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Microprocessor design has recently encountered many constraints such as power, energy, reliability and 
temperature. Among these challenging issues, temperature-related issues have become especially important 

within the past several years. We summarize recent thermal management techniques for microprocessors, 

focusing on those that affect or rely on the microarchitecture. We categorize thermal management techniques 
into six main categories: temperature monitoring, microarchitectural techniques, floorplanning, OS/compiler 

techniques, liquid cooling techniques, and thermal reliability/security. Temperature monitoring − a requirement 

for dynamic thermal management (DTM) − includes temperature estimation and sensor placement techniques 

for accurate temperature measurement or estimation. Microarchitectural techniques include both static and 

dynamic thermal management techniques that control hardware structures. Floorplanning covers a range of 
thermal-aware floorplanning techniques for 2D and 3D microprocessors. OS/compiler techniques include 

thermal-aware task scheduling and instruction scheduling techniques. Liquid cooling techniques are higher-

capacity alternatives to conventional air cooling techniques. Thermal reliability/security issues cover 
temperature-dependent reliability modeling, dynamic reliability management (DRM), and malicious codes that 

specifically cause overheating. Temperature-related issues will only become more challenging as process 
technology continues to evolve and transistor densities scales up faster than power per transistor scales down. 

The overall objective of this survey is to give microprocessor designers a broad perspective on various aspects 

of designing thermal-aware microprocessors and to guide future thermal management studies. 
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1. INTRODUCTION 

Using performance as the primary objective in microprocessor design has led to 

increasingly sophisticated processor organizations such as superscalar, out-of-order issue, 

and Very Long Instruction Word (VLIW). In addition to such microarchitectural 

techniques, process technology continues to double the number of transistors per unit 

area every 1.5~2 years by reducing feature sizes and shrinking the distance between 

devices, allowing continued increases in operating frequency as well as supporting ever 

more sophisticated processor organizations within a given area or cost budget. 

Unfortunately, these performance improvements have come at increasingly high costs in 

power and cooling requirements. As processor structures become more sophisticated and 

operate at higher frequency, they dissipate more power per unit area and the processors 

overall dissipate more total power. Both power density and total power have increased 

steadily over the last 25 years. Even if microarchitectural complexity stops increasing, 

power densities will still rise, because supply voltage is no longer scaling down as fast as 

feature size [SIA 2009]. At the same time, we are approaching the limits of air cooling 

(around 150~200W) [SIA 2009], and no mass-market alternatives have become apparent. 

Clearly, this growth in power dissipation cannot be sustained. Of course, the shift to 

multi-core architectures has temporarily alleviated the problem, as performance can now 

be achieved through parallelism and microarchitectural complexity has indeed slowed or 

even reversed. However, as more cores are integrated and supply voltage scaling slows 

even more, power densities will again become a severe challenge.  

High temperatures pose a reliability challenge, since many aging mechanisms, such as 

electro-migration and dielectric breakdown, are exponentially dependent on temperature. 

Inadequate thermal control can lead to complete failure, as several recent products have 

shown (e.g., [ARS Technica 2008; EE Times 2008]). Moreover, temperature must be 

addressed from the earliest design stages, because early design choices, such as the 

number and complexity of cores, dictate the basic activity patterns that a processor will 

exhibit [Li et al. 2006]. As a result, microprocessor architects have begun to study 

thermal management more carefully in the early-stage of design-time. In order to design 

efficient thermal management techniques, accurate thermal analysis at the design-time is 

essential. However, thermal analysis in the design stage is not an easy process. The 

reasons are as follows: 1) Temperature is typically represented by complex non-linear 

equations (e.g., Newton’s law of cooling or Fourier’s law), making thermal analysis for 

microprocessors in the design-time difficult without complex as well as accurate 

simulations. Furthermore, due to its complexity, temperature simulations typically need 

quite longer time than other metrics such as performance and power. 2) The RC thermal 

time constant is heavily dependent on environmental parameters such as material and 

packaging [Mesa-Martinez et al. 2010]. Thus, the designers should be careful when 

analyzing a thermal behavior since temperature response can be different according to the 

various environmental parameters. It calls for simple and accurate simulation tools for 

microprocessor designers. 

To support early-stage thermal-aware microprocessor design, several temperature 

simulation tools have been developed. These include HotSpot [Skadron et al. 2003; 

Huang et al. 2008] and ATMI [Michaud and Sazeides 2007]. These rely on compact 

models for the heat transport, and generally represent each microarchitectural unit with a 

uniform power density. They also rely on some external source for the power dissipation 
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in each unit. Analytical models or empirical values extracted and scaled from prior 

hardware (coupled with cycle-accurate microarchitectural simulations to obtain activity 

factors) are the most common sources. Using such early-stage-design simulation tools, 

hardware support for thermal management can be explored without the need for 

traditional but computationally expensive thermal modeling tools based on finite-

difference or finite-element methods, or empirical measurements using hardware. 

However, note that thermal modeling is beyond the scope of this paper. We restrict the 

main topic of our survey only to thermal management techniques, excluding thermal 

modeling techniques. 

Power management can help control temperatures, because reducing power dissipation 

may also reduce power density. However, reducing power alone is not always effective 

and may in fact conflict with thermal management: if power reductions are achieved by 

turning off under-utilized structures and concentrating activity in a smaller area, power 

density actually increases! Conventional power-saving techniques also tend to exploit 

slack when the processor is under-utilized and power-saving techniques will typically 

have less impact on performance [Venkatachalam and Franz 2005], while thermal 

management is chiefly a concern when the processor is heavily utilized and power-saving 

techniques may severely affect performance. Power-saving techniques used for managing 

current delivery or energy efficiency may also target structures that are not hot, and hence 

have limited impact on temperature. Furthermore, temperature changes slowly compared 

to the potential rate of change of activity within processor structures—over microseconds 

or longer—because even a small silicon die contains significant material mass. This 

means that power management will affect temperature only if the power reduction is 

maintained for a sufficiently longer time. For these reasons, even though power 

management for power delivery or energy efficiency concerns may use the same 

techniques as for thermal management, the policies may be different and even potentially 

in conflict.   

In this paper, we introduce recent thermal-aware microarchitecture techniques. We 

restrict our survey to the temperature-related studies, excluding studies which only 

consider power (or energy). Note we do not provide all of the evaluation results under the 

identical evaluation framework since the evaluation environments (such as packaging, 

cooling, and processor parameters) of the studies vary. The rest of this paper is organized 

as follows. Section 2 provides a brief organization of our survey. Section 3 introduces 

recent representative temperature management techniques. In the last section, we 

conclude our paper. 

 

2. A HIERARCHICAL ORGANIZATION OF OUR SURVEY  
Prior to conducting a detailed survey, we categorize our survey hierarchically into six 

main parts; temperature monitoring, microarchitectural techniques, floorplanning, 

OS/compiler techniques, liquid cooling techniques, and thermal reliability/security. We 

summarize the organization of our survey as depicted in Fig. 1. The Temperature 

monitoring section discusses how to monitor the temperature of microprocessors 

effectively and accurately, and breaks down into two sub-sections. In the Temperature 

estimation sub-section, we introduce many cost-effective and accurate temperature 

estimation techniques, and in the On-chip sensor placement sub-section, we introduce 
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several techniques which take into account the appropriate allocation of thermal sensors. 

The Microarchitectural techniques section is composed of three sub-sections. In the For 

microprocessor cores sub-section, we introduce recent outstanding microarchitectural 

thermal management techniques for microprocessor cores. The next sub-section, For On-

chip caches, introduces several techniques to reduce power density of on-chip caches by 

spreading heat while maintaining locality. In the Novel design techniques sub-section, we 

introduce microprocessor structures to reduce the power density of the microprocessor by 

dividing it into several clusters or restructuring the typical microprocessor architectures. 

The Floorplanning section summarizes recent floorplanning techniques from both CAD 

and microarchitectural perspectives. The For 2D planar microprocessors and For 3D 

die-stacked microprocessors sub-sections introduce thermal-aware floorplanning 

techniques for 2D and 3D microprocessors, respectively. In the OS/compiler techniques 

section, we explore many temperature management techniques orchestrated by OS or 

compilers. The Thermal-aware task scheduling sub-section discusses how to schedule 

and assign the tasks (processes or threads) to cores for managing the temperature of 

microprocessors. The Compiler-directed techniques sub-section introduces thermal 

management techniques based on compiler optimizations. Several thermal-aware code 

optimization techniques are introduced here. In the Liquid cooling techniques section, we 

investigate liquid cooling techniques for microprocessors that are outstanding alternatives 

to conventional air cooling, and evaluate the effectiveness of liquid cooling in the 

computer architectural-level. The last section, Thermal reliability/security, discusses 

thermal-aware reliability modeling techniques, reliability improvement techniques, and 

several techniques for thermal security.  

 

Thermal 

Management 
Techniques 
(Section 3) 

Microarchitectural 

Techniques (3.2) 

Liquid Cooling Techniques (3.5)

Compiler-directed Techniques (3.4.2)

Temperature 

Monitoring 
(3.1)

Temperature Estimation (3.1.1)

On-chip Sensor Placement (3.1.2)

Floorplanning(3.3)

For Microprocessor 

Cores (3.2.1)

For On-chip Caches (3.2.2)

For 2D Planar Microprocessors (3.3.1)

For 3D Die-stacked Microprocessors (3.3.2)

Thermal Reliability/Security (3.6)

Thermal-aware 

Task Scheduling 
(3.4.1)

For General Purpose Microprocessors (3.4.1.1)

For Embedded/Real-time Microprocessors (3.4.1.2)

OS/Compiler 

Techniques (3.4)

For General Applications (3.2.1.1)

For Media (streaming) Applications (3.2.1.2)

Novel Design 

Techniques (3.2.3)

Clustered Architectures (3.2.3.1)

Restructured Architectures (3.2.3.2)

 

Fig. 1 A hierarchical organization of our survey (the number in the parentheses indicates the section number) 
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3. THERMAL MANAGEMENT TECHNIQUES 
3.1. Temperature Monitoring 

Prior to introducing temperature management techniques, we first introduce 

temperature monitoring techniques, which are crucial for efficient dynamic thermal 

management. For example, the IBM Power7 microprocessor [Ware et al. 2010] employs 

44 digital thermal sensors on a chip. Though such a large number of thermal sensors 

might be considered excessive, Power7 aims to capture almost all the corner cases that 

could not detected by a smaller number of thermal sensors. This implies that the large 

number of thermal sensors is worthwhile for accurate temperature monitoring.  

 

3.1.1. Temperature Estimation 

Temperature sensing or estimation is important, since DTM (Dynamic Thermal 

Management) uses the current temperature as feedback to adjust its control and force 

further reductions in temperature or permit higher performance, as appropriate. Thus, the 

thermal sensor or temperature estimation should be cost-efficient but measure on-chip 

temperature accurately. Note that a thermal sensor has its own power and area cost and 

temperature estimation also has run-time performance overheads as well as power 

overheads.  

