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Abstract

We study the design of distributed space-time codes for cooperative communication. We assume that
each node is equipped with a single antenna; however, to obtain diversity and coding gains, the cooperating
nodes act as elements of a multi-antenna system. With few exceptions, most of the literature on the subject
proposes coding rules such that each node emulates a predetermined antenna of a multi-antenna system.
Since the nodes need to know their specific antenna index, either inter-node communication or a central
control unit is required. Our design objective is to obtain diversity and coding gains while eliminating the
need for code or antenna allocation. We achieve our objective by introducing novel randomized strategies
that decentralize the transmission of a space time code from a set of distributed relays. Our simple idea
is to let each node transmit an independent random linear combination of the codewords that would have
been transmitted by all the elements of a multi-antenna system. In addition to introducing this new class
of designs, we fully characterize the diversity order of the corresponding symbol error probability and also
analyze how the performance is linked to different choices of the statistics of the random coefficients. We
show that the proposed scheme achieves full diversityif N < L, whereN is the number of transmitters
and L is the number of antennas assumed in the underlying space-time code structure. The diversity order
is achieved ifN > L. Interestingly, in certain cases (e.= L = 2), we show that the achieved diversity

order is fractional 4* = 1.5)!
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. INTRODUCTION

When multiple-antennas are available, the use of space-time codes provides diversity and coding gains
that reduce the average error probability over fading channels [1], [2]. In ad-hoc network applications or in
distributed large scale wireless networks, the nodes are often constrained in the complexity of their hardware
and also in their size. This makes multiple-antenna systems impractical for certain networks.

Recently, several methods have been proposed for cooperation among relay nodes to provide spatial
diversity gains without utilizing multiple transmit antennas [3]-[5]. The decode-and-forward strategy is one
such method that has been shown to provide various benefits in addition to being information-theoretically
optimal in certain scenarios [6]. Common to all decode-and-forward strategies is the fact that the relays first
decode the source message reliably and then relay it after re-encoding. Several methods have been proposed
for forwarding the common message by the relays, from the simple repetition, to space-time coding [7],
to more idealistic approaches derived from the information-theoretic framework established by Cover &
El Gamal [8]. In general, space-time coding is superior to repetition, since it provides diversity without a
significant loss in spectral efficiency [9].

A major challenge in distributed cooperative transmissions is to find a way to coordinate the relay
transmissions without requiring extra control information overhead, which would reduce part of the gain.
The coding rule applied by each of the cooperating nodes should, therefore, be identical and independent
from node to node. However, most of the distributed space-time codes in the literature do not focus on this
issue, see e.g. [7], [10]-[16]. In these schemes, each node emulates a specific array element of a multiple-
antenna system; in practice, the implementation requires a centralized code allocation procedure. In addition,
in large-scale distributed wireless networks, the set of cooperating nodes is unknown or random in most
scenarios. For example, in networks with a single source-destination pair and multiple cooperating relays,
the set of nodes that is responsible for retransmission is random due to the error-free decoding constraint.
The randomness in the cooperating set may be due to fading, mobility, node failure, expired battery life, or
the occurrence of a possible sleep state. In this context, designing codes that provide diversity gains even
when the number of cooperating nodes is unknown or random is another issue to address in cooperative
networks.

The contribution of this paper is a novel design of a methodology to decentralize the relay transmissions
and yet obtain diversity and coding gains analogous to those that can be attained by multi-antenna systems.
Our idea is to let each relay transmit an independent, random linear combination of the columns of a space-

time code matrix which has a fixed siZg irrespective of the number of cooperative nodés Special
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cases of the proposed scheme include: i) each node emulates one randomly selected antenna; ii) each node
transmits the superposition of all antennas with random phases; iii) each node transmits the superposition
of all antennas with random gains and phases. We refer to our scheraedasnized space-time coding
(RSTC). The RSTC entails the specification of a space-time code of.siaad anL x N random matrix

R, whose columns are independent. Random linear mapping are also considered in the context of network
coding [19], [20]. Randomization of the transmission signal has also been used in [17], [18] in order to
improve the capacity by creating a fast varying channel. In this work, the purpose of randomization, as
mentioned before, is to eliminate the need for a centralized codantenna allocation procedure.

In order to analyze the performance of the proposed scheme, we express the diversity of the randomized
space-time codes as the order of the probability of deep fade event [2] (see Section IlI-A). The analysis
in Section IlI-A provides the diversity order of any given arbitrary randomization procedure. However,
the results are expressed as non-trivial functions of the statistid®@ ahd, thus, do not lead directly to
constructive designs. To provide design guidelines, we resort to a Chernoff bound on the decoding error
probability that allows us to derive sufficient conditions under which full diversity is achieved. In our study,
we consider random coefficients drawn from both continuous and discrete distributions. For the case of
continuous complex coefficients, we provide designs that achieve full diversity under the condijon,
where N is the number of active transmitters ahds the number of antennas in the underlying space-time
code. We show that, despite the code randomization, the proposed scheme achieves full divgrgity (

N < L, and the diversity ordel. is achieved forN > L. Interestingly, forN = L we show that the
proposed scheme exhibits a fractional diversity (for example Noe L = 2, the diversity order of the
scheme with randomly selected phases$.19. For the case of discrete valued random matrices, we observe
a multi-slope behavior in the average probability of error for sufficiently large number of nddes 10)

(see also [21]).

A. Related Work

Other cooperative transmission approaches that apply to a decentralized scenario are in [22] and [23]. In
[22], the authors propose a protocol where the relay nodes transmit with randomly chosen delays. Hence,
further diversity is obtained by intentionally creating a frequency selective channel. Note that this scheme
may not provide diversity gains due to the possibility that each node may choose to use the same delay. In
fact, our analysis in Section V provides the performance of a class of forwarding strategies which includes
the random delay scheme in [22] as a special case (see also Example 2). In [23], the nodes regenerate the

signal at time instants that depend on the energy accumulated per symbol. The decentralized policy produces
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diversity only if the delays can be resolved at the receiver, which in general requires a large bandwidth.

Other works that address the need for distributed implementation at cooperating nodes are [7], [24]-[27].
In [7], the authors propose orthogonal space-time codes, which may become impractical for large number of
nodes. In [24], the authors propose a filtering approach that does not require the knowledge of the number
of cooperating nodes in order to achieve maximum diversity. The scheme proposed in [25], has the closest
formulation to ours, since each node transmits the product of a space-time code matrix with a pre-assigned
vector-code. As a result, this scheme does not require the knowledge of the number of cooperating nodes
that are active, but it still requires a preliminary code allocation phase. In one way or another, most of these
schemes become impractical in a self-organized networks with a large and/or random number of nodes.
The novelty of our work lies in the proposition that the linear coefficients can be chosen randomly and
independently at each node, which eliminates the need for antenna/code allocation. Our most interesting
finding is that this simple scheme can still provide full diversity as longvas L.

Another linear relaying technique is amplify-and-forward. The schemes in [26], [28] are alternatives to
the amplify-and-forward strategy. The authors propose diversity achieving methods that are based on linear
mapping of the received message at each relay. Our focus in this paper is, however, on decode and forward
strategies.

It is also worth mentioning that, in general, the complexity of the receiver processing (channel estimation,
decoding, etc.) increases with the number of cooperative nodes. In order to deal with this, in [29], the authors
proposes to utilize space-time codes over group transmissions. The nodes in a specific group transmits a
predetermined code with random phases and space-time codes are utilized among the groups. This scheme
is a special case of RSTC where the randomization m&®ixakes a block-diagonal form. Note that by
changing the fixed size parameterin RSTC, we can decrease the receiver complexity.

