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Cooperative Communication
Birsen Sirkeci Mergen and Anna Scaglione

Abstract

We study the design of distributed space-time codes for cooperative communication. We assume that

each node is equipped with a single antenna; however, to obtain diversity and coding gains, the cooperating

nodes act as elements of a multi-antenna system. With few exceptions, most of the literature on the subject

proposes coding rules such that each node emulates a predetermined antenna of a multi-antenna system.

Since the nodes need to know their specific antenna index, either inter-node communication or a central

control unit is required. Our design objective is to obtain diversity and coding gains while eliminating the

need for code or antenna allocation. We achieve our objective by introducing novel randomized strategies

that decentralize the transmission of a space time code from a set of distributed relays. Our simple idea

is to let each node transmit an independent random linear combination of the codewords that would have

been transmitted by all the elements of a multi-antenna system. In addition to introducing this new class

of designs, we fully characterize the diversity order of the corresponding symbol error probability and also

analyze how the performance is linked to different choices of the statistics of the random coefficients. We

show that the proposed scheme achieves full diversity (N ) if N < L, whereN is the number of transmitters

andL is the number of antennas assumed in the underlying space-time code structure. The diversity orderL

is achieved ifN > L. Interestingly, in certain cases (e.g.N = L = 2), we show that the achieved diversity

order is fractional (d∗ = 1.5)!
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I. I NTRODUCTION

When multiple-antennas are available, the use of space-time codes provides diversity and coding gains

that reduce the average error probability over fading channels [1], [2]. In ad-hoc network applications or in

distributed large scale wireless networks, the nodes are often constrained in the complexity of their hardware

and also in their size. This makes multiple-antenna systems impractical for certain networks.

Recently, several methods have been proposed for cooperation among relay nodes to provide spatial

diversity gains without utilizing multiple transmit antennas [3]–[5]. The decode-and-forward strategy is one

such method that has been shown to provide various benefits in addition to being information-theoretically

optimal in certain scenarios [6]. Common to all decode-and-forward strategies is the fact that the relays first

decode the source message reliably and then relay it after re-encoding. Several methods have been proposed

for forwarding the common message by the relays, from the simple repetition, to space-time coding [7],

to more idealistic approaches derived from the information-theoretic framework established by Cover &

El Gamal [8]. In general, space-time coding is superior to repetition, since it provides diversity without a

significant loss in spectral efficiency [9].

A major challenge in distributed cooperative transmissions is to find a way to coordinate the relay

transmissions without requiring extra control information overhead, which would reduce part of the gain.

The coding rule applied by each of the cooperating nodes should, therefore, be identical and independent

from node to node. However, most of the distributed space-time codes in the literature do not focus on this

issue, see e.g. [7], [10]–[16]. In these schemes, each node emulates a specific array element of a multiple-

antenna system; in practice, the implementation requires a centralized code allocation procedure. In addition,

in large-scale distributed wireless networks, the set of cooperating nodes is unknown or random in most

scenarios. For example, in networks with a single source-destination pair and multiple cooperating relays,

the set of nodes that is responsible for retransmission is random due to the error-free decoding constraint.

The randomness in the cooperating set may be due to fading, mobility, node failure, expired battery life, or

the occurrence of a possible sleep state. In this context, designing codes that provide diversity gains even

when the number of cooperating nodes is unknown or random is another issue to address in cooperative

networks.

The contribution of this paper is a novel design of a methodology to decentralize the relay transmissions

and yet obtain diversity and coding gains analogous to those that can be attained by multi-antenna systems.

Our idea is to let each relay transmit an independent, random linear combination of the columns of a space-

time code matrix which has a fixed sizeL, irrespective of the number of cooperative nodesN . Special
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cases of the proposed scheme include: i) each node emulates one randomly selected antenna; ii) each node

transmits the superposition of all antennas with random phases; iii) each node transmits the superposition

of all antennas with random gains and phases. We refer to our scheme asrandomized space-time coding

(RSTC). The RSTC entails the specification of a space-time code of sizeL, and anL×N random matrix

R, whose columns are independent. Random linear mapping are also considered in the context of network

coding [19], [20]. Randomization of the transmission signal has also been used in [17], [18] in order to

improve the capacity by creating a fast varying channel. In this work, the purpose of randomization, as

mentioned before, is to eliminate the need for a centralized code (orantenna) allocation procedure.

In order to analyze the performance of the proposed scheme, we express the diversity of the randomized

space-time codes as the order of the probability of deep fade event [2] (see Section III-A). The analysis

in Section III-A provides the diversity order of any given arbitrary randomization procedure. However,

the results are expressed as non-trivial functions of the statistics ofR and, thus, do not lead directly to

constructive designs. To provide design guidelines, we resort to a Chernoff bound on the decoding error

probability that allows us to derive sufficient conditions under which full diversity is achieved. In our study,

we consider random coefficients drawn from both continuous and discrete distributions. For the case of

continuous complex coefficients, we provide designs that achieve full diversity under the conditionN 6= L,

whereN is the number of active transmitters andL is the number of antennas in the underlying space-time

code. We show that, despite the code randomization, the proposed scheme achieves full diversity (N ) if

N < L, and the diversity orderL is achieved forN > L. Interestingly, forN = L we show that the

proposed scheme exhibits a fractional diversity (for example, forN = L = 2, the diversity order of the

scheme with randomly selected phases is1.5). For the case of discrete valued random matrices, we observe

a multi-slope behavior in the average probability of error for sufficiently large number of nodes (N > 10)

(see also [21]).

A. Related Work

Other cooperative transmission approaches that apply to a decentralized scenario are in [22] and [23]. In

[22], the authors propose a protocol where the relay nodes transmit with randomly chosen delays. Hence,

further diversity is obtained by intentionally creating a frequency selective channel. Note that this scheme

may not provide diversity gains due to the possibility that each node may choose to use the same delay. In

fact, our analysis in Section V provides the performance of a class of forwarding strategies which includes

the random delay scheme in [22] as a special case (see also Example 2). In [23], the nodes regenerate the

signal at time instants that depend on the energy accumulated per symbol. The decentralized policy produces

September 12, 2006 DRAFT



4

diversity only if the delays can be resolved at the receiver, which in general requires a large bandwidth.

Other works that address the need for distributed implementation at cooperating nodes are [7], [24]–[27].

In [7], the authors propose orthogonal space-time codes, which may become impractical for large number of

nodes. In [24], the authors propose a filtering approach that does not require the knowledge of the number

of cooperating nodes in order to achieve maximum diversity. The scheme proposed in [25], has the closest

formulation to ours, since each node transmits the product of a space-time code matrix with a pre-assigned

vector-code. As a result, this scheme does not require the knowledge of the number of cooperating nodes

that are active, but it still requires a preliminary code allocation phase. In one way or another, most of these

schemes become impractical in a self-organized networks with a large and/or random number of nodes.

The novelty of our work lies in the proposition that the linear coefficients can be chosen randomly and

independently at each node, which eliminates the need for antenna/code allocation. Our most interesting

finding is that this simple scheme can still provide full diversity as long asN < L.

Another linear relaying technique is amplify-and-forward. The schemes in [26], [28] are alternatives to

the amplify-and-forward strategy. The authors propose diversity achieving methods that are based on linear

mapping of the received message at each relay. Our focus in this paper is, however, on decode and forward

strategies.

It is also worth mentioning that, in general, the complexity of the receiver processing (channel estimation,

decoding, etc.) increases with the number of cooperative nodes. In order to deal with this, in [29], the authors

proposes to utilize space-time codes over group transmissions. The nodes in a specific group transmits a

predetermined code with random phases and space-time codes are utilized among the groups. This scheme

is a special case of RSTC where the randomization matrixR takes a block-diagonal form. Note that by

changing the fixed size parameterL in RSTC, we can decrease the receiver complexity.

The paper is organized as follows: In Section II, we describe the system model and the proposed scheme.

In Section III, we characterize the diversity order of the randomized space-time codes and provide design

criteria that leads to full diversity order. In Sections IV, we present specific examples for the randomization

matrix R. In Section V, we provide the extended version of antenna selection scheme [21]. In Section VI,

we present the simulations. Finally, we conclude in VII.

II. SYSTEM MODEL AND THE PROPOSEDPROTOCOL

We consider a system where a random number of nodesN collaborate in order to transmit a common

message to a destination distributively. This problem arises in decode-and-forward communication schemes,

where a source node transmits to a group relays (Phase I);N of the relays successfully decode the source
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message, and transmit the same message simultaneously after re-encoding (Phase II). Fig. 1 describes an

analogous scenario, where the end receiver is remotely located relative to the network.