Typically, there are two types of thermal sensors used for thermal sensing of 

microprocessors: digital and analog thermal sensors. An analog thermal sensor is mainly 

composed of ring oscillators. It utilizes the fact that CMOS inverter delay depends on the 

temperature. On the other hand, a digital thermal sensor utilizes a band-gap voltage 

reference circuit whose output voltage is dependent on the temperature. In recent 

microprocessor design, due to higher accuracy and smaller area overhead, digital thermal 

sensors are more preferred than analog thermal sensors. In practice, digital thermal 

sensors are mainly used to detect localized hotspots, while analog thermal sensors are 

used to read on-die temperatures [Naveh et al. 2006]. Many robust and accurate thermal 

sensor design techniques have been proposed so far [Chen et al. 2005; 2006; Remarsu 

and Kundu 2009; Zhang and Srivastava 2009]. However, they are out of scope of this 

paper, since thermal sensor design techniques themselves are not microarchitectural 

techniques. Thus, we limit the scope of this sub-section only to the exploration of 

temperature estimation techniques, not including thermal sensor design.  

For more accurate thermal measurements under process variation, there have been 

many studies using model-based temperature estimation. The main advantage of model-

based temperature estimation is that it is more robust to severe noise or process variation, 

in contrast to relying on temperature sensors that are also vulnerable to noise or process 

variation. The model-based approach is shown to successfully compensate for inaccurate 

thermal sensing. Jung and Pedram [2008] proposed a Kalman-filter-based temperature 

and power estimation technique, based on junction temperature and the power state. The 

junction temperature estimation uses a Kalman filter [Kalman 1960], while the power 

estimation is based on POMDP
1
 [Puterman 1994]. Another technique using the Kalman 

filter was proposed by Sharifi et al. [2008]. Their first step is an off-line step which 

                                                           
1 POMDP stands for Partially Observable Markov Decision Process, which is one of generalizations of Markov 
Decision Process. 



X: 6 ●  J. KONG, S. W. CHUNG, and K. SKADRON 
 

 
ACM Computing Survey, Vol. X, No. X, Article X, Pub. date: 

utilizes a thermal model to generate a steady-state Kalman filter by calibrating the model 

with previously-gathered, imprecise temperature sensing and power estimation results. 

Then, by using the steady-state Kalman Filter in the on-line step, temperature 

measurement is accurate despite inaccurate temperature sensing from actual sensors. This 

technique reduces sensor reading error by 3.03ºC, on average, with little run-time 

performance overhead.  

Kursun and Cher [2008] proposed a performance-counter-based temperature 

estimation technique for multi-core systems that also reflects process variation. In an off-

line phase, a variation map is generated by analyzing chip information such as the results 

of a thermal stressmark or sensed temperature. Since process variation (including within 

die and die-to-die variation) may vary the process parameters in each core and processor, 

utilizing variation maps leads to more accurate temperature estimation. By applying this 

temperature estimation technique to a thermal-aware task-scheduling technique, tasks are 

assigned to cores in a temperature-aware fashion (e.g., hot tasks are assigned to cool 

cores and cool tasks are assigned to hot cores). As a result, the temperature with the 

variation-aware technique is reduced by 4.5ºC compared to the variation-unaware 

technique.  

In another temperature estimation technique considering process variation, Jaffari and 

Anis [2008] proposed a statistical method. Process variation induces severe leakage 

variation. With the conventional deterministic temperature/power estimation, process 

variation may lead to inaccurate temperature estimation because this leakage variation 

may make power and hence temperature estimation results inaccurate. For example, 

actual power consumption of equivalent Functional Units (FU) may be different across 

chips even with the same access rate to the FUs. Moreover, this inaccuracy may be more 

serious due to temperature-leakage dependence. In the proposed technique, the chip area 

is divided into a grid. Leakage power variability is modeled as a statistical function. The 

expected value of the temperature is found using this probability density function, whose 

inputs are dynamic power consumption and the package model. As a result, the proposed 

probabilistic method presents less than 0.3% error in temperature estimation compared to 

Monte Carlo simulation results. 

In addition to CMOS thermal sensors, there have been studies on thermal sensing 

using software techniques. Localized temperature measurement is difficult because 

thermal sensors cannot detect localized hotspots that are far away from the limited 

number of sensor locations. To cover the entire chip area, the chip designer may deploy 

many thermal sensors. However, deploying many CMOS thermal sensors incurs area and 

power overhead. To detect unmonitored localized hotspots with minimal hardware 

thermal sensor overhead, a novel software thermal sensor was proposed by Chung and 

Skadron [2006a]. Their proposed technique is based on the performance-counter-based 

temperature estimation proposed by Lee and Skadron [2005]. Their run-time temperature 

estimation model uses the HotSpot tool and the run-time power model from Isci and 

Martonosi [2003]. However, in order to calculate the localized temperatures using Lee 

and Skadron’s model, microprocessors should solve 4th order differential equations (the 

Runge-Kutta method in the HotSpot thermal model), and this is too complex to be 

executed at run-time. In order to avoid heavy computations, Chung and Skadron’s 

technique uses a simple regression method for sensing localized temperatures. A simple 

linear equation, Y=aX+b is used, where X is the performance counter value (the access 

rate of the functional unit) and Y is the temperature of the functional unit. The constants a 
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and b are determined through a simple regression analysis at design-time. Chung and 

Skadron’s technique shows reasonable accuracy (at most 2.4ºC of the temperature 

difference with the peak temperature in the integer register file) with significantly low 

overhead. This work was evaluated using Dynamic Voltage and Frequency Scaling 

(DVFS) with off-line traces [Chung and Skadron 2006b] and it was actually adopted for 

the DVFS technique in the Intel Core2 Duo microprocessor by Lee et al. [2010]. The 

proposed technique detects and avoids most thermal emergencies by predicting localized 

hotspots with negligible performance overhead (mostly below 1%).  

Khan and Kundu [2008] proposed a general software framework for predictive 

temperature management. While reactive thermal management techniques are sometimes 

inefficient due to the late response, their predictive technique eliminates this inefficiency. 

The proposed Virtual Thermal Manager (VTM) manages temperature by collaboration 

with hardware and software. The VTM maintains a Temperature History Table (THT) to 

predict near future temperatures. Each history entry corresponds to live threads in the 

system. Based on the history of latest temperatures and information of sensor readings, 

the predicted temperature is generated with using linear approximation. The hardware 

mechanism supports DTM by throttling Instruction-Level Parallelism (ILP) − for 

example, by adjusting issue width, retire width or speculation control. There are nine 

hierarchical severity levels which have different instruction bandwidths by throttling ILP. 

Considering the predicted temperature from the VTM, the last two temperature readings, 

the average temperature, and the last DTM action, the current DTM action (the severity 

level) is determined. The proposed technique improves the performance by 45% 

compared to DVFS and has almost identical thermal and performance efficiency to the 

control-theoretic technique [Skadron et al. 2002] (this technique will be discussed in 

Section 3.2.1.1), with a smaller hardware overhead and DTM response time.  

 

3.1.2. On-chip Sensor Placement 

We have discussed how to accurately sense (estimate) the temperature of 

microprocessors. However, sensor location is just as important as sensing (estimation) 

method in monitoring localized temperatures, since faraway thermal sensors are not 

sufficiently accurate. To measure localized temperatures accurately, we have to deploy 

many thermal sensors, which may be too costly. To resolve this problem, many 

researchers have studied efficient location of the limited number of the thermal sensors.  

Gunther et al. [2001] introduced a thermal sensor placement on the Intel Pentium 4 

microprocessor. By analyzing extracted thermal maps, they found optimized locations of 

the thermal sensors by identifying common hotspots. A thermal map is extracted by 

observing thermal behaviors of popular applications. To cover the entire chip area with 

the limited number of sensors, they set a thermal guard-band. This thermal guard-band 

ensures that no part of the microprocessor is in thermal emergency as long as the sensed 

temperature does not go over the threshold. Lee et al. [2005] proposed an analytical 

model that defines the magnitude of required guard-band. According to their model, 

temperature sensing gets less accurate as the distance between the heat source and the 

thermal sensor increases. Their analytical model fits well on the Intel Pentium 4, and they 

showed that the sensor placement and thermal guard-band setting of the Pentium 4 are 

appropriate.  
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Memik et al. [2008; Murkherjee and Memik 2006a] proposed a thermal sensor 

placement technique which considers thermal hotspots when executing general 

benchmark applications (SPEC2000). Utilizing the k-means clustering algorithm, with k 

sensors (clusters) and n hotspots (data points), the proposed technique finds the optimal 

point of each k (thermal sensors). Both global and local placements are considered for 

optimizing the sensor locations. The global placement is a chip-wide placement which 

considers well-known hotspots in the microprocessor. The local placement is at the 

component level, which is required for more fine-grained thermal optimizations (e.g., 

thermal-aware register banking). While their technique originally deploys a thermal 

sensor to each functional unit, it also provides a trade-off between the number of thermal 

sensors and temperature sensing accuracy through a hybrid technique which can deploy 

multiple thermal sensors in one functional unit. The proposed technique reduces the 

thermal sensing error down to 1.63ºC (3.18ºC at the worst case).  

To sense the localized temperature with the limited number of thermal sensors, an 

interpolation scheme and interpolation-based dynamic selection method were proposed 

[Long et al. 2008; Memik et al. 2008]. In grid-based uniform sensor placement 

techniques, inaccurate temperature measurement may be carried out if the thermal sensor 

is far away from the hotspot. With collaborations among thermal sensors around each 

hotspot, the proposed interpolation scheme enables accurate temperature estimation of 

hotspots where thermal sensors are not deployed. An interpolation-based dynamic 

selection method is used to find localized hotspots with minimal sensor activation. With a 

large scale of processing data from many grid thermal sensors, there are serious 

interconnect power overheads due to heavy communication overheads. To reduce the 

large scale of data from many grid thermal sensors, the number of enabled thermal 

sensors should be minimized. To optimize the number of enabled thermal sensors, the 

interpolation-based dynamic selection method forms a hierarchy of the thermal sensors, 

as depicted in Fig. 2. First, coarse-grained thermal sensors (s0~s15 in Fig. 2) measure the 

temperature of each sensor location. Four adjacent thermal sensors deployed near the 

hottest spot (s5, s6, s9, and s10 in Fig. 2) are selected and nine grid thermal sensors 

within the selected four thermal sensors are activated. Among the estimated temperatures 

with nine grid sensors, the sensor location which shows the highest temperature is a 

hotspot. This technique enables a reduced number of the activated thermal sensors by a 

hierarchical usage while maintaining reasonable accuracy.  