The paper is organized as follows: In Section II, we describe the system model and the proposed scheme.
In Section Ill, we characterize the diversity order of the randomized space-time codes and provide design
criteria that leads to full diversity order. In Sections IV, we present specific examples for the randomization
matrix R. In Section V, we provide the extended version of antenna selection scheme [21]. In Section VI,

we present the simulations. Finally, we conclude in VII.

[I. SYSTEM MODEL AND THE PROPOSEDPROTOCOL

We consider a system where a random number of nddellaborate in order to transmit a common
message to a destination distributively. This problem arises in decode-and-forward communication schemes,

where a source node transmits to a group relays (Phagé of, the relays successfully decode the source
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message, and transmit the same message simultaneously after re-encoding (Phase Il). Fig. 1 describes an
analogous scenario, where the end receiver is remotely located relative to the network.

In this paper, we will assume that: 1) the Phase | of the communication has taken place; 2) each relay
node can determine whether or not it has reliably decoded the message; 3) only the nodes that has decoded
reliably transmit the message; 4) the end receiver uses only the data received from Phase Il to decode the
message. We will deal exclusively with the Phase Il of the communication, and assume that the number of

transmitting nodesV (i.e., the active nodepis random due to the error-free decoding constraint.

(& PHASEI (o) PHASEII

Fig. 1. Two phase cooperative communication.

The output signal for a block space-time coded transmission over a point-tofpoirit MISO (multiple-

input-single-output) link is generally expressed as follows [9]:
y = Xh +w, Q)

whereX = [X;;] € CP*Y denotes the transmitted signal (i is the time index, j is the transmitter antenna
index), h = [h;] € CV*! denotes the channel gains from different antennas,vans the channel noise.
In a block space-time coded cooperative network, the same system model (1) can be used under certain

assumptions. For the cooperative system, thie X;; denotes the user index amg is the channel gain

from userj to the destination. Furthermore, we assume that the following are satisfied:

al) The relative receiver and transmitter motion is negligible so that the channels do not change during the
course of the transmission of several blocks of data.

a2) Frequency drifts among transmissions from different nodes are negligible. Frequency errors at different
nodes are time-invariant over the transmission of several space time codes and the slow phase fluctuations
can be incorporated into the channel coefficidmts

a3) There is negligible time-offset among transmissions compared to the symbol infexyahere is no

inter-symbol interference (ISI).
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We assume al), a2), a3) to be able to describe the system concisely using equation (1), and also for
the analysis of the proposed protocol. Nevertheless, it should be emphasized that for the application of
the proposed protocol assumption a3) can be relaxed. The proposed protocol is also applicable to time-
asynchronous relays, as discussed in [30]. Note that ISI, which is traditionally viewed as an impairment, can
actually improve the system performance by providing frequency diversity. Wei et al. [22] actually proposed
introducing random delays to relay transmissions to increase diversity, and showed significant improvements
in system performance.

The path-loss and shadowing effects are modelled as a block Rayleigh fadinh witk.(0, X;), where
Y, is a positive definite matrix. The receiver noise is modelledvby N.(0, NoI), wherew is independent
of h.

Notation: In the following, det(A), rank A), Tr(A) denote the determinant, rank and trace of a matrix
A respectively. In addition, didgs, as, ..., a,) denotesn x n diagonal matrix such that,)'th element
is equal toa;. The identity matrix is denoted b¥. All the matrices and vectors will be denoted by bold

symbols. AL x N matrix A is said to befull-rank if rank(A) = min{L, N}.

A. Proposed Diversity Scheme

Lets = [so s1...s,—1] be the block of source symbols to be transmitted to the destination. We assume
that the message is known perfectly at the active nodes in Phase II. We will consider the transmission of one
block of data for simplicity, although the source message will, in general, consist of several blocks. In the
following, we describe the processing at each node and analyze the decoding performance at the destination.

At each node, the is mapped onto a matrig(s) as is done in standard space-time coding:
s — G(s),

whereG(s) is a P x L space-time code matrix. Heré, denotes the number of antennas in the underlying
space-time code. In our scheme each node transmits a blodk ®fmbols, which is a random linear
combination of columns o (s). Let r; be theL x 1 random vector that contains the linear combination
coefficients for the’th node. DefineX = [x; x2...xy] as theP x N random code matrix whose rows
represent the time and columns represent the space, wheraj(s)r; is the code transmitted by th&h

node. The randomized space time coding can be expressed as the double mapping:
s —G(s) = G(s)R, (@)

whereR = [r; ry...ry]. In the following, theL x N matrix R will be referred to as theandomization

matrix. Since each node’s processing is intended to be legalshould be independent for eack-1... N,
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and we will also assume that they are identically distributed. This property allows the randomized space-time
coding to be implemented in a decentralized fashion. In other words, each node chooses a random set of
linear combination coefficients from a given distribution, which does not depend on the node index.

Let y be the received signal at the destination. Using (1), we can rewrite the received signal as
y = G(s)Rh +w, 3)

wherew ~ N_(0, NoI) andh ~ A,(0, Xy,).
Definition DefineX £ G(s)R as therandomized space-time co@adh £ Rh as theeffective channel

These two definitions express two critical interpretations of the proposed sche@(®)R is considered
as a whole, then the scheme can be viewed as a randomized space-tin€ t@ohsmitted over channel
h. On the other hand, iRh is considered as a whole, then the scheme can be viewed as a deterministic
space-time cod€(s) transmitted over a randomized chaniel

The second interpretation is especially important for decoding purposes at the receiver. We assume that
the receiver utilizes a coherent detector and in order to perform coherent decoding, the receiver needs to
estimate the channel coefficients. Instead of estimating the channel ¥eatwt the randomization matrix
R separately, the receiver can estimate the effective channel coeffibieRts this, the training data at the
transmitters should use the same randomization procedure. Estimating the effective channel provides two
main advantages: i) decoders already designed for multiple-antenna space-time codes can be directly used
for randomized space-time coding; ii) the number of coefficients that are estimated is lesd whew,
since in this case the effective channel vediois shorter that the actual channel vector

Yiu et al. [25] proposed a deterministic version of the randomized space-time code scheme (3), where each
column of matrixR is a pre-determined deterministic code allocated to a specific user. The main advantage
of this scheme is that it provides robustness to the uncertainty as to which group of relays will transmit in
Phase II. That is, the diversity ordéf is achieved as long a& < L irrespective of whichV relay nodes
transmit. This is different from the orthogonal space-time code approach in [7], because there, if two nodes
happen to be allocated the same transmit antenna, then the diversity order is naNorgmth in [25] and
[7], the nodes have to be allocated antennas or codes. The main advantage of randomized space-time coding
is that it achieves the full diversity ordéy for N < L without code or antenna allocation.

In the following, N denotes the number of active relays in Phasé Bnd P denote the number of columns
and rows of the underlying space time code ma@i{x) respectively [ is also the maximum diversity order

of the underlying space-time code whil is its time duration, in terms of humber of symbol intervals).
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The signal-to-noise ratio is denoted by SNR;(SNR) is the average error probability;* is the diversity

order of the randomized space-time code. Often, the not&tian will be replaced simply byG.

B. Performance Metrics

Traditional space-time codes are designed using the probability error as a performance criterion [9]. We
will adopt a similar approach for the design of randomized space-time codes. Our main focus is the maximum
diversity that can be achieved by the scheme.