In this paper, we will assume that: 1) the Phase I of the communication has taken place; 2) each relay

node can determine whether or not it has reliably decoded the message; 3) only the nodes that has decoded

reliably transmit the message; 4) the end receiver uses only the data received from Phase II to decode the

message. We will deal exclusively with the Phase II of the communication, and assume that the number of

transmitting nodesN (i.e., the active nodes) is random due to the error-free decoding constraint.

PHASE IIPHASE I(a) (b)

Fig. 1. Two phase cooperative communication.

The output signal for a block space-time coded transmission over a point-to-pointN ×1 MISO (multiple-

input-single-output) link is generally expressed as follows [9]:

y = Xh + w, (1)

whereX = [Xij ] ∈ CP×N denotes the transmitted signal (i is the time index, j is the transmitter antenna

index),h = [hj ] ∈ CN×1 denotes the channel gains from different antennas, andw is the channel noise.

In a block space-time coded cooperative network, the same system model (1) can be used under certain

assumptions. For the cooperative system, thej in Xij denotes the user index andhj is the channel gain

from userj to the destination. Furthermore, we assume that the following are satisfied:

a1) The relative receiver and transmitter motion is negligible so that the channels do not change during the

course of the transmission of several blocks of data.

a2) Frequency drifts among transmissions from different nodes are negligible. Frequency errors at different

nodes are time-invariant over the transmission of several space time codes and the slow phase fluctuations

can be incorporated into the channel coefficientsh.

a3) There is negligible time-offset among transmissions compared to the symbol interval,i.e., there is no

inter-symbol interference (ISI).
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We assume a1), a2), a3) to be able to describe the system concisely using equation (1), and also for

the analysis of the proposed protocol. Nevertheless, it should be emphasized that for the application of

the proposed protocol assumption a3) can be relaxed. The proposed protocol is also applicable to time-

asynchronous relays, as discussed in [30]. Note that ISI, which is traditionally viewed as an impairment, can

actually improve the system performance by providing frequency diversity. Wei et al. [22] actually proposed

introducing random delays to relay transmissions to increase diversity, and showed significant improvements

in system performance.

The path-loss and shadowing effects are modelled as a block Rayleigh fading withh ∼ Nc(0,Σh), where

Σh is a positive definite matrix. The receiver noise is modelled byw ∼ Nc(0, N0I), wherew is independent

of h.

Notation: In the following, det(A), rank(A), Tr(A) denote the determinant, rank and trace of a matrix

A respectively. In addition, diag(a1, a2, . . . , an) denotesn × n diagonal matrix such that(i, i)’th element

is equal toai. The identity matrix is denoted byI. All the matrices and vectors will be denoted by bold

symbols. AL×N matrix A is said to befull-rank if rank(A) = min{L, N}.

A. Proposed Diversity Scheme

Let s = [s0 s1 . . . sn−1] be the block of source symbols to be transmitted to the destination. We assume

that the message is known perfectly at the active nodes in Phase II. We will consider the transmission of one

block of data for simplicity, although the source message will, in general, consist of several blocks. In the

following, we describe the processing at each node and analyze the decoding performance at the destination.

At each node, thes is mapped onto a matrixG(s) as is done in standard space-time coding:

s → G(s),

whereG(s) is a P × L space-time code matrix. Here,L denotes the number of antennas in the underlying

space-time code. In our scheme each node transmits a block ofP symbols, which is a random linear

combination of columns ofG(s). Let ri be theL × 1 random vector that contains the linear combination

coefficients for thei’th node. DefineX = [x1 x2 . . .xN ] as theP × N random code matrix whose rows

represent the time and columns represent the space, wherexi = G(s)ri is the code transmitted by thei’th

node. The randomized space time coding can be expressed as the double mapping:

s → G(s) → G(s)R, (2)

whereR = [r1 r2 . . . rN ]. In the following, theL×N matrix R will be referred to as therandomization

matrix. Since each node’s processing is intended to be local,ri’s should be independent for eachi = 1 . . . N ,
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and we will also assume that they are identically distributed. This property allows the randomized space-time

coding to be implemented in a decentralized fashion. In other words, each node chooses a random set of

linear combination coefficients from a given distribution, which does not depend on the node index.

Let y be the received signal at the destination. Using (1), we can rewrite the received signal as

y = G(s)Rh + w, (3)

wherew ∼ Nc(0, N0I) andh ∼ Nc(0,Σh).

Definition DefineX , G(s)R as therandomized space-time codeand h̃ , Rh as theeffective channel.

These two definitions express two critical interpretations of the proposed scheme. IfG(s)R is considered

as a whole, then the scheme can be viewed as a randomized space-time codeX transmitted over channel

h. On the other hand, ifRh is considered as a whole, then the scheme can be viewed as a deterministic

space-time codeG(s) transmitted over a randomized channelh̃.

The second interpretation is especially important for decoding purposes at the receiver. We assume that

the receiver utilizes a coherent detector and in order to perform coherent decoding, the receiver needs to

estimate the channel coefficients. Instead of estimating the channel vectorh and the randomization matrix

R separately, the receiver can estimate the effective channel coefficientsh̃. For this, the training data at the

transmitters should use the same randomization procedure. Estimating the effective channel provides two

main advantages: i) decoders already designed for multiple-antenna space-time codes can be directly used

for randomized space-time coding; ii) the number of coefficients that are estimated is less whenL ≤ N ,

since in this case the effective channel vectorh̃ is shorter that the actual channel vectorh.

Yiu et al. [25] proposed a deterministic version of the randomized space-time code scheme (3), where each

column of matrixR is a pre-determined deterministic code allocated to a specific user. The main advantage

of this scheme is that it provides robustness to the uncertainty as to which group of relays will transmit in

Phase II. That is, the diversity orderN is achieved as long asN ≤ L irrespective of whichN relay nodes

transmit. This is different from the orthogonal space-time code approach in [7], because there, if two nodes

happen to be allocated the same transmit antenna, then the diversity order is no longerN . Both in [25] and

[7], the nodes have to be allocated antennas or codes. The main advantage of randomized space-time coding

is that it achieves the full diversity orderN for N < L without code or antenna allocation.

In the following,N denotes the number of active relays in Phase II;L andP denote the number of columns

and rows of the underlying space time code matrixG(s) respectively (L is also the maximum diversity order

of the underlying space-time code whileP is its time duration, in terms of number of symbol intervals).
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The signal-to-noise ratio is denoted by SNR;Pe(SNR) is the average error probability;d∗ is the diversity

order of the randomized space-time code. Often, the notationG(s) will be replaced simply byG.

B. Performance Metrics

Traditional space-time codes are designed using the probability error as a performance criterion [9]. We

will adopt a similar approach for the design of randomized space-time codes. Our main focus is the maximum

diversity that can be achieved by the scheme.

Let M = {s1, s2, . . . s|M|} be the message set, where each message is chosen equally likely. Define

SNR = 1/N0 (Eqn. 3). Assume that the effective channelh̃ is known at the destination (i.e., the receiver

has channel state information). LetPe(SNR) denote the symbol error probability at the destination under

the maximum likelihood detection rule,i.e., the probability that a messagesi is transmitted, but the decoder

produces another messagesj , j 6= i (averaged overi and h̃).

Definition The diversity orderd∗ of a scheme with probability of errorPe(SNR) is defined as

d∗ = lim
SNR→∞

− log Pe(SNR)
log SNR

. (4)

We say that the randomized space-time code achievesdiversity orderd if d ≤ d∗. The randomized space-time

code is said to achieve acoding gainG if Pe(SNR) ≤ G SNR−d∗ .

In this paper, we will consider two different types of performance metrics: i) symbol error ratePe(SNR)

(by an upper bound and simulations); ii) diversity orderd∗ (analytically and by simulations). These metrics

do not take channel coding into account. Instead ofPe and d∗, we could analyze outage probability that

also takes into account the effect of channel coding. We do not treat this case, however we wish to remark

that, in the case of orthogonal space-time codes the outage probability analysis can be easily derived from

the error probability analysis carried out here.

III. D ESIGN AND ANALYSIS OF RANDOMIZED SPACE-TIME CODES

In this section, we analyze the performance of randomized space-time codes and come up with some

principles that facilitate the design of the randomization matrixR. Without loss of generality, we assume

that P ≥ L for the P × L deterministic space-time code matrixG. DefineGi , G(si).

There is a vast literature on the design of deterministic space-time codes{Gi}, and the design of{Gi}
problem has been thoroughly investigated by many authors. Our objective in this section is the design of

the randomization matrixR and the analysis of its effect on the diversity order. We will assume that the
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underlying space-time code satisfies therank criterion [9], which is expected to be satisfied by any optimal

design.