S0 S1 S2 S3

S4 S5 S6 S7

S8 S9 S10 S11

S12 S13 S14 S15

Estimated Hotspot Location

S0 S1 S2 S3

S4 S5 S6 S7

S8 S9 S10 S11

S12 S13 S14 S15

The Nearest Grid Sensor

 

Fig. 2 An interpolation-based dynamic selection technique [Long et al. 2008; Memik et al. 2008] 
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3.2. Microarchitectural Techniques 

3.2.1. For Microprocessor Cores 

3.2.1.1. For General Applications 

As predicted by Borkar [1999], temperature problems in microprocessors have become 

severe as process technology scales down feature sizes. Even though technology scaling 

allows higher clock frequencies and more sophisticated microarchitectures that make 

microprocessors faster and more power-efficient, they also increase power density. Even 

if clock frequencies and microarchitectural complexity abate, a growing problem is that 

supply voltage for full performance is no longer scaling down as fast as device feature 

size is being reduced [SIA 2009], and this leads to growing power densities at full 

performance. Although the operating supply voltage can be decreased by low power 

techniques such as DVFS, such techniques reduce performance and do not alleviate the 

growing severity of thermal stress at the rated performance. 

Thermal problems have been addressed by many researchers since the early 2000s and 

thermal management is still an active research area. One representative thermal 

management research area is Dynamic Thermal Management (DTM). Early studies in 

DTM focused only on temperature management, ignoring performance optimization. The 

basic insight was to design the cooling solution for the worst expected power dissipation 

rather than a theoretical worst case with the maximum possible power dissipation. To 

protect against unexpected or malicious behaviors that exceed the capacity of such a 

cooling solution, temperature should be monitored and thermal excursions must throttle 

down the processor's activity and hence power dissipation. Initially, simplistic and costly 

throttling was used; for example, it is known that the Intel Pentium 4 simply reduces the 

duty cycle on the clock, and hence the overall activity of the processor, by 50% [Intel 

2002]. 

If the thermal design power or TDP −  the power dissipation that the thermal solution 

is designed to accommodate −  is high enough, thermal excursions are unlikely and 

performance with throttling engaged is unimportant. However, as power dissipation and 

cooling costs continue to grow, more aggressive reductions in cooling costs become 

appealing. This increases the likelihood that DTM may engage during a legitimate 

application, and performance optimization becomes important to avoid the inevitable 

performance loss caused by DTM. Brooks and Martonosi [2001] evaluated the 
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Fig. 3 DTM mechanisms [Brooks and Martonosi 2001] 
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performance impact of many DTM techniques for high performance microprocessors. 

They proposed DTM triggering, response, and initiation mechanisms focusing on 

reducing performance loss. Fig. 3 illustrates DTM mechanisms for microprocessors. 

When the temperature of the microprocessor reaches the pre-defined trigger temperature, 

there is an initiation delay before triggering DTM. After the DTM response is engaged, 

the microprocessor checks the temperature at each time interval. When the sensed 

temperature drops below the DTM trigger temperature, the DTM is disengaged and the 

microprocessor runs normally again. Disengagement may also incur some delay. Their 

proposed DTM response mechanisms can be categorized into voltage/frequency scaling 

and processor rate throttling. Clock frequency scaling and voltage/frequency scaling 

techniques adjust the clock frequency and/or voltage of the microprocessor dynamically. 

The relationship among dynamic power consumption, clock frequency, and supply 

voltage is given by P∝Vdd
2
f, and we can approximate performance loss as being 

proportional to clock frequency. This means that frequency scaling alone, as well as 

voltage and frequency scaling together (DVFS, or dynamic voltage and frequency 

scaling), are both able to reduce temperature. Another approach proposed by Brooks and 

Martonosi is the use of microarchitectural techniques to throttle the instruction bandwidth 

of the microprocessor (thus throttling ILP and these techniques can also be referred to as 

ILP techniques). Note that DVFS is able to achieve a cubic reduction in power relative to 

the performance loss, while ILP throttling techniques generally only achieve linear 

reductions in power. Decode throttling and speculation control restrict the decode width 

and the number of unresolved branches, respectively. I-cache toggling turns off the front-

end of the microprocessor, so that in-flight instructions continue but no new instructions 

are fetched. These all have the effect of reducing switching power, but like frequency 

scaling, achieve only linear reductions in power relative to the performance loss. An 

important distinction, however, is that ILP throttling techniques can be engaged with 

much lower latency than a change in the voltage and clock frequency. Actually, in their 

study, DVFS invocation overhead is assumed to be 10~50us which are much larger than 

the invocation overhead of ILP throttling techniques. In case of commercial processors 

such as Pentium M, DVFS invocation overhead is also 10~20us [Intel 2003]. Recently, 

however, DVFS invocation overhead (approximately ~5us) became much smaller [Intel 

2010] due to the advance of control circuitry, which is still larger than ILP throttling 

overhead though.  

To efficiently alleviate performance losses due to thermal management, hybrid and 

hierarchical DTM techniques were proposed. Fig. 4 is a conceptual structure of the 

hierarchical and hybrid DTM. The hierarchical DTM uses a gradual response mechanism 

to minimize the performance loss caused by the fixed DTM response [Huang et al. 2000]. 

The fixed DTM response applies the same DTM technique to different thermal stresses. 

Hence, it may over-react, and consequently incur excessive performance losses. On the 

other hand, the hierarchical DTM technique selects one out of four thermal management 

techniques (a small filter cache, data cache sub-banking, DVFS, and clock gating). The 

hierarchical DTM selects a more aggressive thermal management technique in case of 

thermal emergency, resulting in lower performance loss compared to using only clock 

gating or four techniques at once (combined DTM). A challenge with the hierarchical 

technique, however, is to select the correct mix of techniques. The hierarchical DTM 

technique shows much better performance than the combined DTM under various 
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thermal constraints. 

The hybrid DTM technique uses several response mechanisms to adaptively respond to 

thermal stresses for better performance [Skadron 2004]. This differs from the hierarchical 

DTM technique, because the response mechanism can be changed to achieve optimal 

performance, notably when thermal stress is not severe. For instance, in case of mild 

thermal stress, a DTM controller selects microarchitectural throttling techniques with low 

initiation delay, such as decode throttling or I-cache toggling, and further uses a feedback 

controller to select the duty cycle on this toggling mechanism. Conversely, in case of 

severe thermal stress (though not yet a thermal emergency), the controller engages DVFS, 

which has higher initiation delay but once engaged, achieves much better reductions in 

power for a given performance penalty. The key challenge in designing the hybrid DTM 

technique is to determine the proper balance between ILP techniques and DVFS. 

Compared to the conventional DVFS, the hybrid DTM reduces performance overheads 

(incurred by DTM) by 25%, on average. 

Feedback control can be applied to most DTM techniques to minimize performance 

loss by adapting the specific setting (voltage/frequency, throttling duty cycle, etc.) to the 

minimal level required to maintain a safe temperature, and by adapting the setting as 

application behavior changes [Skadron et al. 2002; 2003]. PI control appears to suffice 

[Skadron et al. 2003; 2004]. Open-loop response, on the other hand, should use an 

aggressive response to ensure that temperature is controlled no matter how severe the 

stress, and as a result, the system is likely to over-react and performance then suffers 

unnecessarily. In one study by Skadron et al. [2002], closed-loop control reduces the 

performance loss by 65% on average compared to open-loop techniques.  

Jung and Pedram [2006] proposed a stochastic dynamic thermal management 

technique which takes into account the stochastic nature of temperature variation. This 

technique utilizes DVFS for thermal management. They modeled thermal states and used 

a Markov decision process to determine the next state. A dynamic thermal manager 

decides the next action (the thermal state). Based on the temperature, the dynamic 

thermal manager calculates the cost of each state and selects the next state which has the 

minimum cost. As a result, this technique guarantees the thermal safety and shows better 
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(a) Hierarchical DTM [Huang et al. 2000] (b) Hybrid DTM [Skadron 2004] 

Fig. 4 Hierarchical DTM and hybrid DTM 
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performance compared to three fixed voltage/frequency settings (1.95V/500MHz, 

1.80V/350MHz, 1.65V/200MHz). Shin et al. [2009] instead proposed a DTM technique 

which considers fan speed. In most high performance microprocessors, there is a cooling 

fan helping the microprocessor quickly convect heat to the ambient. Conventional 

thermal management techniques maintain the lowest cooling fan speed just to avoid 

thermal emergencies. However, those techniques may incur DTM inefficiencies due to 

temperature-dependent leakage power consumptions. Using the lowest cooling fan speed 

just to avoid thermal emergencies leads to excessively high temperatures (though under 

the threshold temperature) in the microprocessor, and substantial temperature-dependent 

leakage power is consumed. Their proposed technique optimizes energy consumption by 

using a convex function considering temperature-dependent leakage power and cooling 

fan power. Their technique reduces energy by up to 17.6%, which means that only 

considering thermal emergencies may incur energy inefficiencies due to the temperature-

dependent leakage power consumption. 

In order to target thermal control to specific functional units, Patel et al. [2007] 

proposed a bank-switching technique for the register files. The architectural insight is that 

there is little performance loss with the smaller register file. Hence, this technique divides 

the register file into two banks, the primary and the secondary bank. Each bank is 

activated periodically, thus halving the power density of the register file. This technique 

reduces the temperature by 3.4ºC with 0.75% of the performance overhead. Another work 

concentrating on a specific functional unit is the O
2
C (occasional two-cycle operation) 

architecture proposed by Ghosh et al. [2008]. They applied O
2
C to the adder and the 

multiplier. The overall architecture is shown in Fig. 5. When thermal sensors detect the 

overheating of the microprocessor, VDDL (lower level of the supply voltage) is supplied to 

the EX pipeline stage instead of VDDH (the nominal VDD). Consequently, the latency of 

the EX pipeline stage is increased to two cycles (originally one cycle) due to the reduced 

supply voltage. This technique reduces throughput by 11% and reduces temperature by 

6.6% on average. 

Donald and Martonosi [2005] proposed a thermal management technique for 

Simultaneous Multi-Threading (SMT) architectures. Their proposed technique adjusts the 

instruction fetch policy of conventional SMT processors. When the integer register file or 

the floating point register file is overheated, their thread selection mechanism chooses the 
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Fig. 5 O2C Pipeline Architecture [Ghosh et al. 2008] 
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coolest thread by looking at the profiled register file access frequency. This technique 

shows 30% performance improvement as well as 44% ED
2
 (Energy-Delay

2
) reduction, on 

average, compared to the conventional fetch toggling technique. As another work on 

SMT architectures, Winter and Albonesi [2008] proposed DTM techniques for clustered 

SMT architectures. The main drawback with conventional DTM techniques for SMT 

processors is that the performance of cool threads can also be degraded as a side effect of 

global DTM techniques, because both cool and hot threads share the resources of the 

SMT processor in a tightly interleaved fashion. They proposed three main policies for 

DTM: dispatch gating policies, heat spreading policies, and hybrid policies. The dispatch 

gating policy simply stops dispatching of instructions issued by hot threads when the 

temperature reaches the DTM trigger temperature. According to the granularity of 

dispatch gating control, the dispatch gating policy can be classified into three different 

policies: global, thread, and cluster-dispatch gating policies. The heat spreading policy is 

to reallocate threads to clusters for thermal balancing across clusters. Since hot threads 

are assigned to cool clusters and vice versa, it makes temperatures of clusters more 

balanced. The hybrid policy is a combined version of the heat spreading policy and 

DVFS. According to their evaluation results, the hybrid policy shows performance 

slowdown of 2.8% compared to the baseline (without any DTM techniques) while only 

adopting DVFS incurs 4.3% performance slowdown compared to the baseline.  