Let M = {sy,s2,...8} be the message set, where each message is chosen equally likely. Define
SNR = 1/N, (Eqgn. 3). Assume that the effective chaniels known at the destinatiori.€., the receiver
has channel state information). LEt(SNR) denote the symbol error probability at the destination under
the maximum likelihood detection ruleg., the probability that a messageis transmitted, but the decoder

produces another messagje j # ¢ (averaged ovei and h).

Definition The diversity ordew* of a scheme with probability of erraf.(SNR) is defined as

—log P.(SNR)

d* =
SNR.  logSNR

(4)

We say that the randomized space-time code achuivessity orderd if d < d*. The randomized space-time
code is said to achieve @ding gainG if P.(SNR) < G SNR™4".
In this paper, we will consider two different types of performance metrics: i) symbol erroPté8NR)
(by an upper bound and simulations); ii) diversity ordér(analytically and by simulations). These metrics
do not take channel coding into account. InsteadPpfand d*, we could analyze outage probability that
also takes into account the effect of channel coding. We do not treat this case, however we wish to remark
that, in the case of orthogonal space-time codes the outage probability analysis can be easily derived from

the error probability analysis carried out here.

[11. DESIGN AND ANALYSIS OF RANDOMIZED SPACE-TIME CODES

In this section, we analyze the performance of randomized space-time codes and come up with some
principles that facilitate the design of the randomization maRixWithout loss of generality, we assume
that P > L for the P x L deterministic space-time code matgx DefineG; = G(s;).

There is a vast literature on the design of deterministic space-time ¢gésand the design ofgG;}
problem has been thoroughly investigated by many authors. Our objective in this section is the design of

the randomization matrifR and the analysis of its effect on the diversity order. We will assume that the
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underlying space-time code satisfies thak criterion [9], which is expected to be satisfied by any optimal
design.
C1) The Rank Criterion foiG: For any pair of space-time code matricgsy, G, }, the matrix(G, — G;) is

full-rank, i.e., of rank L.

A. Exact Characterization of the Diversity Order

The performance degradation in fading channels results frondélep fade everds discussed in [2,
Ch. 3]. In this section, we first define what the deep fade event means for our communication system and
characterize its diversity order. The following lemma asserts that we can equivalently consider the deep fade
event instead of. for diversity calculations.

Lemma 1:Let {||Rh]||> < SNR™!} be the deep fade event, and
Pieep(SNR) £ Pr{||'R,hH2 < SNR_l} (5)

its probability. If the assumption C1) is satisfied, then the diversity ordef.ab the same as that of the

deep fade event,e.,

—log Pjeen(SNR
d*= lim 08 Fltcep( )
SNR- SNR
Remark 1:An interesting corollary from the lemma is that the diversity ordfeis completely independent

of the underlying coddG;} as long as the underlying code is full rank. The main utility of Lemma 1 is
that the diversity order o, is much easier to analyze than thatf.
Proof: The proof is given in Appendix A. ]

In the following, we will equivalently considefRS)/*h|2, h = [hy,...,hx] ~ N.(0,T) instead
[|Rh||?, h ~ N.(0,%},). Let UPSU be the eigenvalue decomposition Eﬂf’RH’RE}Zﬂ, whereU is a
random Hermitian matrix an8 = diag(o?, - - - ,0,2]) are the ordered eigenvalues (squared singular values of
RE}/Z). Using the properties of the circularly symmetric Gaussian distribution, we obtain

n
Pdeeszr{ZamF < SNFrl}. 6)
i=1
The following theorem provides a very general and clean characterization of the diversity order in terms

of the distribution of the singular values (RE,I/Q. Let notation0~ denote a negative real number that is

close to zero and'(ay, - - - , o) represent the following function:
Far,.. ) = _lim —log Pr(c? < SNR™ ... ,0727 < SNRfa")‘ @)
SNR-w0 log SNR
We call the parameters, - - - , a; the deep fade exponents of the singular values
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Theorem 1:If the assumption C1) is satisfied, then the diversity order of the randomized space-time code

is
U
dF = ( inf : (F(al,...,an)—l—Z(l—ai)) ) (8)
1,50 i=1
where the infimum is ovet; € [07,1], i =1,--- 7.
Intuition and proof. Consider the following events:
i) The singular values are such thgt < 1/SNR*, i = 1,---,7 (i.e. o? is in deep fade with exponent

;).
i) The channel coefficients are such that2 < 1/(ySNR'"®), i = 1,-.. 5 (i.e. h; is in deep fade
with exponentl — «;).
To calculate the diversity we note that any sufficient condition for the deep fade event provides an upper
bound ond*. If events i) and ii) occur simultaneously, we have a deep fade évéht a§|ﬁi|2 < SNR!,
as defined in (6). Because the events i) and ii) are independent, the probability is going to be a product of
probabilities and diversity orders are, therefore, additive. With this in mind, the secondX&tm(( — «;))
in equation (8) follows from the Rayleigh distribution; in fact, the diversity order of each event(ii}-sy;).

The first term follows from the definition in (7). Therefor&; < I'(a,...,ay) + .. ;(1 — «;), which

implies that
U
d*g( inf )(F(al,...,an)—l—Z(l—ai)). 9)
Byl P
For the opposite inequality, see Appendix B for a rigorous proof. ]

The theorem is easiest to understand wi&n = 1. In this case;’s are the singular values of the
randomization matrixR. In simpler terms, the theorem states that the deep fade event happens because
of the simultaneous fades of the randomization matrix and the channel coefficients with expesents
and1 — «;'s, respectively. Hence, in our scheme, the randomization of the space-time code matrix may be
ill-conditioned.

In order to distinguish between “good” and “bad” design choicesrwe need to understand the
conditions under which the?’s are more likely to be small. Since the singular valm,%sg e < a% are
ordered, it is easiest for t@ to fade. Thea% fades if and only if the columns of the matrix turn out to be
completely or partially confined into a— 1 dimensional subspace. This may happen, for example, if two
column vectors turn out to be almost parallel to each other, or a column vector approximately lies within
the plane spanned by two other column vectors, etc.

In Section 1V, forX;, = I, we analyze a number of specific designs Rrand conclude that the best

designs have random column vectorswhich have the least probability of being aligned. In fact, the
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11

design that performs best among the ones we examine in Section IRhagh i.i.d. columns uniformly

distributed in the complex unit sphere.

A few remarks follow from Theorem 1:

Remark 2: i) In general, finding the distribution of the singular values for a given random matrix

ii)

distribution is not an easy task. Fortunately, Theorem 1 only requires knowledge of the distribution of
the singular values 01&]}1/2 around zero. We will utilize this observation in Section IV.
Theorem 1 completely characterizes the diversity order of a randomized space-time code for a given
R; however, it is non obvious how to use Theorem 1 constructively. In fact, it is unclear how one can
choose the singular vector and singular value distributions such that, the singular value distribution has
the local properties that are required to maximiZein (8) and, at the same time, the columnsRf
are statistically independent.
Theorem 1 gives the upper bound

d* <n=min(L, N) (20)

(choosex; = 0, Vi), which says that the diversity order is always bounded by the minimum of the
number of relays and the underlying code dimension.
A necessary condition for the randomized code to have maximum diversity pidd¢hat the exponent
of the smallest singular valulgz7 should be at least 1.e.,
_ —logPr(aTQ] < SNR™1)
lim =
SNR-x log SNR
This can be seen by substitutiag = 0=, i = 1,--- ,n — 1 in (8) exceptw,, = 1. The distribution of

(11)

the smallest singular value is generally easier to obtain than the joint distribution of all singular values.
Consequently, (11) is a simpler condition to check than the condition in Theorem 1.
Theorem 1 presents an interesting result. The diversity orders caadienal depending oi’(-). We

will see concrete examples of this in Section IV.

