M =
3
2

M∑
i=1

x2
ij

for every j = 1, . . . , m.
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For small values of δj , we can express the cost function using
linear approximation in [η0

j − δj , η
0
j + δj ] as

J = J(η1, η2, . . . , ηm)

= θ1

(
η1 − η0

1

)
+ θ2

(
η2 − η0

2

)
+ · · · + θm

(
ηm − η0

m

)
+ ε

=
m∑

j=1

θj(ηj − η0
j ) + ε

where θj are coefficients to be determined and ε is the
error using linear approximation. From each cycle of tests
according to the orthogonal array, we obtain the following M
results:

Ji =
m∑

j=1

θjζij + εi, i = 1, 2, . . . ,M (9)

where ζij is determined by the orthogonal array, i.e.,

ζij = η0
j + xijδj . (10)

From (9) and (10), we have

Ji =
m∑

j=1

θj

(
η0

j + xijδj

)
+ εi =

m∑
j=1

θ∗jxij + J0 + εi (11)

where θ∗j = θjδj and

J0 =
m∑

j=1

θjη
0
j .

The least squares solution from (11) for θ∗ = [θ∗1, . . . , θ
∗
n]T can

be obtained as

θ̂∗ = (XTX)−1XTJ̃ (12)

where J̃ = [J1 − J0, J2 − J0, . . . , JM − J0]T and X = [xij ] ∈
RM×m (defined earlier). In this case, when θ∗ = θ̂∗, the least
squares estimate of the function J becomes

Ĵ =
m∑

j=1

θ̂∗jωj

where

ωj =
ηj − η0

j

δj
.

Therefore,

Ĵ =
m∑

j=1

θ̂∗j
ηj − η0

j

δj

=
θ̂∗1
δ1

(
η1 − η0

1

)
+

θ̂∗2
δ2

(
η2 − η0

2

)
+ · · · + θ̂∗m

δm

(
ηm − η0

m

)
.

We can then obtain the gradient of Ĵ as

∇Ĵ =

{
θ̂∗1
δ1

,
θ̂∗2
δ2

, . . . ,
θ̂∗m
δm

}
.

Since XTX is diagonal, from (12), we have

θ̂∗j =
3

2M

M∑
i=1

xij(Ji − J0)

=
3

2M

(
V

(3)
j − V

(1)
j

)
, j = 1, 2, . . . ,m (13)

where {V (k)
j , k = 1, 3} indicates the total contribution of the

kth level of the factor ηj to the cost function in a cycle of
tests [see examples in (3)]. We can see that the gradient of
the cost function is determined by the difference between the
total contribution of the upper level, i.e., k = 3, and the lower
level, i.e., k = 1. Equation (13) shows that Fig. 1(a), (b), (d),
and (e) can be used directly for estimating the gradient of the
cost function J as is used in the present algorithm for multiuser
detection.
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