With the advent of multi-core architectures (also sometimes referred to as chip 

multiprocessors or CMPs), Powell et al. [2004] proposed thermal-aware thread mapping 

and migrating techniques in SMT/CMP environments. The goal of their heat and run 

technique is to maximize the throughput of SMT/CMP without overheating. Their 

technique consists of Heat-and-Run Task Assignment (HRTA) and Heat-and-Run Task 

Migration (HRTM). HRTA gathers threads from several cores to one SMT processor, 

which maximizes the throughput of one execution core (heat). Obviously, the 

temperature of the heated core increases, and then the threads are migrated from the 

heated core to the idle cores by HRTM (run). Since there is a resource limitation in one 

core, threads should avoid the resource contention as much as possible. Thus, they 

suggested that the combination of threads in the same core have different characteristics, 

such as combining integer and floating point operations, or computation-bound and 

memory-bound behavior. Since their main focus is to enhance the throughput using a 

simple technique, the detailed thermal simulation results are not provided. However, 

throughput is improved by 9% through leveraging HRTA and HRTM, compared to the 

conventional temperature management techniques such as DVFS or stop-go (stop-go 

 

Table I. Classifications of thermal management techniques for multi-core 
microprocessors [Donald and Martonosi 2006] 

 No Migration With Migration 

 Stop-go DVFS Stop-go DVFS 

Global Stop-go Global DVFS 
Stop-

go+Migration 

Global 

DVFS+Migration 

Distributed 
Distributed Stop-

go 
Distributed DVFS 

Distributed Stop-

go+Migration 

Distributed 

DVFS+Migration 
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simply pauses the execution of the cores in case of thermal emergency).  

In order to optimize performance of multi-core processors under DTM techniques, 

Donald and Martonosi [2006] compared many thermal management techniques for multi-

core architectures. They classified thermal control techniques for multi-core architectures 

into twelve techniques. Table I shows their classification. Though only eight techniques 

are shown in Table I, each With Migration technique can be divided again into the 

counter-based and the sensor-based techniques. Thus, the total number of techniques is 

twelve. The counter-based techniques use performance counters to detect the thermally 

intensive cores, while the sensor-based techniques use the thermal sensors. The 

difference between the global and the distributed technique is a control granularity. The 

global techniques control all of the cores at the same time, while the distributed 

techniques can control each core separately. Migration techniques move tasks from hot 

cores to cool cores. Consequently, the hot cores can be cooled down for a while and the 

cool cores accommodate the thermally intensive tasks. The migration techniques support 

the heat balancing of each core to prevent a specific core from being overheated. Since 

the migration technique is orthogonal to stop-go or DVFS techniques, it can be applied 

simultaneously with stop-go or DVFS techniques. From the perspective of performance, 

the distributed DVFS technique shows the best performance result. In another approach 

for high-performance microprocessors, Murali et al. [2008] proposed a dynamic thermal 

control technique with a design-time profiling support. It consists of two phases; design-

time phase and run-time phase. When a chip is manufactured, a look-up table is 

embedded for the frequency selection. The look-up table is filled up through a convex 

optimization process and the appropriate frequency is determined according to the initial 

temperature and performance requirement (target clock frequency). In the run-time phase, 

the processor chooses the optimal frequency by looking at this table. This technique 

reduces 60% of task waiting time. It means that the tasks efficiently avoid the thermal 

emergency while the performance requirements are satisfied. Chantem et al. [2009] also 

proposed an optimal DVFS control technique to maximize throughput of a 

microprocessor that has discrete voltage/frequency levels. Of course, temperature of the 

microprocessor should be maintained under the maximum allowable temperature. By 

using their formulations, they found that only two voltage/frequency levels (a high and a 

low level) out of the entire range of voltage/frequency levels are enough for maximizing 

throughput. Their proposed DVFS control technique also determines the optimal duration 

that the microprocessor stays in each voltage/frequency level. By adopting this technique, 

the microprocessor runs at high speed until the temperature gets to the maximum 

allowable temperature. Once the temperature reaches the maximum allowable 

temperature, the voltage/frequency level fluctuates between the high and low levels over 

the entire execution time. For their evaluation, seven discrete voltage/frequency levels are 

used −  0.462, 0.615, 0.692, 0.769, 0.846, 0.923, and 1.000 (numbers mean the 

normalized speed). Their proposed technique selects 0.846 and 0.923 as high and low 

voltage/frequency levels, respectively. As a reference, they also present a naïve policy 

that uses the lowest (0.462) and highest (1.000) voltage/frequencies. When adopting their 

proposed optimal DVFS control technique, throughput is improved by 47.7%, compared 

to the throughput when adopting the naïve policy.  
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For Multi-Processor System-on-Chips (MPSoC), Coskun et al. [2008b] proposed an 

online learning algorithm. Their proposed technique formulates a loss function. The loss 

function takes into account four factors; hotspots, thermal cycles, spatial gradients, and 

performance. Note that thermal cycles and spatial gradients are used to consider 

reliability. The thermal cycle means a temporal spike of temperature fluctuations and the 

spatial gradient means temperature difference between the coolest and the hottest core. 

While the conventional algorithms typically consider performance and temperature, this 

algorithm also considers reliability. Using the loss function, their algorithm chooses the 

appropriate policy which has the least overhead. On average, the algorithm reduces 20% 

of hotspots, and 60% of thermal cycles. For more optimization, Zanini et al. [2009] 

proposed a thermal-aware balancing technique using a control theory for MPSoCs. Fig. 6 

depicts an overview of the proposed control system. The thermal balancing regulator is 

the main thermal controller of the system. To meet the performance requirement of 

MPSoCs, the regulator receives the frequency requirement. The other input is the thermal 

profile feedback from the MPSoC. The output of the controller is the regulated frequency. 

The role of the emergency saturation block in the thermal balancing regulator is to avoid 

thermal emergency. If the maximum temperature of the MPSoC (Max Temp in Fig. 6) is 

higher than the pre-defined threshold temperature (Tmax in Fig. 6), the regulated 

frequency is saturated to avoid thermal emergency. This technique reduces the task 

waiting delay by 17.7% compared to the best case of the convex optimization technique 

explained above [Murali et al. 2008]. In addition, the duration during which temperature 

differences among the cores are over 4ºC is reduced by 27.45% compared to the convex 

optimization technique by Murali et al. [2008].  

For saving energy while considering temperature, Bao et al. [2008] proposed a DVFS 

technique with design-time support for MPSoCs. They add a temperature analysis 

process to the design-time analysis to an existing DVFS technique by Andrei et al. [2007] 

which only considers the energy optimization under fixed temperature. However, the 

thermal profile of MPSoC dynamically changes at run-time. Since leakage energy 

consumption is deeply related to temperature, the assumed (fixed) temperature may lead 
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Fig. 6 Overview of the control system proposed by Zanini et al. [2009] 
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to inaccurate energy estimation at design-time, which eventually results in incorrect 

voltage and frequency selection for energy minimization. In their proposed technique, to 

take into account run-time temperature (which is dynamically changed, not fixed) of 

MPSoCs, they used the HotSpot tool [Skadron et al. 2004]. Based on estimated run-time 

temperature, they calculate the optimized voltage (both supply voltage and body bias 

voltage) and frequency to minimize energy consumption considering temperature-

dependent leakage. Compared to DVFS using the assumed temperature, the temperature-

aware DVFS shows better energy savings (over 4% and 8% at the best case with the 

MPEG4 and GSM voice codec, respectively). 

For many-core (64 cores) designs, Mukherjee and Memik [2006b] proposed a 

frequency selection technique for multi-core microprocessors. This technique chooses the 

optimum frequency for the core when a thermal emergency is detected at run-time. The 

main benefit of this technique is a consideration of neighboring cores. Their proposed 

technique adjusts the clock frequency of the hot core and its neighboring cores together 

by applying the DVFS technique to minimize the performance loss. Their proposed 

technique is fast enough to be applied for run-time thermal management. 

Recently, 3D processor technology has emerged and offers many advantages compared 

to traditional 2D processors: reductions in wire length, chip area, and energy. In 3D 

microprocessors, however, the increased power density due to stacked dies leads to 

higher temperature. Accordingly, thermal management is even more important for 3D 

microprocessors and DTM techniques for 3D multi-core architectures have been 

developed. 3D-Wave [Sun et al. 2007] was proposed to tackle the temperature problem in 

3D MPSoCs. As a basic assumption, their main target is 3D MPSoCs which have two 

layers, each of which has four cores (the total number of cores is eight). Their algorithm 

(3D-Wave) tries to balance the power consumption of all the cores, which eventually 

lowers the peak temperature. Moreover, the supply voltage is scaled to the optimal point 

that minimizes power consumption and meets the deadline of the task to further reduce 

the power consumption (PBMCA: for Power Balancing and Minimization −  a 

Constructive Algorithm). When hot tasks are detected, they are migrated by an Iterative 

Hotspot Migration algorithm (IHM), which iteratively finds the optimum migration 

decision considering the physical location of the cores. Compared to only PBMCA, 3D-

Wave (PBMCA+IHM) shows average temperature reduction of 27.9ºC across benchmark 

sets including SPEC2000, MediaBench, and AlpBench. Compared to IHM-P (an iterative 

hotspot migration technique which only considers the power consumption, not 

temperature), the proposed technique also shows temperature reduction of 6.5ºC.  

Several techniques were also proposed to resolve thermal problems in 3D Chip Multi-

Processors (CMP). Zhu et al. [2008] proposed a thermal management technique for 3D 

CMPs by collaboration between the hardware and operating system (OS). Their main 

goal is to extract the maximum instruction throughput from 3D CMPs. First, to maximize 

throughput of a 3D CMP, OS determines power-thermal budgets (a voltage/frequency 

setting) of the cores by considering the physical location of the cores and monitoring 

temperature as well as activity of the cores. Considering the workload characteristics 

(IPC: Instruction Per Cycle), the OS assigns tasks to cores. Tasks can also be migrated to 

maximize performance by considering cooling efficiency of the cores and IPC of tasks. 

This technique also considers run-time transient thermal behaviors that cannot be 

statically captured by OS. By engaging DVFS (not global, but per-core), this technique 
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avoids thermal emergency. As a result, the instruction throughput is improved by 29.84% 

(on average) compared to the simple distributed DVFS technique [Donald and Martonosi 

2006]. 