C1) The Rank Criterion forG: For any pair of space-time code matrices{Gk,Gi}, the matrix(Gk −Gi) is

full-rank, i.e., of rank L.

A. Exact Characterization of the Diversity Order

The performance degradation in fading channels results from thedeep fade eventas discussed in [2,

Ch. 3]. In this section, we first define what the deep fade event means for our communication system and

characterize its diversity order. The following lemma asserts that we can equivalently consider the deep fade

event instead ofPe for diversity calculations.

Lemma 1:Let {||Rh||2 ≤ SNR−1} be the deep fade event, and

Pdeep(SNR) , Pr{||Rh||2 ≤ SNR−1} (5)

its probability. If the assumption C1) is satisfied, then the diversity order ofPe is the same as that of the

deep fade event,i.e.,

d∗ = lim
SNR→∞

− log Pdeep(SNR)
SNR

.

Remark 1:An interesting corollary from the lemma is that the diversity orderd∗ is completely independent

of the underlying code{Gi} as long as the underlying code is full rank. The main utility of Lemma 1 is

that the diversity order ofPdeep is much easier to analyze than that ofPe.

Proof: The proof is given in Appendix A.

In the following, we will equivalently consider||RΣ1/2
h ĥ||2, ĥ = [ĥ1, . . . , ĥN ] ∼ Nc(0, I) instead

||Rh||2, h ∼ Nc(0,Σh). Let UHSU be the eigenvalue decomposition ofΣ1/2
h RHRΣ1/2

h , whereU is a

random Hermitian matrix andS = diag(σ2
1, · · · , σ2

η) are the ordered eigenvalues (squared singular values of

RΣ1/2
h ). Using the properties of the circularly symmetric Gaussian distribution, we obtain

Pdeep = Pr

{
η∑

i=1

σ2
i |ĥi|2 ≤ SNR−1

}
. (6)

The following theorem provides a very general and clean characterization of the diversity order in terms

of the distribution of the singular values ofRΣ1/2
h . Let notation0− denote a negative real number that is

close to zero andΓ(α1, · · · , αη) represent the following function:

Γ(α1, . . . , αη) = lim
SNR→∞

− log Pr(σ2
1 ≤ SNR−α1 , · · · , σ2

η ≤ SNR−αη)
log SNR

. (7)

We call the parametersα1, · · · , αη the deep fade exponents of the singular values.
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Theorem 1:If the assumption C1) is satisfied, then the diversity order of the randomized space-time code

is

d∗ = inf
(α1,··· ,αη)

(
Γ(α1, . . . , αη) +

η∑

i=1

(1− αi)

)
, (8)

where the infimum is overαi ∈ [0−, 1], i = 1, · · · , η.

Intuition and proof: Consider the following events:

i) The singular values are such thatσ2
i ≤ 1/SNRαi , i = 1, · · · , η (i.e. σ2

i is in deep fade with exponent

αi).

ii) The channel coefficients are such that|ĥi|2 ≤ 1/(ηSNR1−αi), i = 1, · · · , η ( i.e. ĥi is in deep fade

with exponent1− αi).

To calculate the diversity we note that any sufficient condition for the deep fade event provides an upper

bound ond∗. If events i) and ii) occur simultaneously, we have a deep fade event
∑η

i=1 σ2
i |ĥi|2 ≤ SNR−1,

as defined in (6). Because the events i) and ii) are independent, the probability is going to be a product of

probabilities and diversity orders are, therefore, additive. With this in mind, the second term (
∑η

i=1(1−αi))

in equation (8) follows from the Rayleigh distribution; in fact, the diversity order of each event ii) is(1−αi).

The first term follows from the definition in (7). Therefore,d∗ ≤ Γ(α1, . . . , αη) +
∑η

i=1(1 − αi), which

implies that

d∗ ≤ inf
(α1,··· ,αη)

(
Γ(α1, . . . , αη) +

η∑

i=1

(1− αi)

)
. (9)

For the opposite inequality, see Appendix B for a rigorous proof.

The theorem is easiest to understand whenΣh = I. In this case,σi’s are the singular values of the

randomization matrixR. In simpler terms, the theorem states that the deep fade event happens because

of the simultaneous fades of the randomization matrix and the channel coefficients with exponentsαi’s

and1− αi’s, respectively. Hence, in our scheme, the randomization of the space-time code matrix may be

ill-conditioned.

In order to distinguish between “good” and “bad” design choices forR, we need to understand the

conditions under which theσ2
i ’s are more likely to be small. Since the singular valuesσ2

η ≤ · · · ≤ σ2
1 are

ordered, it is easiest for theσ2
η to fade. Theσ2

η fades if and only if the columns of the matrix turn out to be

completely or partially confined into aη − 1 dimensional subspace. This may happen, for example, if two

column vectors turn out to be almost parallel to each other, or a column vector approximately lies within

the plane spanned by two other column vectors, etc.

In Section IV, forΣh = I, we analyze a number of specific designs forR and conclude that the best

designs have random column vectors inR which have the least probability of being aligned. In fact, the
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design that performs best among the ones we examine in Section IV hasR with i.i.d. columns uniformly

distributed in the complex unit sphere.

A few remarks follow from Theorem 1:

Remark 2: i) In general, finding the distribution of the singular values for a given random matrix

distribution is not an easy task. Fortunately, Theorem 1 only requires knowledge of the distribution of

the singular values ofRΣ1/2
h around zero. We will utilize this observation in Section IV.

ii) Theorem 1 completely characterizes the diversity order of a randomized space-time code for a given

R; however, it is non obvious how to use Theorem 1 constructively. In fact, it is unclear how one can

choose the singular vector and singular value distributions such that, the singular value distribution has

the local properties that are required to maximized∗ in (8) and, at the same time, the columns ofR
are statistically independent.

iii) Theorem 1 gives the upper bound

d∗ ≤ η = min(L,N) (10)

(chooseαi = 0−, ∀i), which says that the diversity order is always bounded by the minimum of the

number of relays and the underlying code dimension.

iv) A necessary condition for the randomized code to have maximum diversity orderη is that the exponent

of the smallest singular valueσ2
η should be at least 1,i.e.,

lim
SNR→∞

− log Pr(σ2
η ≤ SNR−1)

log SNR
≥ 1. (11)

This can be seen by substitutingαi = 0−, i = 1, · · · , η − 1 in (8) exceptαη = 1. The distribution of

the smallest singular value is generally easier to obtain than the joint distribution of all singular values.

Consequently, (11) is a simpler condition to check than the condition in Theorem 1.

v) Theorem 1 presents an interesting result. The diversity orders can befractional depending onΓ(·). We

will see concrete examples of this in Section IV.

B. Upper Bound to the Probability of Error

A brief word about our notation. LetA be an×n Hermitian matrix with eigenvaluesλ1 ≥ λ2 ≥ . . . λm >

0 ≥ λm+1 . . . ≥ λn. We use the notation|A|k+ to denote the product ofk smallest positive eigenvalues of

the matrixA, i.e., |A|k+ =
∏k

i=1 λm−i+1. If all eigenvalues are positive, then|A|n+ = det(A).

We know that the diversity order of the randomized space-time code is always upper bounded by

the minimum of the number of relay nodes and the size of the underlying space-time code,i.e., d∗ ≤
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min{N, L} , η. The following theorem provides an upper bound to the average error probability and a

sufficient condition for the randomized code to have diversity orderη.

Theorem 2:Suppose that{Gi} satisfies C1), and the randomization matrixR satisfies

C2) Rank criterion forR: The matrixR is full-rank with probability 1.

C3) Finiteness ofE{|RRH |−1
η+}: The expectationE{|RRH |−1

η+} is finite.

Then, thePe is bounded as

Pe ≤ 4−η(|M| − 1)SNR−η

min(i,j){ |(Gi − Gj)H(Gi − Gj)|η+} |Σh|η+
E

{
1

|RRH |η+

}
. (12)

Proof: See Appendix C.

Remark 3:Note that here, it is assumed that the channelh and the randomization matrixR changes over

the transmission so that the packet experiences multiple realizations.

Remark 4:Notice that the diversity order of the upper bound in (12) isη. Since the diversity orderd∗

cannot exceedη, we observe from Theorem 2 that the randomized space-time code has maximum diversity

orderη, as long as C1)-C3) are satisfied.

What kind of random matrices satisfy the rank criterion forR? We know that almost all square matrices

over the field of real or complex numbers are invertible,i.e., the set of singular square matrices have Lebesgue

measure zero. In general, any random matrix with independent columns drawn from a continuous distribution

satisfies the rank criterion. However, this alone does not guarantee the diversity orderη. The upper bound

in (12) is useful only ifE
{|RRH |−1

η+

}
< ∞. This is a rather stringent condition, and not all almost-surely

full rank matrices satisfy it. In the next section, we will present some sufficient conditions for this to be

true.