B. Upper Bound to the Probability of Error

A brief word about our notation. LeA be an x n Hermitian matrix with eigenvalues; > Ay > ...\, >

0> Amt1--- > An. We use the notatiopA |, to denote the product df smallest positive eigenvalues of

the matrixA, i.e., |[A|x+ = Hle Am—i+1. If all eigenvalues are positive, theA |, = det(A).

We know that the diversity order of the randomized space-time code is always upper bounded by

the minimum of the number of relay nodes and the size of the underlying space-timei.eod€; <
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min{N,L} £ 5. The following theorem provides an upper bound to the average error probability and a

sufficient condition for the randomized code to have diversity order

Theorem 2:Suppose thafgG;} satisfies C1), and the randomization matRxsatisfies
C2) Rank criterion forR: The matrixR is full-rank with probability 1.
C3) Finiteness ofi{|RR |, |}: The expectatio®{|RR| 1} is finite.
Then, theP, is bounded as

471(IM| = 1)SNR™" { 1 }
p< E . 12
- mln(m-){ (Gi — gj)H(gi - gj)|n+} |2h|77+ ’RRH|U+ 2

Proof: See Appendix C. [ |

Remark 3:Note that here, it is assumed that the chainahd the randomization matriR changes over
the transmission so that the packet experiences multiple realizations.

Remark 4:Notice that the diversity order of the upper bound in (12)isSince the diversity orded*
cannot exceeq, we observe from Theorem 2 that the randomized space-time code has maximum diversity
ordern, as long as C1)-C3) are satisfied.

What kind of random matrices satisfy the rank criterion ®? We know that almost all square matrices
over the field of real or complex numbers are invertibke, the set of singular square matrices have Lebesgue
measure zero. In general, any random matrix with independent columns drawn from a continuous distribution
satisfies the rank criterion. However, this alone does not guarantee the diversityoiidex upper bound
in (12) is useful only ifE {]RRHHj} < oo. This is a rather stringent condition, and not all almost-surely
full rank matrices satisfy it. In the next section, we will present some sufficient conditions for this to be
true.

The bound in Egn. 12 can be tightened by improving the coding gain. The following conditions are
needed: imin; ;) |(Gi — G;)"(G; — G,)|,+ should be maximized with respect {g;}; ii) E {|/RR"|; | }
should be minimized with respect the distributionf Note that condition i) is a slightly modified version

of the determinant criterion in [9].
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C. Diversity Order for Randomized Space-time Codes with Power Constraint

In this section we will employ a transmit power constraint on the relay nodes to facilitate the analysis of

randomized space-time codes. LRt < oo be the total relay power available to the network such'that
Tr(RRM) < Pr with probability 1. (13)

Under the conditions of the following theorem, we show that C3) holds, and therefore the diversity order
of the randomized scheme g

Theorem 3:Let R be anL x N randomcomplexmatrix andp(R) its probability density function.
Assume that the functiop(R) is bounded and it satisfies the total power constraint (13).NFef L, if C1)
and C2) are satisfied, th%{]RRHHi} < oo. Therefore, the diversity order of the randomized space-time

code is given by

N ifN<L-1
dr = (14)
L ifN>L+1

For N = L, the diversity order is such thé@f — 1 < d* < N.
Proof: See Appendix D. ]

Remark 5:The above result shows that the randomized space-time codes achieve the maximum diversity
order N achievable by any scheme ¥ < L. It also indicates the diversity order saturateslaif the
number of relay nodes is greater than or equalt® 1. This problem can be solved by using space-time
codes with large enough dimensions. Howevérmay be random and may take large values in practical
networks. In such cases, using smallemay be preferred for decoding simplicity. For fixégd randomized
space-time codes still give the highest ordefor N > L + 1.

Corollary 1: Let R be anL x N randomreal matrix andp(R) its probability density function, which is
assumed to be bounded. Suppose that C1) and C2) are satisfied, and the total power constraint (13) holds.

Then, the diversity order of the randomized space-time code is given by

N if N<L-2
d* — (15)
L if N>L+2

For N € {L —1,L, L + 1}, the diversity order is such tha&{ — 2 < d* < min(N, L).
Proof: The proof follows from modifying the proof of Theorem 3 for the real valdRdWe avoid it

for brevity. [ ]

Notice that there is no expectation in the power condition. We want it to be satisfied almost surely. Condition (13) implies that

the pdf of R has bounded support.
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Remark 6: The diversity order of a randomized space-time code is closely related to how ill-conditioned
the matrixR is. This relates to the behavior of the joint distribution of the singular values around origin
(Theorem 1). Theorem 3 indicates that, @r= L it is quite hard for a complex valued matriR to be
ill-conditioned. On the other hand, for real valued matrices, ill-conditioned matrices are more likely and,

hence, we need at least — L| > 2.

IV. SPECIFICDESIGNS ANDTHEIR PERFORMANCE

In this section, we propose different randomized space-time codes and derive the diversity order of these
designs using Theorem 1 and Theorem 3. Furthermore, in Section VI, the average error probabilities of

these designs are obtained via Monte-Carlo simulations. In the following, we assunte~th&f(0,I).

A. Complex Gaussian distribution

Let us assume elements of tihkex N dimensional randomization matriR are zero-mean independent
and complex Gaussian. In the random matrix literature, the Gaussian random matrix is one of the most
studied [31], [32]. The joint probability density function of the non-zero eigenvalies X\, > ...\, of

the matrixRR (known as Wishart) is given as
7

n
FOw o An) = Cnpexp(— S ) TTAY T TTOw — A2 (16)

i=1  i=1 i<j
whereC'y, 1, is a constant. In the following, we provide the diversity order of this scheme.

1) CaseN # L: Using the results in [31], we obtain

WL-DU ¢ N> 41
E{RRI =4

B i L>N+1,

wheren = min(L, N). Since]E{]’R’R\;i} < oo when N # L, the upper bound on the average error
probability is given as follows (using Theorem 2):
< 47"(|M| — 1)SNR™" (IN—L|—1)!
= ming {(Gi — G)7(Gi — Gyt } [Salyr (max(N, L) — 1)1’

Eqn. 17 shows that (14) also holds f& with i.i.d. complex Gaussian elements. Note that the total power

(17)

constraint (13) is not satisfied in this scenario. However, we arrive at the same conclusion on the diversity

orderd* which we derived previously through Theorem 3.
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2) CaseN = L: We can approximate the probability density of non-zero eigenvalues of the Wishart

matrix RR (Eqn. 16) around zero as
FOL AN = et TN e (18)

Using Theorem 1 and (18), the diversity order is

N
d*= inf (2N —1)a;+ (2N =3)az+...+ay+» (I —a;) =N,

QN

F(a17~~~,aN)
where the infimum is obtained when = 0, Vi. Hence, if the elements of the randomization mafxare
drawn independently and identically from a zero mean complex Gaussian distribution, the full diversity is

also achieved for théV = L case.

B. Real Gaussian distribution

Let us assume that the elements of the randomization m&riare zero-mean independent and real
Gaussian. The joint probability density function of the non-zero eigenvalyes X, > ...\, of the

Wishart matrixRR” is given as

FOM, - A) = Cy.pexp(— ixz ﬂxl H)\ —\), (19)
i=1 i=1 i<j
WhereCN,L is a constant. We can approximate the probability density of the eigenvalues (19) around zero
as
FOML A NCHA‘N S (20)

We then find['(-) asT(a1,...,an) = >0 <|N_2L‘_1 + 77) a;. Using Theorem 1 and (20), the diversity
order is obtained as follows:

1) CaseN # L: For this cased* = n where the infimum is obtained when = 0, Vi.