Coskun et al. [2009] proposed another technique to manage temperature for 3D multi-

core processors. They introduced an adaptive temperature-aware job allocation algorithm 

(Adapt3D) and a hybrid technique which combines Adapt3D with DVFS. Their 

algorithm balances application loads considering the location of the cores. Using the 

thermal index which reflects the location of the cores, the cores which can be easily 

heated up due to their location have less intensive loads than the other cores. In this 

technique, a special value is maintained for each core to assign tasks to cores. Each value 

in the core represents the possibility that a task is fetched to the core. Therefore, the 

scheduler gives higher priority to cores that have higher value. Note that this value of 

each core is determined using both the thermal index of each core and thermal behaviors. 

If the thermal index of the core is high (more prone to be a hotspot), the value of this core 

is decreased faster. Thermal behavior is incorporated by increasing the value in case that 

the average temperature in the history window of the core is lower than the preferred 

temperature and decreasing the value in the opposite case. In summary, the thermal index 

determines the slope of the value change while thermal behavior determines the rise and 

fall of the value compared to the previous value. Adapt3D shows almost same 

performance compared to the default system configuration (dynamic load balancing: the 

default task scheduling policy in modern operating systems) but considerably reduces 

hotspots. In addition, more hotspots are reduced when Adapt3D is combined with DVFS 

(additionally 20~40%).  

Since temperature is one of the most crucial factors for microprocessor design, many 

microprocessor vendors already implemented some DTM techniques in their commercial 

microprocessors. In Intel Pentium 4 microprocessors, there is a thermal management 

mechanism, named Thermal Monitor 1 (TM1) [Berktold and Tian 2009]. TM1 is known 

to periodically stop the microprocessor’s clock for up to 2 microseconds, reducing the 

duty cycle of the microprocessor by 50% (and other duty cycles can be programmed).  

This is somewhat similar to adjusting frequency. Intel’s other thermal management 

mechanism, Thermal Monitor 2 (TM2), is present in the Pentium M and Core 2 lines 

[Berktold and Tian 2009]. They also implement TM1, but TM2 adjusts voltage as well as 

frequency. It can be implemented by adjusting Phase-Locked Loop (PLL) circuits and 

adding a voltage regulator. Typically, TM2 shows better performance (the performance 

difference of 4% when the temperature is 77ºC) than TM1 under the same temperature 

[Rotem et al. 2004]. Turbo boost technology [Intel 2008] enhances performance by 

raising voltage/frequency of specific cores when there is sufficient room in the thermal or 

power budget (typically because some cores are under-utilized or idle). This technique is 

applied to Intel Nehalem-based microprocessors such as the Core i5 and i7, but the 

frequency boost is limited, so that the active core cannot exceed the rated TDP, even if 

the temperature is not at a dangerous level. In contrast, Sandy Bridge (Intel’s next 

generation microarchitecture) allows more aggressive boosting because it is controlled by 

directly monitoring temperature [Gwennap 2010]. AMD microprocessors use 

Cool’n’Quiet [AMD 2005], which regulates voltage/frequency and fan speed to balance 

power and temperature considering utilization of microprocessors. When the 

microprocessor needs high performance, the Cool’n’Quiet technology enables the 



X: 18 ●  J. KONG, S. W. CHUNG, and K. SKADRON 
 

 
ACM Computing Survey, Vol. X, No. X, Article X, Pub. date: 

microprocessor to raise its voltage/frequency and fan speed. By raising the fan speed 

together with voltage/frequency, temperature can be maintained below the emergency 

temperature. In the opposite case that the microprocessor does not need high performance, 

both the voltage/frequency and fan speed are reduced. While Cool’n’Quiet is for 

desktop/server microprocessors, PowerNow! [AMD 2005] is another version of 

Cool’n’Quiet for laptop/mobile microprocessors. The only difference from Cool’n’Quiet 

is that PowerNow! operates under tighter thermal constraints (laptop/mobile 

microprocessors have quite lower TDP of around 30~40W compared to the desktop 

processors’ TDP of around 100W) than Cool’n’Quiet. Power7 [Ware et al. 2010] also 

employs DVFS and the turbo mode, which are similar to Intel’s TM2 and Turbo boost, 

respectively. 

 

3.2.1.2. For Media (streaming) Applications 

Unlike general applications, multimedia applications have a streaming feature. Thus, 

multimedia applications require different thermal management solutions. Srinivasan and 

Adve [2003] proposed a predictive DTM technique for multimedia applications. Unlike 

conventional thermal management techniques that are reactive rather than predictive 

(reactive thermal management techniques engage the DTM operations when the 

temperature of the microprocessor reaches the threshold temperature), their algorithm 

takes advantage of the frame rate, which imposes an upper bound on the required 

performance. Predictability comes from the repeatability of multimedia operations; frame 

types tend to exhibit similar properties. Their DTM technique using this predictability 

improves the performance of the processor up to 3.6 times. Lee et al. [2006; 2008] also 

proposed a GOP (Group of Pictures)-level temperature management technique for 

MPEG2 decoding. The big difference compared to the previous techniques is that this 

algorithm avoids thermal emergency by slightly degrading the quality of the frames. The 

frame quality degrading is divided into the spatial and temporal degradation. The spatial 

degradation is carried out by omitting the SNR (Signal-to-Noise Ratio) scalability step 

and the saturation control step among the entire decoding steps. The temporal 

degradation drops discardable B frames when deadline misses occur. This technique 

maintains the thermal safety with 0.12 RMSE (Root Mean Square Error) due to the frame 

quality degradation and a frame-drop probability of 12.5%, on average.  

A thermal management technique focused on MPEG4, rather than MPEG2, was 

proposed by Yeo et al. [2007]. They utilize GOP history to determine the optimum 

frequency for decoding the current GOP. Generally, MPEG video frames tend to have a 

similar complexity between the previous GOP and the current GOP since continuous 

GOPs typically have similar scenes. Thus, we can refer to the previous GOP information 

for predicting the complexity of the subsequent GOP. The determined frequency is 

thermally safe as well as satisfying Quality of Service (QoS). To support it efficiently, 

they improved a feedback controller already proposed by Lu et al. [2003]. The main 

problem of Lu et al.’s technique is that they did not consider frame complexity: they 

assume all the frames in the frame buffer have the same complexity. On the other hand, 

Yeo et al.’s improved feedback controller considers the complexity of frames by referring 

to the information of successive GOPs. Due to the predictability of GOP information, 

their DTM technique totally removes frame misses in twelve real-world MPEG4 movies. 

The proposed technique decreases temperature by up to 13% compared to the 
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conventional DTM techniques.  

For multimedia applications such as MPEG or H.264/AVC, a Hybrid DTM technique 

using statistical methods for multimedia applications (HDTM) was proposed [Yeo and 

Kim 2008] to avoid thermal emergency while maintaining QoS. The performance 

requirement of each application is different among multimedia applications such as 

MPEG or H.264/AVC. To tackle this problem, the HDTM hardware consists of three 

main parts, an application characteristics profiler, a thermal characteristics predictor, and 

an optimal frequency adapter. The application characteristics profiler estimates required 

clock cycles for decoding frames. Using the estimated clock cycle requirement, they 

build a Probability Density Function (PDF) of the performance requirement to determine 

the optimal frequency for each multimedia application. The thermal characteristics 

predictor predicts the future temperature using Fourier thermal model. The optimal 

frequency adapter determines the system-wide frequency including overheads in the 

entire system environment, such as OS overheads as well as the multimedia application 

itself (the required clock cycles and the predicted future temperature). The HDTM 

reduces the temperature by 15ºC with the frame drop rate of 0.2%, on average.  

 

3.2.2. For On-chip Caches 

Originally, the on-chip caches have been thought to be relatively cool units, because 

dynamic power is expected to be spatially distributed across the cache structures, and 

indeed the average temperature of the on-chip caches is relatively low compared to 

functional units with high localized activity, such as the register files or the ALUs. 

However, leakage power is increasing and becoming severe, typically accounting for 

30~50% of total power dissipation now (though employing sleep-mode transistors can 

reduce leakage in caches). Since on-chip caches contain so many transistors and occupy 

such a large area in most microprocessors, their leakage accounts for a large fraction; 

their high leakage contributes significantly toward their temperature, which in turn 

exacerbates sub-threshold leakage, which is exponentially dependent on temperature. To 

reduce excessive leakage power in on-chip caches, many techniques have been proposed 

(e.g., [Kaxiras et al. 2001; Flautner et al. 2002; Li et al. 2002]). These techniques 

efficiently reduce cache leakage power while minimizing performance overhead. 

However, the purpose of these techniques is to mainly reduce leakage power consumed 

by idle or inactive cache lines or banks; if accessed more often than the sleep mode’s 

timeout period, a line or bank will not be able to sleep. Moreover, many processors are 

not employing sleep-mode transistors in caches because it has substantial design and 

validation effort. Thus, if a single cache location is targeted with an intensive access 

pattern, it may be a hotspot depending on the layout of the cache sub-structures 

[Sankaranarayanan et al. 2009]. For example, there can be a thermal attack in L1 

instruction caches as shown by Kong et al. [2010], and described in Section 3.6.  

John et al. [2005] observed thermal behaviors of the on-chip caches in finer granularity 

and proposed two optimizing techniques; a separated subarray scheme and an interleaved 

subarray scheme. The separated scheme scatters cache accesses from one to several rows, 

which reduces the power density of the cache subarrays. In the interleaved subarray 

scheme (not to be confused with bitline interleaving), which is more aggressive than the 

separated subarray scheme, a subblock pre-decoder allows only one word to be accessed 
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rather than a full cache block. In summary, only one subarray is accessed at once in the 

interleaved subarray scheme, while several subarrays should be accessed at once in the 

separated subarray scheme in order to access a full cache block instead of a word.  

Another advance in thermal management for on-chip caches was proposed by Ku et al. 

[2005]. They proposed three techniques; the first technique is not a thermal-aware but a 

low-power technique, Selective cache ways with Gated-Vdd Architecture (SGA); the 

second technique is Power density Minimized cache Architecture (PMA); and the last 

technique is a Block Permutation Scheme (BPS). SGA simply combines the selective 

cache way technique [Albonesi 1999] with the gated-Vdd technique for a low-power 

cache architecture. Although this technique reduces both the energy consumption and 

temperature, it does not show significant temperature reduction since that is not its focus. 

The second, PMA cuts off the Vdd signal to the several cache ways depending on the 

working set of the application. Compared to the SGA which enables Vdd signals in the 

granularity of the entire cache way, the PMA simply distributes enabled cache lines 

across several cache ways. For example, assuming that there is a 4-way set associative 

cache and only three ways are used out of the entire four cache ways, in the case of the 

first row, the PMA disables way3, and enables way0, way1, and way2. In the case of the 

second row, the PMA disables way2, and enables way0, way1, and way3. The disabled 

cache way is changed row by row. Consequently, the power density is minimized even 

though same power is consumed compared to the SGA. The third technique is the BPS. 