The bound in Eqn. 12 can be tightened by improving the coding gain. The following conditions are

needed: i)min(i,j) |(Gi−Gj)H(Gi−Gj)|η+ should be maximized with respect to{Gi}; ii) E
{|RRH |−1

η+

}

should be minimized with respect the distribution ofR. Note that condition i) is a slightly modified version

of the determinant criterion in [9].
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C. Diversity Order for Randomized Space-time Codes with Power Constraint

In this section we will employ a transmit power constraint on the relay nodes to facilitate the analysis of

randomized space-time codes. LetPT < ∞ be the total relay power available to the network such that1

Tr(RRH) ≤ PT with probability 1. (13)

Under the conditions of the following theorem, we show that C3) holds, and therefore the diversity order

of the randomized scheme isη.

Theorem 3:Let R be anL × N randomcomplexmatrix andp(R) its probability density function.

Assume that the functionp(R) is bounded and it satisfies the total power constraint (13). ForN 6= L, if C1)

and C2) are satisfied, thenE{|RRH |−1
η+} < ∞. Therefore, the diversity order of the randomized space-time

code is given by

d∗ =





N if N ≤ L− 1

L if N ≥ L + 1
(14)

For N = L, the diversity order is such thatN − 1 ≤ d∗ ≤ N .

Proof: See Appendix D.

Remark 5:The above result shows that the randomized space-time codes achieve the maximum diversity

order N achievable by any scheme ifN < L. It also indicates the diversity order saturates atL if the

number of relay nodes is greater than or equal toL + 1. This problem can be solved by using space-time

codes with large enough dimensions. However,N may be random and may take large values in practical

networks. In such cases, using smallerL may be preferred for decoding simplicity. For fixedL, randomized

space-time codes still give the highest orderL for N ≥ L + 1.

Corollary 1: Let R be anL×N randomreal matrix andp(R) its probability density function, which is

assumed to be bounded. Suppose that C1) and C2) are satisfied, and the total power constraint (13) holds.

Then, the diversity order of the randomized space-time code is given by

d∗ =





N if N ≤ L− 2

L if N ≥ L + 2
(15)

For N ∈ {L− 1, L, L + 1}, the diversity order is such thatN − 2 ≤ d∗ ≤ min(N, L).

Proof: The proof follows from modifying the proof of Theorem 3 for the real valuedR. We avoid it

for brevity.

1Notice that there is no expectation in the power condition. We want it to be satisfied almost surely. Condition (13) implies that

the pdf ofR has bounded support.
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Remark 6:The diversity order of a randomized space-time code is closely related to how ill-conditioned

the matrixR is. This relates to the behavior of the joint distribution of the singular values around origin

(Theorem 1). Theorem 3 indicates that, forN 6= L it is quite hard for a complex valued matrixR to be

ill-conditioned. On the other hand, for real valued matrices, ill-conditioned matrices are more likely and,

hence, we need at least|N − L| ≥ 2.

IV. SPECIFICDESIGNS ANDTHEIR PERFORMANCE

In this section, we propose different randomized space-time codes and derive the diversity order of these

designs using Theorem 1 and Theorem 3. Furthermore, in Section VI, the average error probabilities of

these designs are obtained via Monte-Carlo simulations. In the following, we assume thath ∼ N (0, I).

A. Complex Gaussian distribution

Let us assume elements of theL ×N dimensional randomization matrixR are zero-mean independent

and complex Gaussian. In the random matrix literature, the Gaussian random matrix is one of the most

studied [31], [32]. The joint probability density function of the non-zero eigenvaluesλ1 ≥ λ2 ≥ . . . λη of

the matrixRRH (known as Wishart) is given as

f(λ1, . . . , λN ) = CN,L exp(−
η∑

i=1

λi)
η∏

i=1

λ
|N−L|
i

∏

i<j

(λi − λj)2, (16)

whereCN,L is a constant. In the following, we provide the diversity order of this scheme.

1) CaseN 6= L: Using the results in [31], we obtain

E{|RR|−1
η+} =





(N−L−1)!
(N−1)! if N ≥ L + 1

(L−N−1)!
(L−1)! if L ≥ N + 1,

where η = min(L,N). SinceE{|RR|−1
η+} < ∞ when N 6= L, the upper bound on the average error

probability is given as follows (using Theorem 2):

Pe ≤ 4−η(|M| − 1)SNR−η

min(i,j){|(Gi − Gj)H(Gi − Gj)|η+} |Σh|η+

(|N − L| − 1)!
(max(N, L)− 1)!

. (17)

Eqn. 17 shows that (14) also holds forR with i.i.d. complex Gaussian elements. Note that the total power

constraint (13) is not satisfied in this scenario. However, we arrive at the same conclusion on the diversity

orderd∗ which we derived previously through Theorem 3.
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2) CaseN = L: We can approximate the probability density of non-zero eigenvalues of the Wishart

matrix RRH (Eqn. 16) around zero as

f(λ1, . . . , λN ) ≈ cλ
2(N−1)
1 λ

2(N−2)
2 . . . λ2

(N−1). (18)

Using Theorem 1 and (18), the diversity order is

d∗ = inf
α1,...,αN

(2N − 1)α1 + (2N − 3)α2 + . . . + αN︸ ︷︷ ︸
Γ(α1,...,αN )

+
N∑

i=1

(1− αi) = N,

where the infimum is obtained whenαi = 0, ∀i. Hence, if the elements of the randomization matrixR are

drawn independently and identically from a zero mean complex Gaussian distribution, the full diversity is

also achieved for theN = L case.

B. Real Gaussian distribution

Let us assume that the elements of the randomization matrixR are zero-mean independent and real

Gaussian. The joint probability density function of the non-zero eigenvaluesλ1 ≥ λ2 ≥ . . . λη of the

Wishart matrixRRT is given as

f(λ1, . . . , λη) = C̃N,L exp(−
η∑

i=1

λi)
η∏

i=1

λ
|N−L|−1

2
i

∏

i<j

(λi − λj), (19)

whereC̃N,L is a constant. We can approximate the probability density of the eigenvalues (19) around zero

as

f(λ1, . . . , λη) ≈ c

η∏

i=1

λ
|N−L|−1

2
+η−i

i . (20)

We then findΓ(·) as Γ(α1, . . . , αη) =
∑η

i=1

( |N−L|−1
2 + η

)
αi. Using Theorem 1 and (20), the diversity

order is obtained as follows:

1) CaseN 6= L: For this case,d∗ = η where the infimum is obtained whenαi = 0, ∀i.
2) CaseN = L: For this case,d∗ = infα1,...,αη

(
∑η

i=1(η− i/2)+
∑η

i=1(1−αi)) = η−0.5. The infimum

is obtained when{αi = 0, i = 1 . . . η, αη = 1}.
Therefore, in this case the diversity orderd∗ is given by

d∗ =





η if N 6= L,

η − 0.5 if N = L,

whereη = min(N, L). Note that the scheme provides a fractional diversity order whenN = L.
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C. Uniform phase distribution

Let us assume that thek’th column of theL × N randomization matrix isrk = ak[ejθi[0], . . . , ejθi[L]]t

where eachθi[N ] ∼ U(0, 2π) and ak ∼ U(1 − ε, 1 + ε) for some smallε > 0, whereU(a, b) denotes the

uniform distribution in the interval(a, b) and allθi[N ], ak are independent of each other. The main advantage

of this scheme lies in its ability to control the transmission power at each node. The total power is bounded

as

Tr(RRH) = L
N∑

i=1

|ai|2 ≤ NL(1 + ε)2.

1) CaseN 6= L: Using Theorem 3, we conclude that the diversity orderd∗ satisfies (14). Forε = 0, that

is rk = [ejθi[0], . . . , ejθi[L]]t, the randomization matrixR can be interpreted as a random phase matrix. In

this case, unfortunately the probability density function ofR does not exist2, hence we can not directly use

Theorem 3. However, we believe the result (14) is also valid in this scenario and we will see that this is

true by numerical examples.

2) CaseN = L = 2: Consider the random phase matrixR for ε = 0. The eigenvalues ofRRH can be

found asλ1 = 2 +
√

2 + 2 cos(θ) andλ2 = 2 −
√

2 + 2 cos(θ), whereθ is a uniform random variable in

the interval[0, 2π). Note thatλ1 ∈ [1, 4] with probability 1. Using Theorem 1 and the fact thatλ1 ≥ 1, we

can easily see that the optimalα1 = 0−. Hence, the problem simplifies to determining

d∗ = min
α2

Γ(0−, α2) + 2− α2. (21)

One can derive the distribution ofλ2 as

Fλ2(λ) = Pr{λ2 ≤ λ} =
2
π

cos−1(1− λ

2
), 0 ≤ λ ≤ 2.