2) CaseN = L: For this cased* = infq, .. o, (> 71 (n—1i/2)+> 71 (1—a;)) =n—0.5. The infimum
is obtained whea; =0,i=1...1,a, = 1}.

Therefore, in this case the diversity ordé&ris given by

n if N#L,
n—05 if N=1L,

d =

wheren = min(N, L). Note that the scheme provides a fractional diversity order wkiea L.
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C. Uniform phase distribution

Let us assume that thgth column of the L x N randomization matrix ig;, = a;[e?% ), ... /0Lt
where eacty;[N] ~ U(0,27) anday ~ U(1 —¢€,1 + €) for some smalk > 0, whereU(a,b) denotes the
uniform distribution in the intervala, b) and alld;[ N1, a;. are independent of each other. The main advantage
of this scheme lies in its ability to control the transmission power at each node. The total power is bounded
as N

T(RRY) =LY |ail* < NL(1+¢).
i=1

1) CaseN # L: Using Theorem 3, we conclude that the diversity ordesatisfies (14). Foe = 0, that
is r, = [0 es%[]t the randomization matriR can be interpreted as a random phase matrix. In
this case, unfortunately the probability density functiorfofdoes not exigt hence we can not directly use
Theorem 3. However, we believe the result (14) is also valid in this scenario and we will see that this is
true by numerical examples.

2) CaseN = L = 2: Consider the random phase mat# for ¢ = 0. The eigenvalues cRR" can be
found asA\; = 2+ /2 +2cos(d) and \y = 2 — /2 + 2 cos(f), whered is a uniform random variable in
the interval[0, 27). Note that\; € [1, 4] with probability 1. Using Theorem 1 and the fact that> 1, we

can easily see that the optima] = 0~. Hence, the problem simplifies to determining

d* =min T'(07,a2) +2 — as. (21)

(e %)
One can derive the distribution of as

2
Fo, () = Pr{hs < A} = 2 cos™(1 - %), 0<Ar<2.

Then, the behavior of thé),()\) around zero is given aB),(\) ~ %ﬁ, as A—0. The infimum in (21)

is obtained whenv, = 1, which gives us a fractional valu& = 1.5.

D. Uniform distribution on a hypersphere

Let us assume that thiéth column of the x N randomization matrixrg, is uniformly selected on the

surface of a complex/real hypersphere of radiuse., ||rx|| = p. Note that, in this case, the total power

2To see why the pdf ofR does not exist, let's look at the special case whBeis 1 x 1. Here all the probability mass is
concentrated on the unit circle. Hence the "pdf” is what is sometimes referred to as an impulse sheet. Viewed in an engineering
sense, this pdf is not bounded (hence Theorem 3 does not apply). From the measure theoretic point of view, the measure induced
by R is not absolutely continuous with respect to the Lebesgue measure on the complex plane [33]. Therefore, its Radon-Nikodym

derivative (hence its pdf) with respect to Lebesgue measure does not exist.
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TABLE |

DIVERSITY ORDER FOR DIFFERENT SCHEMES

Distribution of R Condition Diversity Order
Complex Gaussian N=1L N
Complex Gaussian N #L min(N, L)
Real Gaussian N=1L N —0.5
Real Gaussian N #L min(N, L)
Uniform Phase N #L min(N, L)
Uniform Phase N=L=2 1.5
Real Spherical Distribution N=L=2 2
Complex Spherical Distribution N =L =2 2
Random antenna selection | any N and L 1

constraint (13) is satisfied.e.,

Tr(RRY) = p’N < .

Similar to uniform phase randomization with= 0 (Section IV-C), the probability density function ®
does not exist in this case. However, we will show through numerical examples that (14) is still valid.
1) Real hypersphere withh = L = 2: Let us assume that the columns of the randomization m&rere

drawn uniformly on a sphere. We can obtain the eigenvalu® R’ as\; = 14cos?(f), Ao = 1—cos?(4),
wheref ~ U(0,2m). Note thath\; > 1 andPr{\s < A} = \/(27) asA—0. Using Theorem 1, the diversity
order is

d* = minF(O’,ag) +2—ag =2,
Q2

where the infimum is obtained when = 0~ anda, is any value.

2) Complex hypersphere witki = L = 2: Let us assume that the columns of the randomization m&rix
are drawn uniformly on complex hypersphere. We obtain the eigenvaluRSRF as); = 1+/(/2,\y =
1 —+/C/2, where¢ ~ Fy, and F,,,,, is the F-distribution. Note thax; > 1. Using Theorem 1, the diversity
order obtained isl* = 2, where the infimum obtained wheja, a2) = (0,07). Table | summarizes the

diversity order of the proposed schemes.

V. ANTENNA SELECTION AND DISCRETERANDOMIZATION MATRIX

The case considered in this section is that where the randomization ma&iees drawn from discrete

distributions. In the next example, we present the random selection matrices.
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Example 1:Let R = [r;...ry] be a random matrix such that € Q £ {e;,i =1...L} wheree; is
the vector of all zeros except thih position, which isl. Note that the randomized space-time coding, with
the selection matrixR, corresponds to assigning the columns of a given space-time code matrix at random
to each of the nodes. This scheme will be referredaamsiom antenna selectiotn [21], we analyzed the
performance of random antenna selection with an underlying orthogonal space-time code. We showed that
this simple method almost meets the ideal performance for SNR below a threshold \8iNéh increases
with node density. In the following, we extend the results in [21] to more general scenarios.

When the randomization matriR is drawn from a discrete distribution, the probability that the rank of
R is unity, i.e., Pr{rank RR) = 1} is nonzero. In the light of this observation, the following lemma
presents the diversity order of this scheme with firfiteV.

Lemma 2: The randomized space-time coding, wit drawn from a discrete distribution, has diversity
orderd* =1 for N < cc.

Proof: The proof follows from Theorem 1. The diversity order is obtained wken = 0, a; =

1,Vi=1}. [ |

Lemma 2 states that the maximum diversity that can be achieved with schemes based on randomization
matrices drawn from discrete distribution is which is quite discouraging. This is somewhat misleading
as can be shown by studying the diversity order as the number of nodes increases. We now define the

asymptotic diversity order

Definition Let Pe(N)(SNR) denote the probability of error of a randomized space-time code utilizing an

L x N randomization matrix’%. Then, theasymptotic probability of erro?>°(SNR) is defined as

VN
P>(SNR) & §m13@NSN®.

Also, theasymptotic diversity ordeP of this randomized space-time code is defined as
DA lim —log P>°(SNR)

22
SNR-«  log SNR (22)

In the asymptotic case, full diversity conditions are more relaxed. The sufficient conditions in order to
achieve the asymptotic diversity ordex= L are provided in the following theorem. In order to derive the
asymptotic probability of erro>°(SNR), we utilize the behavior of effective channel for largein the
proof of next theorem.

Theorem 4:Let R = [r;...ry] be anL x N random matrix such that the columms are i.i.d. with
zero-mean and covarian& Assume thah ~ N.(0, £;), whereX;, = diago?,,02,,...,05y). If L < oo,

then the asymptotic diversity ordé? = L is achieved if the following conditions are satisfied:
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1) (Gx — G;) is full-rank,
2) X is full-rank, i.e., det(%) > 0.
Proof: See Appendix E. ]

The behavior of the schemes utilizing discrete randomization matrices changes dramatically in the high
node asymptote due to Theorem 4. From Lemma 2, we know that as-SthRhe diversity order of this
system isl for N < oo. On the other hand, from Theorem 4, in the asymptote that number of nodes goes
to infinity, the asymptotic diversity order i$ = min(L, N). In addition, an interesting observation on the
behavior of networks with finite but sufficiently large number of nodes is made. The average error probability
curve (in the typical logarithmic scale, versus SNR in dB) exhibits multiple slopes in different SNR ranges.
The justification for this behavior is as follows.