The BPS shuffles the physical location of the cache lines to relieve thermal interaction 

between adjacent cache lines. This means that the physical location of cache access 

migrates, distributing heat dissipation, even though contiguous addresses are actually 

accessed.  

 

3.2.3. Novel Design Techniques 

A variety of non-standard microarchitectures have also been shown to alleviate thermal 

stress. We group these into clustered architectures and other forms of restructuring. 

 

3.2.3.1. Clustered Architectures 

A clustered architecture is composed of several clusters that are partitioned from the 

traditional wide-issue superscalar processor. Consequently, one cluster has narrower 

issue widths than its original processor and has its own copy of the register file (with 

fewer ports). Clustered architectures were originally studied extensively for their 

performance benefits in traditional superscalar, out-of-order processors, where the issue 

queue and the rename register file are large, heavily multi-ported, and hence slow and 

power hungry. The fact that clustered architectures are smaller also allows higher clock 

frequency, thus enabling better performance. Researchers also tried to adopt clustered 

architectures to reduce temperature. Clustered organizations replace centralized, highly 

multi-ported structures with distributed copies that require fewer ports. This spreads out 

activity more uniformly across the chip area and reduces the power density in major 

structures such as the register file. However, some performance overhead is introduced 

due to communication overheads. Even with dependency-aware steering that tries to 

group related instructions, Chaparro et al. [2004] report that, compared to a centralized 

architecture with equivalent issue and in-flight instruction capacity, a 4-way clustered 

architecture reduces peak temperature by 27% and average temperature by 20% but also 
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performance by 20%. They also proposed temperature-aware steering (giving priority to 

cooler clusters) and put one or more clusters to sleep (to allow it to cool off). However, 

these further increase the performance loss, with only proportional reductions in peak and 

average temperatures. 

Chaparro et al. [2005] also observed that front-end structures can also be power hungry 

and hot, especially the register-rename stage, which is a complex, multi-ported structure. 

Renaming and reorder buffers can be partitioned so that each front end renames 

independently. For example, each rename unit can only refer to physical registers in its 

corresponding cluster. This reduces the number of ports for each structure, so benefits 

stem not just from spreading out activity, but also from reducing peak power density. In 

their proposed scheme, however, reorder buffers are also partitioned with the front ends, 

complicating commit. In a quad-clustered organization with two front ends (each 

responsible for two back-end clusters), distributed renaming/reorder buffers/commit only 

imposes an average 2% slowdown while reducing power density and hence peak 

temperatures by 32~34% in the rename tables and reorder buffers. 

The trace cache can also be modified to exploit the banked nature of such an SRAM 

structure. A simple technique is bank hopping, in which one or more banks are put to 

sleep for some time to allow them to cool off [Chaparro et al. 2005]. For small numbers 

of banks, this requires the introduction of an extra bank; otherwise when one bank is 

asleep, power density elsewhere would increase. This increases area and may have slight 

effects on power and speed due to additional interconnect overhead, but leaves the useful 

trace-cache area unchanged. Another possible technique specific to trace caches is to 

change the mapping function so that when a new trace is entered into the trace cache (and 

will presumably exhibit temporal locality and be used again in the near future), it is 

assigned to the coldest bank [Chaparro et al. 2005]. This requires the introduction of a 

bank-mapping table for trace-cache reads and writes. These front-end techniques give 

better thermal results than the back-end techniques of cluster steering or cluster hopping, 

with temperature savings that are more beneficial than the associated slowdown due to 

the reduction of leakage energy consumption (recall that there is an exponential 

dependence of leakage on temperature). Temperature-aware mapping reduces peak 

temperature in the trace cache by only 4% with a 2% slowdown, while bank hopping 

reduces it by 12% with a 3% slowdown, and combining the two techniques reduces peak 

temperature by 14% with a 4% slowdown. 

 

3.2.3.2. Restructured Architectures 

In some of the earliest temperature-aware architecture works, Lim et al. [2002] 

proposed a dual pipeline structure to relieve thermal stress on microprocessors. In the 

proposed dual pipeline, there is one complex out-of-order pipeline designed for normal 

operations with a secondary in-order pipeline which is much simpler (less power-

consuming) than the out-of-order pipeline. Once the temperature of the microprocessor 

exceeds the pre-defined threshold temperature, the out-of-order pipeline is clock-gated 

and the in-order pipeline is used to execute instructions. When the temperature of the 

microprocessor goes down below the threshold, instructions are executed in the out-of-

order pipeline again. The simple in-order pipeline can also be used for mobile devices. 

For instance, light workloads such as email accesses can proactively be performed in the 
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in-order pipeline. It reduces energy consumption, which in turn enhances battery life. 

Their results show 11.4%~12.4% improvement in terms of the energy-execution time 

metric (energy-delay product) with a small area overhead (4.6%). 

Appending an additional pipeline that differs from the others introduces considerable 

design complexity in microprocessors, even if the added pipeline is a simple in-order 

pipeline. Instead of duplicating the entire pipeline, duplicating only a specific portion 

(responsible for hotspots) is more efficient. For more fine-grained pipeline control with 

simpler hardware organization, an Activity Migration (AM) technique was proposed by 

Heo et al. [2003]. The AM technique duplicates the execution units (the register file and 

the ALU) because these units are typical hotspots in microprocessors. The proposed 

technique also provides several design options. For example, L1 data caches or 

instruction caches can also be duplicated in addition to the execution unit. At design-time, 

processor designers determine which functional units are duplicated. Since the original 

Functional Unit (FU) and the duplicated FU are identical and redundant, the AM 

technique introduces a significant area overhead and also differs operationally from 

clustered architectures, where FUs are merely divided into clusters and all the FUs are 

expected to be available. The AM technique switches the actual units in use at a specified 

time interval. After an interval, execution switches to the spare unit(s), and the original 

functional units are idled and placed in a low power state. After one more time interval, 

the application switches again, and the units in use are continually rotated in this fashion. 

According to their simulation results, the AM technique reduces the peak temperature by 

12ºC with the same voltage and frequency settings.  

A similar approach was introduced by Skadron et al. [2003], called Migrating 

Computation (MC). The main difference between the AM and MC technique is that the 

MC technique may only replicate and migrate the register file, while AM replicates 

several functional units that are used in one pipeline stage. The other difference is area. 

Although there is a trade-off between temperature and area, just replicating the register 

file and ALUs in the AM technique already incurs area overhead by 30%. In contrast, the 

MC technique concentrates on only the register file and thus incurs much lower overhead. 

As described by Skadron et al., this simple technique uses a spare unit (Intreg2 in Fig. 7 
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Fig. 7 Alpha 21364 floorplans [Skadron et al. 2003] 
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(b)) located in cold areas of the chip, to which computation can migrate only when the 

primary unit is overheated. When the primary register file reaches the DTM trigger 

temperature, the instruction issue is stalled, instructions ready for write-back are allowed 

to be completed, and then the register file is copied to the secondary register file. Then all 

integer instructions use the secondary register file, allowing the primary register file to 

cool down while computation continues unhindered except for the extra computational 

latency incurred by the greater communication distance. The extra distance is accounted 

for by charging two extra cycles for every register file access (originally one cycle is 

consumed to read a value from the original register file). When the primary register file 

returns below the trigger temperature, the process is reversed and the computation 

resumes using the primary register file. Fig. 7 depicts the original Alpha 21364 core 

floorplan (a) and their new Alpha 21364 core floorplan to support the migrating 

computation technique (b). In Fig. 7 (b), the unit, IntReg2, is introduced to support the 

MC technique which is located relatively cool area near the floating point units. However, 

the limitation of the MC is that there is no way to guarantee prevention of thermal 

violations; overheating is still possible if the hotspot is not directly associated with the 

register file. Thus, an additional failsafe mechanism is needed, such as DVFS.  

Another approach for designing a thermal-aware microprocessor structure is to enlarge 

typically hot functional units, as proposed by Powell and Vijaykumar [2007]. They 

proposed a Resource Area Dilation (RAD) technique. Typically hot functional units are 

enlarged to spread heat well, at the cost of higher latency. S-RAD (Simple-RAD) makes 

the hot functional unit bigger while the clock frequency of the microprocessor is reduced 

due to the increased delay of the dilated functional units. Another technique, a P-RAD 

(Pipelined-RAD) technique, sizes functional units like S-RAD but clock frequency is not 

reduced, because the dilated functional units are pipelined. By adopting the P-RAD 

technique, the average throughput is increased by 41% in case of thermally constrained 

applications because DTM is less frequently triggered than the baseline. However, with 

thermally un-constrained applications, the RAD techniques show lower throughput 

because of the increased clock cycle of the dilated functional units or the reduced clock 

frequency of the microprocessor. Compared to DVFS techniques, P-RAD shows 56% 

higher throughput with thermally constrained workloads.  

Raju et al. [2008] proposed a microprocessor restructuring technique for both 

performance improvement and die temperature minimization. The proposed technique 

adjusts the width and height of specific functional units or relocates several functional 

units. Through the relocation of the functional units, the technique reduces the maximum 

junction temperature of the Pentium 4 floorplan by 9ºC under the same wire length. By 

adjusting the width and height of specific functional units on the Alpha architecture, 

temperature is reduced by 5ºC at the best case.  

Microprocessor restructuring has also been studied for multi-core architectures. Li et al. 

[2006] analyzed trade-offs among processor design parameters for multi-core design 

under various thermal and area constraints. They assumed three types of thermal 

constraints: no thermal limit (an upper bound on performance), low constraints (an 

aggressive cooling solution), and high constraints (a low-cost cooling solution). They 

evaluated performance in terms of aggregate throughput for a multi-programmed 

workload as a function of pipeline depth, pipeline width, the number of cores, and L2 

cache size. Thermal constraints lead to pipelines with narrower width and shallower 
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depth: frequency and ILP cost more in thermal throttling than they can provide in 

performance. More severe thermal constraints lead to fewer cores, because increasing 

core count incurs too much throttling.  

Monchiero et al. [2006] explored the thermal impact of floorplanning and the trade-off 

among design parameters in multi-core microprocessors. They also found that the wider 

the issue width, the higher the temperature. In order to analyze the thermal impact of 

floorplanning in multi-core microprocessor design, they categorized their floorplan into 

three types. Fig. 8 describes three types of the floorplan. Similar thermal characteristics 

(the thermal hotspots are cores rather than L2 caches or buses) are observed in each 

floorplan. With a paired and lined up floorplan, their maximum temperature is higher by 

0.4ºC and 1.2ºC, respectively, compared to the centered floorplan. The reason is that the 

centered floorplan can spread heat from the cores to relatively cool areas such as L2 

caches or buses, while a paired or lined up layout cannot spread heat well due to the 

core’s location at the edge or corner of the floorplan. Another factor is thermal coupling 

between the cores. The lined up floorplan places cores directly adjacent to each other, 

while there are L2 caches or buses between the cores with the paired and centered 

floorplans. 