Then, the behavior of theFλ2(λ) around zero is given asFλ2(λ) ≈ 2
π

√
λ, as λ→0. The infimum in (21)

is obtained whenα2 = 1, which gives us a fractional valued∗ = 1.5.

D. Uniform distribution on a hypersphere

Let us assume that thek’th column of theL×N randomization matrix,rk, is uniformly selected on the

surface of a complex/real hypersphere of radiusρ, i.e., ||rk|| = ρ. Note that, in this case, the total power

2To see why the pdf ofR does not exist, let’s look at the special case whereR is 1 × 1. Here all the probability mass is

concentrated on the unit circle. Hence the ”pdf” is what is sometimes referred to as an impulse sheet. Viewed in an engineering

sense, this pdf is not bounded (hence Theorem 3 does not apply). From the measure theoretic point of view, the measure induced

by R is not absolutely continuous with respect to the Lebesgue measure on the complex plane [33]. Therefore, its Radon-Nikodym

derivative (hence its pdf) with respect to Lebesgue measure does not exist.
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TABLE I

DIVERSITY ORDER FOR DIFFERENT SCHEMES.

Distribution of R Condition Diversity Order

Complex Gaussian N = L N

Complex Gaussian N 6= L min(N, L)

Real Gaussian N = L N − 0.5

Real Gaussian N 6= L min(N, L)

Uniform Phase N 6= L min(N, L)

Uniform Phase N = L = 2 1.5

Real Spherical Distribution N = L = 2 2

Complex Spherical Distribution N = L = 2 2

Random antenna selection any N andL 1

constraint (13) is satisfied,i.e.,

Tr(RRH) = ρ2N < ∞.

Similar to uniform phase randomization withε = 0 (Section IV-C), the probability density function ofR
does not exist in this case. However, we will show through numerical examples that (14) is still valid.

1) Real hypersphere withN = L = 2: Let us assume that the columns of the randomization matrixR are

drawn uniformly on a sphere. We can obtain the eigenvalues ofRRT asλ1 = 1+cos2(θ), λ2 = 1−cos2(θ),

whereθ ∼ U(0, 2π). Note thatλ1 ≥ 1 andPr{λ2 ≤ λ} ≈ λ/(2π) asλ→0. Using Theorem 1, the diversity

order is

d∗ = min
α2

Γ(0−, α2) + 2− α2 = 2,

where the infimum is obtained whenα1 = 0− andα2 is any value.

2) Complex hypersphere withN = L = 2: Let us assume that the columns of the randomization matrixR
are drawn uniformly on complex hypersphere. We obtain the eigenvalues ofRRH asλ1 = 1+

√
ζ/2, λ2 =

1−√ζ/2, whereζ ∼ F24 andFnm is the F-distribution. Note thatλ1 ≥ 1. Using Theorem 1, the diversity

order obtained isd∗ = 2, where the infimum obtained when(α1, α2) = (0, 0−). Table I summarizes the

diversity order of the proposed schemes.

V. A NTENNA SELECTION AND DISCRETERANDOMIZATION MATRIX

The case considered in this section is that where the randomization matricesR are drawn from discrete

distributions. In the next example, we present the random selection matrices.
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Example 1:Let R = [r1 . . . rN ] be a random matrix such thatri ∈ Q , {ei, i = 1 . . . L} whereei is

the vector of all zeros except thei’th position, which is1. Note that the randomized space-time coding, with

the selection matrixR, corresponds to assigning the columns of a given space-time code matrix at random

to each of the nodes. This scheme will be referred asrandom antenna selection. In [21], we analyzed the

performance of random antenna selection with an underlying orthogonal space-time code. We showed that

this simple method almost meets the ideal performance for SNR below a threshold SNRt, which increases

with node density. In the following, we extend the results in [21] to more general scenarios.

When the randomization matrixR is drawn from a discrete distribution, the probability that the rank of

R is unity, i.e., Pr{rank(RRH) = 1} is nonzero. In the light of this observation, the following lemma

presents the diversity order of this scheme with finiteL,N .

Lemma 2:The randomized space-time coding, withR drawn from a discrete distribution, has diversity

orderd∗ = 1 for N < ∞.

Proof: The proof follows from Theorem 1. The diversity order is obtained when{α1 = 0−, αi =

1, ∀i = 1}.
Lemma 2 states that the maximum diversity that can be achieved with schemes based on randomization

matrices drawn from discrete distribution is1, which is quite discouraging. This is somewhat misleading

as can be shown by studying the diversity order as the number of nodes increases. We now define the

asymptotic diversity order.

Definition Let P
(N)
e (SNR) denote the probability of error of a randomized space-time code utilizing an

L×N randomization matrixR√
N

. Then, theasymptotic probability of errorP∞
e (SNR) is defined as

P∞
e (SNR) , lim

N→∞
P (N)

e (SNR).

Also, theasymptotic diversity orderD of this randomized space-time code is defined as

D , lim
SNR→∞

− log P∞
e (SNR)

log SNR
. (22)

In the asymptotic case, full diversity conditions are more relaxed. The sufficient conditions in order to

achieve the asymptotic diversity orderD = L are provided in the following theorem. In order to derive the

asymptotic probability of errorP∞
e (SNR), we utilize the behavior of effective channel for largeN in the

proof of next theorem.

Theorem 4:Let R = [r1 . . . rN ] be anL × N random matrix such that the columnsri are i.i.d. with

zero-mean and covarianceΣ. Assume thath ∼ Nc(0,Σh), whereΣh = diag(σ2
h1, σ

2
h2, . . . , σ

2
hN ). If L < ∞,

then the asymptotic diversity orderD = L is achieved if the following conditions are satisfied:
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1) (Gk − Gi) is full-rank,

2) Σ is full-rank, i.e., det(Σ) > 0.

Proof: See Appendix E.

The behavior of the schemes utilizing discrete randomization matrices changes dramatically in the high

node asymptote due to Theorem 4. From Lemma 2, we know that as SNR→∞, the diversity order of this

system is1 for N < ∞. On the other hand, from Theorem 4, in the asymptote that number of nodes goes

to infinity, the asymptotic diversity order isη = min(L,N). In addition, an interesting observation on the

behavior of networks with finite but sufficiently large number of nodes is made. The average error probability

curve (in the typical logarithmic scale, versus SNR in dB) exhibits multiple slopes in different SNR ranges.

The justification for this behavior is as follows.

Assume that(Gk−Gi) is of rankL for any pair of space-time code matrices{Gk, Gi}. Let η = min(L,N).

Let S = {σ2
1, σ

2
2, . . . , σ

2
η} be the set of non-negative eigenvalues ofRRH ordered such thatσ2

1 is the largest.

Let us rewrite the average probability error as a polynomial in1/SNR (using (43) and (48)):Pe ≤ P̄e, where

P̄e =
η∑

m=1

Bm E





η∏

i=η−m+1

σ−2
i |rank(RRH) = m





︸ ︷︷ ︸
, Cm

1
SNRm , (23)

where Bm , 4m(|M|−1)Pr{rank(RRH
)=m}

|(Gk−Gi)H(Gk−Gi)|m+|Σh|m+
. The expression (23) helps explain the fact that when the

number of nodes is finite butsufficientlylarge, the probability of error curve changes its slope, but above

a certain SNR threshold, the expectedO(1/SNR) behavior is obtained. The breaking points of the curve

change and move towards higher SNRs as the number of nodes increases. In fact, depending on the values

of {Cm}, the range of SNR where the termCm/SNRm is dominant in the summation (23) can be derived

as follows:

max
k>m

(
Cm

Ck

) 1
m−k

<< SNR<< min
k<m

(
Cm

Ck

) 1
m−k

, (24)

if mink<m (Cm/Ck)
1

m−k >> maxk>m (Cm/Ck)
1

m−k (for m = 1, the upper bound is∞ and form = L, the

lower bound is0). In Section VI, we will show this behavior in a numerical example.

The main advantage of choosing columns ofR from a discrete distribution is the simplification in the

encoder, since the random selection can be enforced at the data link layer and hence, the scheme can be

implemented in logic without any modification of the existing physical layer modem.