Assume thatG,—G,) is of rank L for any pair of space-time code matricg8;, G;}. Letn = min(L, N).

Let S = {07,03,...,02} be the set of non-negative eigenvaluesR " ordered such that} is the largest.

Let us rewrite the average probability error as a polynomidl/i@NR (using (43) and (48))P. < P., where

n n
_ I 1
= B, E 2 = _— 23
mE:1 | | o; “[rankRR™) =m SNR"’ (23)

i=n—m-+1

A
20,

where B,, 2 zx"(*lgmgnprérangk(RR'E =™} The expression (23) helps explain the fact that when the
k k m+ h|m+4

number of nodes is finite budufficientlylarge, the probability of error curve changes its slope, but above

a certain SNR threshold, the expect@dl/SNR) behavior is obtained. The breaking points of the curve
change and move towards higher SNRs as the number of nodes increases. In fact, depending on the values
of {C),}, the range of SNR where the terfi),,/SNR" is dominant in the summation (23) can be derived

as follows:

I]g1>an>§ (g::) T << SNR<< mln (gk > m , (24)

if ming,, (Cp,/Cr) ™% > maxgsm (Cp/Cr) ™+ = (for m = 1, the upper bound isc and form = L, the
lower bound is0). In Section VI, we will show this behavior in a numerical example.

The main advantage of choosing columns®ffrom a discrete distribution is the simplification in the
encoder, since the random selection can be enforced at the data link layer and hence, the scheme can be
implemented in logic without any modification of the existing physical layer modem.

Example 2:(Frequency Diversity
In [22], the authors propose a protocol where the cooperating nodes introduce intentional delays in order to

obtain diversity through an artificially created frequency selective channel. In one version of their protocol,
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they allow the nodes to randomly select the delays from a pool. This scheme can be reexpressed as a
randomized space-time code: L&ts) be a Toeplitz matrix having all the possible shifted replicas of the
transmitted signal and the randomization ma®xbe the selection matrix. The performance of this scheme
under coherent detector is analyzed in Section V. Furthermore, the diversity and coding gains can be attained
if the strategy is combined with a coded- OFDM modem that includes a cyclic prefix on the order of the

maximum allowed delay dispersion among the cooperative relays (see also [11]).

VI. SIMULATIONS & NUMERICAL EVALUATIONS

In this section, we present the performance of the propeardomizeddistributed space-time codes.
We obtain the average probability of error through Monte-Carlo methods and validate the conclusions we
draw in the analytical sections. We compare the performance of randomized schemes with the centralized
space-time codes for different values @gfand L. In the following, we assume the nodes channel gains to
the destination are i.i.di,e., by ~ N.(0,1).

In Fig. 2, we look at the performance of Alamouti scheme under different randomization methods and

compare it with a centralized space-time coding. Here 2, and

sy —s]
wheres = [s; so] is the transmitted symbol vector ang = £1 (BPSK symbols). The randomization is
done in four different ways: (i) Complex Gaussian randomization (see Section IV-A) (ii) Uniform phase
randomization (see Section IV-C) (iii) Uniform spherical randomization (see Section 1V-D) and (iv) Random
antenna selection (see Section V - Example 1). t,ebe thei'th column of the randomization matrix
R. In uniform phase randomization, each elementrpfis equal toe’’ where 6 is a random variable
uniformly distributed in|[0, 27). In the case of Gaussian randomizatiefls are zero-mean independent
complex Gaussian vectors with covariariceln the uniform spherical randomization;’s are chosen as
zero-mean independent complex Gaussian vectors with covadaaee then normalized to have the norm
p=Iri|| = 1 [34], [35].

In the centralized Alamouti, half of the nodes choose to serve as the first antenna, and the other half
choose to serve as the second antenna(is odd, at one of the nodes the power is equally distributed
between two antennas). The transmission power of each noffe -is % for the centralized Alamotj

antenna selection, and spherical randomization schemes. For the Gaussian and uniform phase randomization
3Note that the centralized scheme using two relays #th= 0.5 would have the same performance.
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schemesp, = ﬁ.“ This way the average transmission power of each antenna is approximately the same
for all schemes, hence the comparison is more fair.

In Fig. 2, we plot the average probability of error with respect to SNR /N, for N = 2,3,4,10.
From theoretical analysis, fa¥ = 2, we know that the Gaussian and spherical randomization schemes have
diversity orderd* = 2; on the other hand, uniform phase randomization has diversity dfder1.5 and the
diversity order of the random antenna selection.ig his is supported by the simulation results. However,
for N = 2, the performance of the centralized scheme is much better than the decentralized schemes. We
also plot the upper bounds to the average probability of ety Eqn. 43), which are very close to the
actual P, curves. ForN = 3,4, the Gaussian, uniform phase, and spherical randomization schemes achieve
diversity order2 similar to the centralized scheme. However, the centralized scheme has a better coding gain.
Nevertheless, one can observe that\asncreases the performance of the distributed schemes approaches
the centralized scheme not only in the diversity order but also in the coding gain.

In Fig. 3, we look at the performance of an orthogonal space-time code of brdes:

¢
S1 0 sy —s3

G(s) = 0 s1 s5 s ,
—s5 —s3 s7 0

wheres = [s1 s2 s3] is the transmitted symbol vector. Note that the rate of this codg4isin the centralized
scheme, forN > L, the nodes are divided intb equal number groups, and N is not a multiple ofL,
then at the remaining nodes, the power is distributed equally among t@ennas. IfN < L, the nodes
imitate N of the preselected antennas. Similar to the Alamouti coding, the transmission power of each node
is P = % for the centralized scheme, antenna selection, and spherical randomization scherﬂ@&,q@ﬁ
for the Gaussian and uniform phase randomization schemes. In Fig. 8, #og, the diversity order* = 2
is achieved by centralized, Gaussian randomization and uniform phase, on the other hand, the antenna
selection scheme has the worst performance.¥et 3, the centralized scheme has diversity ordér 3
and the performance is much better than the decentralized schemes. In addition, the performance of the
randomization via continuous distributions (Gaussian, uniform phase and spherical) is considerably superior
to the antennas selection scheme. Bor= 4, the Gaussian, uniform phase, and spherical randomization

schemes achieve diversity ord&rSimilar to the Alamouti scheme, the performance of all the randomized

“The aim of normalization byl/L is to make the comparison fair among different randomization schemes; the normalization
by 1/N is just to cancel the effect of power enhancement due to transmissidn mddes; hence we are able to distinguish the

diversity order easily. Note that in general, normalizationlly. should depend on the selected cadle
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Alamouti coding with N = 3 nodes

Alamouti coding with N = 2 nodes
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Alamouti coding with N = 4 nodes

Alamouti coding with N = 10 nodes
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Fig. 2. Average Probability of Error versus SNR (dB): L = 2 (a) N=2 (b) N=3 (c) N=4 (d) N=10 .¥et 2, the upper bounds

to the average probability of error are drawn for each of the schemes with dotted curves.

schemes converges to the performance of centralized space-time codihgnaseases.
In the next experiment, we present the multi-slope behavior of antenna selection scheme with the under-
lying deterministic Alamouti space-time code. Whahis odd andL = 2, the analytical expression of the

average error probability simplifies to [21],

1NN g(k) — g(N — k)
P2 (1) , 25)

2k—- N

whereg(z) = 5 (1 — ”m) . The numerical evaluation of (25) fav = 3,5,7,9, 11 is displayed in
addition to the asymptotic result (centralized scheme performance) in Fig. 4.
As expected, theP, curves have a breaking point, which becomes more pronounced esreases;

beyond a certain SNR, they all have the same slope which corresponds to diversity.d¥deSNR values
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Fig. 3. Average Probability of Error versus SNR (dB): L = 3 (a) N=2 (b) N=3 (c) N=4 (d) N=10
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less than a threshold, the diversity ordeis achieved. This can be clearly seen fér= 11 which has a

breakpoint around SNR- 35 dB.