In 3D microprocessor design, Puttaswamy and Loh [2007] proposed a thermal-aware 

microprocessor architecture called thermal herding. This technique herds microprocessor 

activities to one die (the nearest die to the heat spreader and heat sink) among four dies. 

Since the most active die is located near the heat spreader and the heat sink, heat is 

dissipated more effectively. The utilization of the other dies is restricted. In other words, 

this technique relieves the thermal problems by reducing the power density and 

considering the distance to the heat spreader and the heat sink. In order to use only one 

active die, they used an architectural insight which utilizes narrow-width values; only the 

lower several bits are significant and the remaining upper bits are filled with ‘0’s. In their 

assumptions, if a meaningful part of data can be represented within 16 bits (out of a 64-

bit word), the data is regarded as a narrow-width value, and vice versa. To support 

thermal herding in hardware, there is a quarter portion of the datapath in each vertical 

layer. In other words, each layer is similar to a small microprocessor with a 16-bit data 

path (originally a 64-bit data path). If operands are narrow-width values, it uses only the 

die nearest to the heat spreader and heat sink. Although the temperature of the hottest 

functional unit (L1 data cache) in their 3D thermal-herding architecture is increased by 

12ºC compared to the temperature of the hotspot (reservation station) in the 2D planar 

microprocessor, their 3D thermal-herding architecture reduces the temperature of the L1 
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Fig. 8 Three types of floorplan in multi-core microprocessor design [Monchiero et al. 2006] 
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data cache by 29% compared to the conventional 3D design’s worst-case temperature, 

regardless of the application. 

 

3.3. Floorplanning 

A classic goal of microprocessor floorplanning is performance improvement and 

energy reduction by decreasing wire length. However, as power density becomes more 

severe, floorplanning techniques should consider temperature (which itself affects 

performance) as well as performance improvement and energy reduction. The basis of 

thermal-aware floorplanning is maximizing the distance of two hot units to prevent 

thermal conduction while improving the performance and reducing the energy/power 

consumption. The importance of the temperature-aware floorplanning is shown in Fig. 9 

[Sankaranarayanan et al. 2005]. While the performance loss by the DTM techniques is 

from 6%~21% depending on the threshold temperature, the performance loss with 

thermal-aware floorplanning is less than 2%. In other words, well-designed floorplans 

can significantly reduce the performance overheads, which might be caused by the DTM 

techniques.  

 

3.3.1. For 2D Planar Microprocessors 

First, we introduce floorplanning techniques using simulated annealing, the most 

widely used algorithm. The other techniques using genetic algorithms and linear 

programming are introduced in the later part of Section 3.3.1. 

Sankaranarayanan et al. [2005] developed a temperature-aware floorplanning tool 

called HotFloorplan. Based on simulated annealing [Wong and Liu 1986] which is a 

classical floorplanning algorithm, their proposed algorithm considers peak steady-state 

temperature, as well as chip area and wire delay. Wire length in the critical paths is 

considered more than that in the non-critical paths. Thus, each wire needs an associated 

weight. If there are relatively more critical paths between two functional blocks, these 

two functional blocks are placed adjacently, because their algorithm considers the 

weighted wire length. Their objective function is denoted as follows: 
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Obj = (A + λW)T                                                 (1) 

where A is the chip area, T is the peak steady-state temperature for some sets of 

benchmarks, and W is the aggregate wire-length metric according to ∑ cijdij. cij is the 

weighted number of wires connecting two blocks. dij is the Manhattan distance between 

the blocks’ centers. λ  is a heuristic weighting parameter that controls the relative 

importance of A and W. As a result, this technique reduces the peak temperature by 

21.9ºC on average, which leads to performance improvement due to the reduced DTM 

invocations. 

Another simulated annealing based floorplanning algorithm was proposed by Han and 

Koren [2007]. They added temperature-aware features to the existing floorplanning tool, 

Parquet [Adya and Markov 2003]. Their algorithm is much faster than Sankaranarayanan 

et al.’s technique [2005], since it uses an approximation of performance and temperature. 

The objective function they used is denoted as follows: 

Obj=CA*A+CL*L-CD*DT                                                                   (2) 

Unlike Parquet's objective function, which only considers the area and the wire length, 

their proposed algorithm appends the term regarding the thermal diffusion between 

adjacent blocks. In Equation (2), A represents the area, L represents the wire length, and 

DT represents thermal diffusion that is an approximation of the temperature. Note that CA, 

CL, and CD are coefficients for weighing the terms. For further speedup of the simulated 

annealing process, this algorithm considers the thermal diffusion of only the top-4 hottest 

functional units. They also consider the criticality of interconnections using a weighted 

interconnection matrix, like HotFloorplan [Sankaranarayanan et al. 2005]. The weighted 

interconnection matrix represents the weighted wire length between functional units 

considering their interconnection criticality. Using their algorithm, temperature is 

reduced by 20.6ºC, while total weighted wire length is increased by only 1.7%. This 

algorithm shows similar temperature reduction (22ºC) compared to HotFloorplan. 

However, their proposed technique is much faster than HotFloorplan due to the 

approximation method, though the detailed evaluation results on algorithm running time 

are not provided.  

Although the weighted wire length roughly reflects performance, it does not directly 

reflect the performance of entire systems. To consider both temperature and performance 

more accurately, Chu et al. [2007] proposed a thermal-aware floorplanning technique 

considering CPI. Their objective function is denoted as follows:  

Obj =
norm

thermal
norm

CPI
norm

area
Thermal

Thermal
W

CPI

CPI
W

Area

Area
W                        (3) 

As shown in Equation (3), their floorplanning technique considers three factors, area 

(Area), cycles per instruction (CPI), and stochastic heat diffusion (Thermal). Note that 

Warea, WCPI, and Wthermal are weighting factors for each term, and Areanorm, CPInorm, and 

Thermalnorm are values for normalization. The main problem of the conventional 

deterministic heat diffusion model is that it is too simplistic to model the temperature 

accurately. To address this, they proposed a new heat diffusion model, a Stochastic Heat 

Diffusion Model (SHDM). While the deterministic model only considers the average 

power density of two adjacent blocks and shared length (the length of the shared edge 

between two functional units), the SHDM considers the transient behavior of the power 

density instead of the average power density. Furthermore, the SHDM considers interplay 

of heat flow between the chip and the ambient or the heat sink temperature. The SHDM 
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also considers not just adjacency but the degree of the adjacency by using the penetration 

window, which is a virtual area that represents the degree of a specific block’s thermal 

diffusion effect. Since extremely hot functional units can affect not only adjacent 

functional units but also faraway functional units, the penetration window improves the 

accuracy. They showed that their floorplanning technique using SHDM outperforms 

Sankaranarayanan et al.’s technique [2005] with respect to the algorithm running time 

(27 times faster in 90nm technology and 19 times faster in 65nm technology). Their 

proposed technique also reduces CPI by 12.5%, temperature by 3.2ºC, and area by 1.25%, 

compared to Han and Koren’s technique [2007], on average. 

Although the simulated annealing algorithm is well suited for floorplanning problems, 

it has a long running time and lacks scalability as the problem size becomes bigger. Thus, 

techniques using the other algorithms have been proposed. Hung et al. [2004; 2005] 

explored temperature-aware floorplanning, but with a focus on IP blocks in a Network-

on-Chip (NoC) architecture. They used a genetic algorithm to explore possible mappings 

to find those that best distribute the steady-state thermal load. Their floorplan reduces 

temperature by 4~7ºC and incurs less communication traffic, compared to a placement 

optimized solely for minimum total energy.  

Healy et al.’s technique [2007] is based on both the Linear Programming (LP) and the 

Simulated Annealing (SA) algorithm. Their floorplanning technique consists of two 

phases. The first step is to specify a width and a height of the functional units and allocate 

them to the chip using the LP algorithm. In the first step, the floorplanner considers three 

constraints; 1) no units have overlapping area, 2) after positioning the functional units, 

the chip should meet performance requirements, and 3) the chip should not incur thermal 

runaway
2
. After the LP-based floorplanning is finished, the SA-based refinement is 

carried out (the second step). This technique adopts the SA-based floorplanning step, 

because only using LP-based floorplanning is not optimal but suboptimal. This 

suboptimality can be covered by the SA-based refinement. Compared to only using SA-

based floorplanning, long running time of SA-based floorplanning can be reduced by 

using LP-based floorplanning together with SA. Their two step floorplanning technique 

utilizes advantages of two floorplanning methods (SA and LP). Here is the cost function 

they used: 

Cost = α  · per f_wire + β  · max_temp + γ  · area                         (4) 

As shown in Equation (4), the SA-based floorplanner considers three factors, wire (per 

f_wire), temperature (max_temp), and area (area), just like most SA-based thermal-aware 

floorplanning algorithms. According to their simulation results, the SA-based 

floorplanner is good for area and wire length, but the temperature is much higher than 

that from the LP-based or the SA+LP-based (their proposed technique). In contrast, 

although the LP-based floorplanner is good for the temperature and the algorithm running 

time, it increases the area and the wire delay. Their proposed SA+LP-based floorplanner 

shows reasonable results from all perspectives, including temperature, area, wire, and 

algorithm running time.  

 

3.3.2. For 3D Die-stacked Microprocessors 

                                                           
2 Thermal runaway denotes the case when excessive heat dissipation causes excessive current on transistors, 
which may eventually incur burn-out of devices or transistors. 
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As briefly introduced in Section 3.2.1.1, the temperature problem in 3D 

microprocessors has become more serious than in 2D microprocessors. Since vertical and 

horizontal thermal conduction should be included in 3D chip floorplanning, floorplanning 

algorithms for 3D microprocessors are more complicated than those for 2D 

microprocessors. We first introduce a simulated annealing-based floorplanning technique. 

The other floorplanning techniques using linear programming, force-directed algorithms, 

or mixed integer linear programming are introduced later. 

To properly manage temperature in the 3D chip floorplanning, Cong et al. [2004] 

proposed a Combined-Bucket-and-2D-Array (CBA) technique based on the simulated 

annealing algorithm. Their proposed technique is based on 2D chips but includes bucket 

structures to represent vertical information of the 3D chips. Temperature information is 

profiled at every n-operation interval, where the value n can be specified by chip 

designers. The cost function takes into account four factors: wire length, chip area, the 

number of the inter layer vias, and temperature. They proposed three kinds of techniques 

according to the thermal model used for floorplanning. A combined-bucket-and-2D-

array-temperature (CBA-T) is the basic technique that uses the thermal resistive model 

[Wilkerson et al. 2004]. The CBA-T is accurate but quite slow. To relieve the complexity 

of the technique, they also proposed a CBA-T-Fast, which is based on a closed-form 

thermal model
3
. Naturally, this technique is faster but less accurate than the CBA-T. They 

also proposed the CBA-T-Hybrid which selectively uses the closed-form thermal model 

and the thermal resistive model. Their evaluation results show that temperature and 

algorithm running time of CBA-T depend heavily on the value of n (temperature 

profiling interval) while CBA-T-Fast shows the consistent temperature and algorithm 

running time results regardless of the value n. The CBA-T-Hybrid results are between 

these two points. 