Example 2: (Frequency Diversity)

In [22], the authors propose a protocol where the cooperating nodes introduce intentional delays in order to

obtain diversity through an artificially created frequency selective channel. In one version of their protocol,
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they allow the nodes to randomly select the delays from a pool. This scheme can be reexpressed as a

randomized space-time code: LetG(s) be a Toeplitz matrix having all the possible shifted replicas of the

transmitted signal and the randomization matrixR be the selection matrix. The performance of this scheme

under coherent detector is analyzed in Section V. Furthermore, the diversity and coding gains can be attained

if the strategy is combined with a coded- OFDM modem that includes a cyclic prefix on the order of the

maximum allowed delay dispersion among the cooperative relays (see also [11]).

VI. SIMULATIONS & N UMERICAL EVALUATIONS

In this section, we present the performance of the proposedrandomizeddistributed space-time codes.

We obtain the average probability of error through Monte-Carlo methods and validate the conclusions we

draw in the analytical sections. We compare the performance of randomized schemes with the centralized

space-time codes for different values ofN andL. In the following, we assume the nodes channel gains to

the destination are i.i.d.,i.e., hk ∼ Nc(0, 1).

In Fig. 2, we look at the performance of Alamouti scheme under different randomization methods and

compare it with a centralized space-time coding. HereL = 2, and

G(s) =


 s1 s2

s∗2 −s∗1


 ,

wheres = [s1 s2] is the transmitted symbol vector andsi = ±1 (BPSK symbols). The randomization is

done in four different ways: (i) Complex Gaussian randomization (see Section IV-A) (ii) Uniform phase

randomization (see Section IV-C) (iii) Uniform spherical randomization (see Section IV-D) and (iv) Random

antenna selection (see Section V - Example 1). Letri be the i’th column of the randomization matrix

R. In uniform phase randomization, each element ofri is equal toejθ where θ is a random variable

uniformly distributed in[0, 2π). In the case of Gaussian randomization,ri’s are zero-mean independent

complex Gaussian vectors with covarianceI. In the uniform spherical randomization,ri’s are chosen as

zero-mean independent complex Gaussian vectors with covarianceI, and then normalized to have the norm

ρ = ||ri|| = 1 [34], [35].

In the centralized Alamouti, half of the nodes choose to serve as the first antenna, and the other half

choose to serve as the second antenna (ifN is odd, at one of the nodes the power is equally distributed

between two antennas). The transmission power of each node isPt = 1
N for the centralized Alamouti3,

antenna selection, and spherical randomization schemes. For the Gaussian and uniform phase randomization

3Note that the centralized scheme using two relays withPt = 0.5 would have the same performance.
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schemes,Pt = 1
NL .4 This way the average transmission power of each antenna is approximately the same

for all schemes, hence the comparison is more fair.

In Fig. 2, we plot the average probability of error with respect to SNR= 1/N0 for N = 2, 3, 4, 10.

From theoretical analysis, forN = 2, we know that the Gaussian and spherical randomization schemes have

diversity orderd∗ = 2; on the other hand, uniform phase randomization has diversity orderd∗ = 1.5 and the

diversity order of the random antenna selection is1. This is supported by the simulation results. However,

for N = 2, the performance of the centralized scheme is much better than the decentralized schemes. We

also plot the upper bounds to the average probability of error (P̄e, Eqn. 43), which are very close to the

actualPe curves. ForN = 3, 4, the Gaussian, uniform phase, and spherical randomization schemes achieve

diversity order2 similar to the centralized scheme. However, the centralized scheme has a better coding gain.

Nevertheless, one can observe that asN increases the performance of the distributed schemes approaches

the centralized scheme not only in the diversity order but also in the coding gain.

In Fig. 3, we look at the performance of an orthogonal space-time code of orderL = 3:

G(s) =




s1 0 s2 −s3

0 s1 s∗3 s∗2

−s∗2 −s3 s∗1 0




t

,

wheres = [s1 s2 s3] is the transmitted symbol vector. Note that the rate of this code is3/4. In the centralized

scheme, forN ≥ L, the nodes are divided intoL equal number groups, and ifN is not a multiple ofL,

then at the remaining nodes, the power is distributed equally among theL antennas. IfN < L, the nodes

imitateN of the preselected antennas. Similar to the Alamouti coding, the transmission power of each node

is Pt = 1
N for the centralized scheme, antenna selection, and spherical randomization schemes, andPt = 1

NL

for the Gaussian and uniform phase randomization schemes. In Fig. 3, forN = 2, the diversity orderd∗ = 2

is achieved by centralized, Gaussian randomization and uniform phase, on the other hand, the antenna

selection scheme has the worst performance. ForN = 3, the centralized scheme has diversity orderd∗ = 3

and the performance is much better than the decentralized schemes. In addition, the performance of the

randomization via continuous distributions (Gaussian, uniform phase and spherical) is considerably superior

to the antennas selection scheme. ForN = 4, the Gaussian, uniform phase, and spherical randomization

schemes achieve diversity order3. Similar to the Alamouti scheme, the performance of all the randomized

4The aim of normalization by1/L is to make the comparison fair among different randomization schemes; the normalization

by 1/N is just to cancel the effect of power enhancement due to transmission ofN nodes; hence we are able to distinguish the

diversity order easily. Note that in general, normalization by1/L should depend on the selected codeG.
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Fig. 2. Average Probability of Error versus SNR (dB): L = 2 (a) N=2 (b) N=3 (c) N=4 (d) N=10 . ForN = 2, the upper bounds

to the average probability of error are drawn for each of the schemes with dotted curves.

schemes converges to the performance of centralized space-time coding asN increases.

In the next experiment, we present the multi-slope behavior of antenna selection scheme with the under-

lying deterministic Alamouti space-time code. WhenN is odd andL = 2, the analytical expression of the

average error probability simplifies to [21],

Pe =
1

2N

N∑

k=0

(
N

k

)
g(k)− g(N − k)

2k −N
, (25)

whereg(x) = x
2

(
1−

√
x SNR

x SNR+1

)
. The numerical evaluation of (25) forN = 3, 5, 7, 9, 11 is displayed in

addition to the asymptotic result (centralized scheme performance) in Fig. 4.

As expected, thePe curves have a breaking point, which becomes more pronounced asN increases;

beyond a certain SNR, they all have the same slope which corresponds to diversity order1. For SNR values

September 12, 2006 DRAFT



23

−20 −15 −10 −5 0 5 10 15 20 25
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

SNR (dB)

A
ve

ra
ge

 P
ro

ba
bi

lit
y 

of
 E

rr
or

N = 2, L = 3

 

 

Antenna Selection
Gaussian Randomization
Uniform Phase Randomization
Centralized  Scheme
Uniform Spherical Randomization

−20 −15 −10 −5 0 5 10 15 20 25

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

SNR (dB)

A
ve

ra
ge

 P
ro

ba
bi

lit
y 

of
 E

rr
or

N = 3, L = 3

 

 

Antenna Selection
Gaussian Randomization
Uniform Phase Randomization
Centralized  Scheme
Uniform Spherical Randomization

−20 −15 −10 −5 0 5 10 15 20 25

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

SNR (dB)

A
ve

ra
ge

 P
ro

ba
bi

lit
y 

of
 E

rr
or

N = 4, L = 3

 

 

Antenna Selection
Gaussian Randomization
Uniform Phase Randomization
Centralized  Scheme
Uniform Spherical Randomization

−20 −15 −10 −5 0 5 10 15 20 25
10

−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

SNR (dB)

A
ve

ra
ge

 P
ro

ba
bi

lit
y 

of
 E

rr
or

N = 10, L = 3

 

 

Antenna Selection
Gaussian Randomization
Uniform Phase Randomization
Centralized  Scheme
Uniform Spherical Randomization

Fig. 3. Average Probability of Error versus SNR (dB): L = 3 (a) N=2 (b) N=3 (c) N=4 (d) N=10

less than a threshold, the diversity order2 is achieved. This can be clearly seen forN = 11 which has a

breakpoint around SNR= 35 dB.