VIl. CONCLUSION

In this paper, we proposed a decentralized space-time coding for distributed networks. Our scheme is based

on independent randomization done at each node. We analyzed its performance and proposed different designs

that achieve the diversity ordem{n(V, L)) when the number of node¥ is different than the number of

antennad. in the underlying space-time code. F§r= L, we presented examples where the diversity order

is fractional. In addition, we showed that the randomized schemes achieve the performance of a centralized

space-time code in terms of coding gain as the number of nodes increases.
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Selection Matrix, L=2
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Fig. 4. Average error probability behavior w.riy.

APPENDIX
A. Proof of Lemma 1

The average probability of error (41) can be lower bounded as follo'ws §; € M, i # k):

1 1
Pe Z —_— Pr(sk—>si) Z —_—
M| M|
In the following, we will assume thaiG, — G;) is of rank L. Let \j; 4, be the maximum eigenvalue of
the matrix(G, — G;) (Gr, — G;). Define Aoz = max;  Aik;maz- LELQ() = [° %e‘“zﬂdu. SinceQ(+)

is a decreasing function, the first part of (26) is lower bounded as

Pr(sp—s; | |[Rh|* < Pr{||Rh]* < (26)

- SNR) ~ SNR’

Pr(si—s | [RBIF < o) = B {@ (VENRTZ|(G: ~ Gumbl ) [IRhIF < gt (27)
> 4@ (VENRY M2 1R ) [ [RHI? < gk = Q (Vi 2) . (29

Then the average probability of error can be lower bounded as
P> 1Q ( /\max/2> Pr{||Rh|? < SNR1}. (29)
M
The pairwise error probability can be upper bounded as follows for sem€0, 1):

Pr(sp—s;) = Pr(sp—s;,||Rh||?> < SNR™®) + Pr(sy—s;, |[Rh|> > SNR™)

< Pr{||Rh||? < SNR®} + Pr{s;—s; | ||Rh||?> > SNR}. (30)

~~
JAN
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Next, we will upper bound the probability;. For the system given by Eqgn. 3, the conditional pairwise
error probability is upper bounded &s{s; — s;|R,h} < exp(—(SNR/4)||(G — G:)Rh||?). Then,

SNRAin ik || R |2
4

Bri < E{exp(— ) | IRR|* > SNR™}, (31)

where\,,in i1 IS the minimum eigenvalue diG;, — G (G, — G;). The right-hand side of (31) converges
to zero as SNR>co sincea € (0, 1). Using the union bound, the average probability of error can be upper

bounded by the pairwise error probabilities assuming that all source messagéds! are equally likely:

P <(IM|-1) m%XPr{sk — i} (32)
Using (30),(31) and (32)
. —log(P.) ) —log Pr{||Rh||?> < SNR “}
d" = — > ] . 33
SNRooc 10gSNR = SNR-oc log SNR (33)

Since 83) is valid Va € (0, 1), if we take the limit asv—1, it is still valid. The lemma follows from this
fact and (29).

B. Proof of Theorem 1

The argument after the theorem proves Eqn. 7. In this appendix we will prove the opposite inequality.

Using (6) we obtain that

1 LA 1 ) A
Pr{||Rh|? < SR = Pr{} o7 |hi|* < SN < Pr{of|h|> <SNR',... 02|k, > < SNR'}.
=1

~~

25,
In the following, we will prove the theorem fon = 2. Generalization top > 2 will be obvious. Let
v £ SNR. LetSy = {o2|h1]? < v 1, 02|he|? < 4 !}. Let P, = Pr{S,} andn be a fixed parameter. We
can write P, as:

Py = S Pyt <2 <4 o) 4 Pe{lhuf? < 7, So} + Pr{liunf > 1,5} . (34)
=1 >

P21i P22 P23
Using the definitions of%; and the event,, we obtain

Py = Pr{yV <l <" odhal? <47 ot <4070/
< Pr{|lnf <47 adlhof* <yt of <A (35)
Similarly, using the definitions ofs., P»3 and the evensSy, we obtain
Py < Pr{ll]> <771 03hal? < v} = Pr{|uf? < 41} Pr{od|haf? <57}
Py = Pr{lnf > 1.0f <y7' 03lho* <77} < Pr{of <47} (36)
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Let P3 2 Pr{o3|hy|? <~ '}. Using similar tricks, we can also upper bouRg as
Py < anPr{ll%zl2 <A oy <A 4 Pr{lheP <y T+ Pr{o <47} (37)
j=1
Let A, B,C, D be four events. Then we know that,
Pr{A} <Pr{B} +Pr{C} = Pr{A, D} <Pr{B,D}+ Pr{C,D}. (38)
Using (38), we obtain
Pa < Yol <9771, 0F <4070, finf? < 49/, 63 < 400
j=1
+Pr{|h[* <4 o < AU fhef? <471}
+Pr{|hn|* <7 ot < AU 0f <71
= ipr{\hlﬁ <Ay Pr{[haf? < 47"y Pr{of < /U0 0f < 47D/
j=1
+Pr{|inf* <7/ Pr{|haf* <47} Pr{of <4170/}
+Pr{|n|> <47} Pr{o? <470/ 0f <7 (39)
Also,
Py < zn:Pr{\ﬁ1|2 < v I Pr{|he]? < /"1 03 < A/
j=1
+Pr{|in* <y '} Pr{|ho|* <47} 4 Pr{{|* <77} Pr{oj <47} (40)

Compute the diversity order a?, from Eqn. (34) (for both sides). Let; = (i — 1)/n,as = (j — 1)/n. It

is true that

lim log(Pr{A} + Pr{B}) — i [ 1im log(Pr{A})7 lim log(Pr{B}) .
y—00 log SNR y—oo  logwy y—oo  log~y

Using this fact, we can explicitly find the diversity order Bf,; (Eqn. 39),P (Eqn. 40)P3 (Eqgn. 36);
and hence the diversity order é%. Then, consider the asymptote as-oco. By further analysis, we can
see that

— log(P:
lim M > min{2 —a; — s + (a1, a0).}
y—oo  log~y Q1,00
By using similar tricks, we can find the diversity order Bf as

n

d* > ngn{n— Zai +T(o,...,0), }
=1

where0™ < ¢; < 1.
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C. Proof of Theorem 2

Using the union bound, the average probability of error can be upper bounded by the pairwise error
probabilities assuming that all source messages M are equally likely:

P, < !Mll S > Pr(sk— ), (41)

skEM s, €M ik
wherePr(s; — si) denotes the probability that a transmitted messagis mistaken for another message

s;. Let s € M denote the transmitted symbol. For the system given by Eqn. 3, the conditional pairwise

error probability is upper bounded as

_ . 2
Pr{s; — siR.h} < exp (_SNW% g, Rh| > |

1 (42)
Assumingh ~ N.(0,X},) (for a given positive definite hermitiak®}); using (41) and (42), the average
error probability of coherent detection (averaged oR, h}) is bounded as,
_ M| -1
P.2E | : 43
R {min(ivk) det(I + SNR/4 (gk - gl)H(gk - gl)REhRH) } (43)

DefineA;, 2 (Gr—G:)" (G —G;). Assume conditions C1 is satisfied, ard, R is of rankd with

probability 1. We will upper boundP. (43) for the proof. In the following, we assume that we are given a
realizationR of rankd < min(L, N), then the final result follows by averaging over all such realizations.