VII. C ONCLUSION

In this paper, we proposed a decentralized space-time coding for distributed networks. Our scheme is based

on independent randomization done at each node. We analyzed its performance and proposed different designs

that achieve the diversity order (min(N,L)) when the number of nodesN is different than the number of

antennasL in the underlying space-time code. ForN = L, we presented examples where the diversity order

is fractional. In addition, we showed that the randomized schemes achieve the performance of a centralized

space-time code in terms of coding gain as the number of nodes increases.
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APPENDIX

A. Proof of Lemma 1

The average probability of error (41) can be lower bounded as follows (∀sk, si ∈M, i 6= k):

Pe ≥ 1
|M| Pr(sk→si) ≥ 1

|M| Pr(sk→si | ||Rh||2 ≤ 1
SNR

) Pr{||Rh||2 ≤ 1
SNR

}. (26)

In the following, we will assume that(Gk − Gi) is of rankL. Let λik,max be the maximum eigenvalue of

the matrix(Gk − Gi)H(Gk − Gi). Defineλmax , maxi,k λik,max. Let Q(·) =
∫∞
x

1√
2
e−u2/2du. SinceQ(·)

is a decreasing function, the first part of (26) is lower bounded as

Pr(sk→si | ||Rh||2 ≤ 1
SNR

) = E
{

Q
(√

SNR/2||(Gk − Gi)Rh||
)
| ||Rh||2 ≤ 1

SNR

}
(27)

≥ E
{

Q
(√

SNR
√

λmax/2 ||Rh||
)
| ||Rh||2 ≤ 1

SNR

}
≥ Q

(√
λmax/2

)
. (28)

Then the average probability of error can be lower bounded as

Pe ≥ 1
M

Q
(√

λmax/2
)

Pr{||Rh||2 ≤ SNR−1}. (29)

The pairwise error probability can be upper bounded as follows for someα ∈ (0, 1):

Pr(sk→si) = Pr(sk→si, ||Rh||2 ≤ SNR−α) + Pr(sk→si, ||Rh||2 > SNR−α)

≤ Pr{||Rh||2 ≤ SNR−α}+ Pr{sk→si | ||Rh||2 > SNR−α}︸ ︷︷ ︸
,Pki

. (30)
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Next, we will upper bound the probabilityPki. For the system given by Eqn. 3, the conditional pairwise

error probability is upper bounded asPr{sk → si|R,h} ≤ exp(−(SNR/4)||(Gk − Gi)Rh||2). Then,

Pki ≤ E{exp(−SNRλmin,ik||Rh||2
4

) | ||Rh||2 > SNR−α}, (31)

whereλmin,ik is the minimum eigenvalue of(Gk − Gi)H(Gk − Gi). The right-hand side of (31) converges

to zero as SNR→∞ sinceα ∈ (0, 1). Using the union bound, the average probability of error can be upper

bounded by the pairwise error probabilities assuming that all source messagessi ∈M are equally likely:

Pe ≤ (|M| − 1)max
i,k

Pr{sk → si}. (32)

Using (30),(31) and (32)

d∗ = lim
SNR→∞

− log(Pe)
log SNR

≥ lim
SNR→∞

− log Pr{||Rh||2 ≤ SNR−α}
log SNR

. (33)

Since (33) is valid ∀α ∈ (0, 1), if we take the limit asα→1, it is still valid. The lemma follows from this

fact and (29).

B. Proof of Theorem 1

The argument after the theorem proves Eqn. 7. In this appendix we will prove the opposite inequality.

Using (6) we obtain that

Pr{||Rh||2 ≤ 1
SNR

} = Pr{
η∑

i=1

σ2
i |ĥi|2 ≤ 1

SNR
} ≤ Pr{σ2

1|ĥ1|2 ≤ SNR−1, . . . , σ2
η|ĥη|2 ≤ SNR−1

︸ ︷︷ ︸
,Sη

}.

In the following, we will prove the theorem forη = 2. Generalization toη > 2 will be obvious. Let

γ , SNR. LetS2 = {σ2
1|ĥ1|2 ≤ γ−1, σ2

2|ĥ2|2 ≤ γ−1}. Let P2 = Pr{S2} and n be a fixed parameter. We

can writeP2 as:

P2 =
n∑

i=1

Pr{γ(i−1)/n−1 ≤ |ĥ1|2 ≤ γi/n−1, S2}︸ ︷︷ ︸
P21i

+Pr{|ĥ1|2 ≤ γ−1, S2}︸ ︷︷ ︸
P22

+Pr{|ĥ1|2 ≥ 1, S2}︸ ︷︷ ︸
P23

. (34)

Using the definitions ofP21i and the eventS2, we obtain

P21i = Pr{γ(i−1)/n−1 ≤ |ĥ1|2 ≤ γi/n−1, σ2
2|ĥ2|2 ≤ γ−1, σ2

1 ≤ γ(1−i)/n}.

≤ Pr{|ĥ1|2 ≤ γi/n−1, σ2
2|ĥ2|2 ≤ γ−1, σ2

1 ≤ γ(1−i)/n}. (35)

Similarly, using the definitions ofP22, P23 and the eventS2, we obtain

P22 ≤ Pr{|ĥ1|2 ≤ γ−1, σ2
2|ĥ2|2 ≤ γ−1} = Pr{|ĥ1|2 ≤ γ−1}Pr{σ2

2|ĥ2|2 ≤ γ−1}

P23 = Pr{|ĥ1|2 ≥ 1, σ2
1 ≤ γ−1, σ2

2|ĥ2|2 ≤ γ−1} ≤ Pr{σ2
1 ≤ γ−1}. (36)
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Let P3 , Pr{σ2
2|ĥ2|2 ≤ γ−1}. Using similar tricks, we can also upper boundP3 as

P3 ≤
n∑

j=1

Pr{|ĥ2|2 ≤ γj/n−1, σ2
2 ≤ γ(1−j)/n}+ Pr{|ĥ2|2 ≤ γ−1}+ Pr{σ2

2 ≤ γ−1} (37)

Let A,B,C, D be four events. Then we know that,

Pr{A} ≤ Pr{B}+ Pr{C} ⇒ Pr{A, D} ≤ Pr{B, D}+ Pr{C,D}. (38)

Using (38), we obtain

P21i ≤
n∑

j=1

Pr{|ĥ1|2 ≤ γi/n−1, σ2
1 ≤ γ(1−i)/n, |ĥ2|2 ≤ γj/n−1, σ2

2 ≤ γ(1−j)/n}

+Pr{|ĥ1|2 ≤ γi/n−1, σ2
1 ≤ γ(1−i)/n, |ĥ2|2 ≤ γ−1}

+Pr{|ĥ1|2 ≤ γi/n−1, σ2
1 ≤ γ(1−i)/n, σ2

2 ≤ γ−1}

=
n∑

j=1

Pr{|ĥ1|2 ≤ γi/n−1}Pr{|ĥ2|2 ≤ γj/n−1}Pr{σ2
1 ≤ γ(1−i)/n, σ2

2 ≤ γ(1−j)/n}

+Pr{|ĥ1|2 ≤ γi/n−1}Pr{|ĥ2|2 ≤ γ−1}Pr{σ2
1 ≤ γ(1−i)/n}

+Pr{|ĥ1|2 ≤ γi/n−1}Pr{σ2
1 ≤ γ(1−i)/n, σ2

2 ≤ γ−1}. (39)

Also,

P22 ≤
n∑

j=1

Pr{|ĥ1|2 ≤ γ−1}Pr{|ĥ2|2 ≤ γj/n−1, σ2
2 ≤ γ(1−j)/n}

+Pr{|ĥ1|2 ≤ γ−1}Pr{|ĥ2|2 ≤ γ−1}+ Pr{|ĥ1|2 ≤ γ−1}Pr{σ2
2 ≤ γ−1}. (40)

Compute the diversity order ofP2 from Eqn. (34) (for both sides). Letα1 = (i− 1)/n, α2 = (j − 1)/n. It

is true that

lim
γ→∞

log(Pr{A}+ Pr{B})
log SNR

= min
(

lim
γ→∞

log(Pr{A})
log γ

, lim
γ→∞

log(Pr{B})
log γ

)
.

Using this fact, we can explicitly find the diversity order ofP21i (Eqn. 39),P22 (Eqn. 40),P23 (Eqn. 36);

and hence the diversity order ofP2. Then, consider the asymptote asn→∞. By further analysis, we can

see that

lim
γ→∞

− log(P2)
log γ

≥ min
α1,α2

{2− α1 − α2 + Γ(α1, α2).}

By using similar tricks, we can find the diversity order ofPη as

d∗ ≥ min
α
{η −

η∑

i=1

αi + Γ(α1, . . . , αη), }

where0− ≤ αi ≤ 1.
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C. Proof of Theorem 2

Using the union bound, the average probability of error can be upper bounded by the pairwise error

probabilities assuming that all source messagessi ∈M are equally likely:

Pe ≤ 1
|M|

∑

sk∈M

∑

si∈M,i6=k

Pr(sk → si), (41)

wherePr(sk → sk) denotes the probability that a transmitted messagesk is mistaken for another message

si. Let sk ∈ M denote the transmitted symbol. For the system given by Eqn. 3, the conditional pairwise

error probability is upper bounded as

Pr{sk → si|R,h} ≤ exp
(
−SNR||(Gk − Gi)Rh||2

4

)
. (42)

Assumingh ∼ Nc(0,Σh) (for a given positive definite hermitianΣh); using (41) and (42), the average

error probability of coherent detection (averaged over{R,h}) is bounded as,

P̄e , ER
{

|M| − 1
min(i,k) det(I + SNR/4 (Gk − Gi)H(Gk − Gi)RΣhRH)

}
. (43)

DefineAik , (Gk−Gi)H(Gk−Gi). Assume conditions C1 is satisfied, andRΣhRH is of rankd with

probability 1. We will upper boundP̄e (43) for the proof. In the following, we assume that we are given a

realizationR of rank d ≤ min(L,N), then the final result follows by averaging over all such realizations.

Under the given conditions, we know thatRHAikR has non-negative real eigenvalues. Then,

det(I + SNR/4 AikRΣhRH) ≥ |SNR/4 AikRΣhRH |d+. (44)

Let RΣhRH = QSQH be the eigenvalue decomposition ofRΣhRH whereQQH = QHQ = I and

S = diag(λ1, . . . , λd, 0, . . . , 0) such thatλ1 ≥ λ2 . . . ≥ λd > 0. Define L × d semi-unitary matrixU as

U = (qik)i=1...L,k=1...d whereQ = (qik)i=1...L,k=1...L. Notice thatUHU = I. Let Λ = diag(λ1, . . . , λd),

then

|SNR/4 AikRΣhRH |d+ = |SNR/4 AikUΛUH |d+ = |SNR/4 UHAikUΛ|d+. (45)

We know thatd×d matrixUHAikU is of rankd [36, Section 0.4.5(c), page 13]. Furthermore, the eigenval-

ues ofUHAikU and the eigenvalues ofAik have an inequality relation [36, Section 4.3.16, page 190]. That

is, letλn(C) denote then’th smallest eigenvalue of a matrixC, thenλn(Aik) ≤ λn(UHAikU), n = 1 . . . d.

Using this result,

|SNR/4 UHAikUΛ|d+ = (SNR/4)d|UHAikU|d+ |Λ|d+

≥ (SNR/4)d|Aik|d+ |Λ|d+ = (SNR/4)d|Aik|d+ |RΣhRH |d+ (46)
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We know that the positive eigenvalues ofRΣhRH are the same as the positive eigenvalues ofRHRΣh.

Using similar techniques to the derivation of (46), we obtain

|RΣhRH |d+ ≥ |RRH |d+|Σh|d+. (47)

Using (44), (45), (46) and (47), we obtain

det(I + SNR/4 AikRΣhRH) ≥ (SNR/4)d|Aik|d+ |Σh|d+ |RRH |d+. (48)

Then the proof follows by lettingd = η = min(N, L).

D. Proof of Theorem 3

In the following we will first assume thatL 6= N . Consider a complex random matrixR(L×N, L < N)

with the probability density functionp(R), then the density of the matrixRRH is called the generalized

Wishart density [37]. The following formula allows us to compute the probability density function ofRRH

from the probability density function ofR. The formula is the generalization of Theorem 1.3.1 in [37] to

the complex random matrices.

Let Γ be the set of unitaryN ×N matrices andµ the normalized Haar measure on it5, R a rectangular

randomL×N matrix (L ≤ N ) with the probability densityp(R). Let Λ be the set of Hermitian positive

definite matrices. Then the probability density function (pdf) ofRRH is equal to

fRRH (Z) =
1

cL,N

∫

Γ
p(
√

ZŨ) det(Z)N−Lµ(dU), (49)

whereL×L matrix Z ∈ Λ, U = (uik) ∈ Γ, Ũ = (uik)i=1...L, k=1...N , cL,N = πL(L−1)/2−LN
∏L

k=1(N−k)!.

By using the formula for the pdf ofRRH , we conclude thatE{det(RRH)−1} < ∞ if and only if the

integral

I ,
∫

Λ

∫

Γ
p(
√

ZŨ) det(Z)N−L−1µ(dU)dZ (50)

is finite. The notationdZ refers to the Lebesgue measure on the set ofL × L dimensional matrices. The

proof of the theorem follows from bounding the integral (50). Remember that the densityp(·) is bounded

by a constant, sayc1. Therefore, the righthand side of (50) is bounded as
∫

Λ

∫

Γ
p(
√

ZŨ) det(Z)N−L−1µ(dU)dZ ≤ c1

∫

Λ

∫

Γ
det(Z)N−L−1µ(dU)dZ. (51)

5The µ can be viewed as the uniform distribution onΓ. More formally, a measureµ on Γ is called a Haar measure ifµ(UA) =

µ(A) holds∀U ∈ Γ and measurable setA ⊂ Γ, whereUA is the set of all matrices of the formUa wherea ∈ A. Haar measure

µ on Γ is called normalized ifµ(Γ) = 1.
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Sinceµ(·) is the normalized Haar measure,
∫

Λ

∫

Γ
det(Z)N−L−1µ(dU)dZ =

∫

Λ
det(Z)N−L−1dZ. (52)

For a Hermitian positive definite matrixZ, Tr(Z) ≤ PT ⇒ det(Z) ≤ PL
T < ∞. Furthermore, ifN ≥ L + 1,

the exponent ofdet(Z) in (52) is non-negative. Then using the constraint Tr(Z) ≤ PT on the integration

domainΛ,
∫

Λ
det(Z)N−L−1dZ =

∫

Tr(Z)≤PT

det(Z)N−L−1dZ ≤ P
L(N−L−1)
T

∫

Tr(Z)≤PT

dZ. (53)

Note that for a Hermitian positive-definite matrixZ, Tr(Z) ≤ PT ⇒ ||Z||F ≤ PT , where ||Z||F is the

Frobenious norm ofZ. Then,
∫

Tr(Z)≤PT

dZ ≤
∫

||Z||F≤PT

dZ =
πN2/2PN2

T

Γ(N2/2 + 1)
, (54)

whereΓ(z) =
∫∞
0 tz−1e−tdt. The final integration amounts to finding a volume ofN2 dimensional sphere. By

combining (51), (52), (53) and (54), we obtainI ≤ c1P
L(N−L−1)
T

πN2/2P N2
T

Γ(N2/2+1) < ∞. Hence,E{det(RHR)−1} <

∞. Similar to the above derivation, we can easily show that IfL ≥ N + 1, thenE{det(RHR)−1} < ∞.

Hence, the result (14) follows.

For N = L, we expect thatN − 1 ≤ d∗ ≤ N . We know thatd∗ ≤ N (a conclusion that can be drawn

from Theorem 1). The fact thatd∗ > N − 1 for N = L can be proved as follows: Consider the randomized

code obtained using anL′ ×N ′ dimensional randomization matrixR such thatL′ = N andN ′ = N − 1.

We know that such a system has diversity orderN − 1 (using Eqn. 14). Adding 1 more node to a system

would never decrease the diversity order; hence the diversity order of the randomized space-time code with

N ×N dimensional randomization matrix is at leastN − 1.

E. Proof of Theorem 4

The effective channel vector̃h = Rh is conditionally Gaussian with zero mean and covarianceRΣhRH .

In the following, we provide the statistics of̃h as N→∞. Denote(i, j)’th element ofR by rij . Define

Zk = [hkr1k, hkr2k, . . . , hkrLk]t for k = 1 . . . N . We can rewritẽh in terms of the random vectorsZk, i.e.

h̃ = [h̃1h̃2 . . . h̃L]t =
∑N

k=1 Zk.

In the following, first we derive the mean and variance ofZk and then by using the multivariate central

limit theorem [38, pp. 20] asN→∞, we show that h√
N

converges in distribution to a Gaussian random

variable. We know thatR is a random matrix independent ofh, then the mean ofZk is E{Zk} = 0, and
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the covariance matrix isΣk = E{ZkZH
k } = σ2

kΣ. SinceZk’s are independent, using the multivariate central

limit theorem, we can conclude that

h̃√
N

=
1√
N

N∑

k=1

Zk→dN (0, Σ̃) asN→∞, (55)

whereΣ̃ = Σ limN→(
∑N

i=1 σ2
hi/N). Now we can prove the theorem using (55). We know that

1
|M|E

{
Q

( ||(Gk − Gi)Rh||√
N
√

2N0

)}
≤ PN

e (SNR) ≤ (|M| − 1)E
{

Q

( ||(Gk − Gi)Rh||√
N
√

2N0

)}
. (56)

Eqn. 55 tells that asN→∞, Rh√
N

d→ N (0, Σ̃). The continuous mapping theorem[33] states that for any

continuous and bounded functionh(·) and random variablesXn, X, if Xn
d→ X, thenE{h(Xn)}→E{h(X)}.

By taking the limit in (56), we can deduce that asN→∞, the randomized space-time codeG(s)R is

equivalent to a deterministic space-time codeG(s)Σ̃1/2 and hence, it provides diversity orderL when both

Σ andG are full-rankL.
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