Under the given conditions, we know th&" A;, R has non-negative real eigenvalues. Then,
det(I+ SNR/4 Ay RE,RT) > |SNR/4 Ay REL,RY |4 (44)

Let RY,R” = QSQ! be the eigenvalue decomposition ®BX, R where QQY” = Q”Q = I and
S =diag\i,...,A4,0,...,0) such that\; > Xa... > Ay > 0. Define L x d semi-unitary matrixU as
U = (qik)izlmL,k:L“d WhereQ = (qik)izln.Lk:lmL. Notice thatUHU =1 Let A = diag()\l, e /\d)-

then
ISNR/4 Ay RELR |4 = |SNR/4 Ay, UAUH |, = |SNR/4 U7 A, UA|4,. (45)

We know thatd x d matrix U? A;, U is of rankd [36, Section 0.4.5(c), page 13]. Furthermore, the eigenval-
ues of U¥ A, U and the eigenvalues @€, have an inequality relation [36, Section 4.3.16, page 190]. That
is, let\,,(C) denote the:'th smallest eigenvalue of a matr®, then\,, (A;,) < A\, (UFA;,U), n=1...d.

Using this result,
ISNR/4 U7 A, UA|4, = (SNR/4)Y U7 A4 Ulgy |Alay

> (SNR/4)¥Ajklat [Alar = (SNR/)Aylar IRE,RT |4y (46)
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We know that the positive eigenvalues®BfE; R are the same as the positive eigenvalueRfR Y,

Using similar techniques to the derivation of (46), we obtain
RERar = [RRY |44 Shla-- (47)
Using (44), (45), (46) and (47), we obtain
det(I + SNR/4 A RE,R7) > (SNR/4)!| Aiglar [Znlar IRRY |4y (48)

Then the proof follows by lettingl = n = min(N, L).

D. Proof of Theorem 3

In the following we will first assume that # N. Consider a complex random matfR(L x N, L < N)
with the probability density functiop(R), then the density of the matriR R is called the generalized
Wishart density [37]. The following formula allows us to compute the probability density functiG@f’
from the probability density function oR. The formula is the generalization of Theorem 1.3.1 in [37] to
the complex random matrices.

Let I' be the set of unitaryv x N matrices and. the normalized Haar measure or?,itR a rectangular
randomZ x N matrix (L < N) with the probability density(R). Let A be the set of Hermitian positive
definite matrices. Then the probability density function (pdffRR is equal to

1

CL,N
whereL x L matrixZ € A, U = (ui,) € T, U = (uig)ic1. 1, k=1, N, ey = a2 ED2=EN TR (N )L,

By using the formula for the pdf ocR R, we conclude thaE{det(RR7)~!} < o if and only if the

frR(@) = —— [ V2D det(2)¥ D), (49)

integral

a - N—L—1
[ /A /F p(VZU) det(Z)N L 1u(dU)dZ (50)

is finite. The notationdZ refers to the Lebesgue measure on the sel of L dimensional matrices. The
proof of the theorem follows from bounding the integral (50). Remember that the dexsitis bounded

by a constant, say;. Therefore, the righthand side of (50) is bounded as

/ / p(VZU) det(Z)N L1 (dUYIZ < ¢y / / det(Z)N L= (dU)dZ. (51)
AJT AJT

*The 11 can be viewed as the uniform distribution n More formally, a measurg on T is called a Haar measure jif(U A) =
u(A) holdsVU € I and measurable set C I', whereU A is the set of all matrices of the foriia wherea € A. Haar measure

wonT is called normalized i (T") = 1.
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Since () is the normalized Haar measure,

//det(Z)NLl,u(dU)dZ:/det(Z)NleZ. (52)

AJT A

For a Hermitian positive definite matri%, Tr(Z) < Pr = det(Z) < P% < oo. Furthermore, ifN > L +1,

the exponent oflet(Z) in (52) is non-negative. Then using the constraintZlr< P on the integration
domainA,

/det(Z)NleZ - / det(z)N L1z < pENETD dZ. (53)
A Tr(z)<pPr Tr(z)<pPr

Note that for a Hermitian positive-definite matri, Tr(Z) < Pr = ||Z||r < Pr, where||Z||r is the

Frobenious norm o¥. Then,

7TN2/2PN2
dZ < / dZ = — T (54)
/Tr(Z)<PT 12|+ <Pr I(N2/2+1)
wherel'(z) = fooo t*~Le~tdt. The final integration amounts to finding a volumet dimensional sphere. By
combining (51), (52), (53) and (54), we obtdir< clPTL(N_L_l)% < oo. Hence E{det(RTR)" 1} <

oco. Similar to the above derivation, we can easily show thak It N + 1, thenE{det(RTR)™!} < oc.
Hence, the result (14) follows.

For N = L, we expect thatV — 1 < d* < N. We know thatd* < N (a conclusion that can be drawn
from Theorem 1). The fact that* > N — 1 for N = L can be proved as follows: Consider the randomized
code obtained using ai’ x N’ dimensional randomization matriR such thatl’ = N and N’ = N — 1.
We know that such a system has diversity order 1 (using Egn. 14). Adding 1 more node to a system
would never decrease the diversity order; hence the diversity order of the randomized space-time code with

N x N dimensional randomization matrix is at ledgt— 1.

E. Proof of Theorem 4

The effective channel vectdr = Rh is conditionally Gaussian with zero mean and covarigR&®, R .
In the following, we provide the statistics &f as N—oc. Denote (i, j)'th element of R by ri;. Define
Zy = [hgrig, hirog, - - herpe)t for k=1... N. We can rewriteh in terms of the random vectot,, i.e.
h=[hihy.. hr]t =0 | Zy.

In the following, first we derive the mean and varianceZgfand then by using the multivariate central
limit theorem [38, pp. 20] asvV—oo, we show thatiN converges in distribution to a Gaussian random

e
variable. We know thafR is a random matrix independent bf then the mean oZ; is E{Z;} = 0, and
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the covariance matrix iX; = E{Zsz} = 022. SinceZ,'s are independent, using the multivariate central

limit theorem, we can conclude that

N

h 1 5
—=—) Z,—N(0,%) as N—oo, 55

whereX = % limNH(Zf»il o?./N). Now we can prove the theorem using (55). We know that

1 E{Q (H(gk —gi)RhH)} < PY(SNR) < (IM] — I)E{Q <||(9k —Qz)’RhH)}. (56)

[M] VNv2Ny VNv2N,
Egn. 55 tells that agv—oo, % <, N(0, 2). The continuous mapping theorefB3] states that for any

continuous and bounded functiég-) and random variable&,,, X, if X, < x, thenE{h(X,)}—E{h(X)}.
By taking the limit in (56), we can deduce that &5—o0, the randomized space-time codés)R is

equivalent to a deterministic space-time cc@i(e;)f)l/Q and hence, it provides diversity ordérwhen both

Y and G are full-rank L.
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