Some floorplanning techniques use an algorithm other than simulated annealing. 

Ekpanyapong et al. [2004] explored temperature-aware floorplanning techniques in 3D 

chip stacks. Their algorithm uses linear programming, rather than simulated annealing, to 

search for a solution. Their evaluation compared three types of floorplans: thermal-driven, 

wire length-driven and profile-driven. The thermal-driven floorplan and the wire length-

driven floorplan show almost identical performance and peak temperature results, 

because their wire length-driven approach concentrates on only reducing the aggregated 

wire length, which reduces energy and thus temperature. The profile-driven approach 

mainly considers performance through weighing each wire. As a result, both the thermal-

driven and the wire length-driven approach deteriorate performance by about 20~25% 

compared to the profile-driven approach that purely optimizes the performance, because 

they sacrifice the performance for their objectives. The thermal-driven approach reduces 

the maximum temperature by 24%.  

Based on 2D floorplanning work (LP+SA based floorplanning), Healy et al. [2007] 

extended their floorplanning algorithm for 3D. The main consideration is a vertical 

overlap optimization process whose goal is to compromise among performance, power, 

and temperature. In order to manage temperature, this technique places frequently 

communicating functional units closer, while separating thermal hotspots. According to 

their experimental results, although the area and wire results are not consistent across the 

                                                           
3 The closed-form thermal model considers the vertical and horizontal heat path separately, never considering 
the interplay between the two heat paths. 
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benchmarks, their floorplanning technique reduces the temperature by 4~7% compared to 

the CBA-T [Cong et al. 2004].  

Another approach for 3D floorplanning was proposed by Zhou et al. [2007]. They 

modified the existing force-directed thermal-aware placement technique [Goplen and 

Sapatnekar 2003; Obermeier and Johannes 2004] for a three-stage 3D floorplanning 

technique. The first stage is to spread functional units laterally considering temperature. 

The second stage is to optimize the global placement in 3D spaces. Finally, the functional 

blocks are assigned to a specific layer. The proposed technique is superior to the thermal-

aware CBA [Cong et al. 2004] in all criteria; temperature, area, wire length, the number 

of vias, and algorithm running time. 

In the most recent work, Li et al. [2009] proposed an incremental floorplanning 

technique using Mixed Integer Linear Programming (MILP), aiming at 3D die-stacked 

architectures. Their technique applies five methods to the initial floorplan: moving 

adjacent blocks, moving hotspot blocks, moving the blocks under the hotspot, resizing 

hotspot blocks, and migrating computation. After the temperature of each block is 

profiled, the proposed technique computes the potential gain of each modification. The 

modification which leads to the maximum potential gain among the five modifications is 

chosen and actually adopted in the floorplan. The iteration is repeated until the optimum 

point among the temperature, area, and wire length is obtained. Compared to the 

conventional CBA [Cong et al. 2004], their floorplanning technique further reduces the 

temperature by 14% and the wire length by 2% with tolerable area (3%) and running time 

(9%) overhead, on average.  

 

3.4. OS/Compiler Techniques 

As thermal problems in microprocessors become severe, many efficient OS and 

compiler techniques have been proposed for temperature management. OS/compiler 

thermal management techniques can be more advantageous than hardware-based 

techniques because they can reduce associated hardware overheads. However, it may 

need additional data structures to maintain states or information. In this section, we 

introduce a variety of OS/compiler-directed thermal management techniques.  

 

3.4.1. Thermal-aware Task Scheduling 

3.4.1.1. For General Purpose Microprocessors 

Conventional task scheduling techniques have focused on performance improvement, 

without considering temperature. In this section, we explore state-of-the-art thermal-

aware task scheduling techniques. Kumar et al. [2006; 2008] proposed a temperature 

management technique through software-hardware co-operation. The software 

component (OS) utilizes process/thread priority queues where the processes/threads are 

waiting in order. In the conventional priority queues, tasks are sorted according to their 

importance. Contrary to conventional task scheduling, the proposed technique added the 

thermal-aware features to the conventional priority queues; their policy gives a lower 

priority to the hot tasks (hot task means a task that is likely to exceed pre-defined 

threshold temperature due to high power consumption according to their thermal 

estimation model) and vice versa. The operating system monitors thermal behavior of a 
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task at run-time by looking at the performance counter values and determines whether the 

task is ‘hot’ or not. However, without any hardware support, thermal emergency may be 

inevitable if all tasks are hot tasks. With clock gating as a failsafe mechanism, thermal 

emergency can be avoided. Their software-hardware combined technique reduces 

temperature by 4.0~10.5ºC while the performance overhead is 9.9%, on average.  

A thermal-aware scheduling technique for Symmetric Multi-Processing (SMP) 

systems was proposed by Merkel et al. [2005]. The main objective of their scheduling 

policy is to balance the energy consumptions among many cores, while maintaining a 

load balancing strategy already adopted in typical operating systems. This technique can 

be categorized into two main techniques: a passive load balancing and an active hot task 

migration technique. The passive load balancing technique balances the length of the run 

queues across the cores by moving tasks between the core queues (run queues). For 

energy balancing across cores, the OS collects the energy profile of each task. By looking 

at the profiled energy information of each task, the passive load balancing technique 

assigns tasks to cores, balancing the energy consumption of each core. However, consider 

a scenario with an already-running task that is likely to incur the thermal emergency. In 

this case, the passive load balancing technique cannot do anything since this task is not in 

the run queue. On the other hand, the active hot task migration can move the task running 

in a core to the other core in a preemptive manner. Although they did not provide detailed 

thermal simulation results, the throughput of the microprocessor is increased by 4.7% due 

to less frequent throttling (less DTM invocations).  

Choi et al. [2007] proposed four simple software-driven (OS-driven) techniques: heat-

balancing, deferred execution of hot jobs, reducing threading on SMT processors, and 

cool loop. The heat-balancing technique assigns tasks to the cores in a balanced manner. 

The second technique, deferred execution of hot jobs, postpones hot jobs to be executed 

later than cool jobs. During the execution of the cool jobs, these cores can be cooled 

down. After the execution of the cool jobs, the execution of the halted hot jobs is resumed. 

The third and fourth techniques are reducing the multi-threading bandwidth on SMT 

processors and utilizing the cool loop (which does not do anything, consequently reduces 

the power consumption) in a single threading environment, respectively. In fact, the cool 

loop can also reduce the multi-threading bandwidth by running a cool loop in an SMT 

logical processor
4
 among many SMT logical processors in one SMT processor. Their 

proposed techniques reduce temperature by 3.5ºC on average in a real Power5 based 

system, while performance overhead is only 1.08%. For multiple clock domain CMPs, 

another scheduling technique was proposed by Arani [2007]. The task scheduler manages 

the task queue where the tasks are waiting in order. In this technique, the task scheduler 

determines the queue length of each core. If the sensed temperature of the core is high, 

the task scheduler assigns a shorter queue length to the core, and vice versa. If the length 

of one queue is long, the core which corresponds to this queue is regarded as a 

performance bottleneck (the temperature of this core will be lowest among the cores). 

Then, the clock frequency/supply voltage of the other cores (where queue length is short) 

can be reduced without any performance loss, since it takes a longer time for the 

bottleneck core to execute the waiting tasks in the queue. This technique balances the 

                                                           
4 One physical SMT processor is composed of several SMT logical processors to execute multiple threads 

simultaneously. Each logical processor has its own state (e.g., program counter, register file, etc.) to maintain its 
own context. 
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temperature of all cores, reducing the overall temperature of the microprocessor.  

Another approach for temperature-aware scheduling was proposed by Merkel and 

Bellosa [2008]. Their technique utilizes a special data structure called a task activity 

vector. The task activity vector for each task contains the values from 0 to 1, which 

represents the activity degree of each functional unit (the dimension of vectors is the 

number of the functional units in the microprocessor). Using the task activity vector, their 

algorithm manages run queues to ensure they do not incur thermal violence. For example, 

after the integer application is executed, they assign a CPU time slice to the floating point 

application, cooling down the integer functional units. To take into account 

multiprocessor systems, their algorithm balances the run queues among processors. Note 

that fluctuating run queue length across cores means that activities are biased to some 

specific cores, which can be thermal hotspots. In case of a SMT processor that has 

several SMT logical processors, if the activities of these SMT logical processors are 

similar, a specific functional unit is likely to be a hotspot because of the concentrated 

activities on it. Thus, to spread the activities to various functional units in an SMT 

processor, activity unbalancing (for instance, a mix of integer-heavy and floating point- 

heavy threads) is needed among the SMT logical processors. However, to maintain load 

balanced status across the cores, the quantity of assigned workloads in different SMT 

logical processors should be similar across SMT logical processors. As a result, the 

percentage of time when the microprocessor operates over the DTM trigger temperature 

(80ºC) is reduced from 25% to 6%, leading to less performance penalty. 

While many thermal-aware task scheduling techniques have considered spatial 

correlations between cores or functional units through balancing of workloads, the 

technique proposed by Yang et al. [2008] considers temporal correlations of thermal 

behaviors through task scheduling. In other words, their work is focused on choosing the 

appropriate threads while the temperature of microprocessors is maintained below the 

DTM threshold temperature. Though the same combination of the applications runs on a 

core, the execution sequence of the applications significantly affects temperature of the 

microprocessor. Assuming two tasks (one is a hot task and the other is a cool task) are 

waiting in a run queue, the hot-cool sequence (the microprocessor runs the hot task first 

and the cool task later) shows less temperature increase than the cool-hot sequence as 

shown in Fig. 10. Based on this observation, their scheduling algorithm picks the thread 
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Fig. 10 Thermal impact of the task sequencing [Yang et al. 2008] 
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which is the hottest first, not incurring the thermal violations. Consequently, their 

proposed technique improves the performance by 3.25~4.7% on average with fewer 

DTM emergencies. 

For 3D multi-core microprocessors, Zhou et al. [2008] proposed a thermal-aware 

scheduling technique called balancing by stack. Though balancing heat across the cores 

has been an effective way to prevent 2D microprocessors from being overheated, it may 

incur thrashing among the tasks or large fluctuations of the temperature of cores since 

vertically adjacent cores have strong thermal influences in 3D microprocessors. Fig. 11 

depicts their thermal-aware scheduling policy, where the super core is a set of cores 

which are vertically stacked in the same 2D location but in different layers, and the super 

task is a set of tasks which are scheduled together. The super tasks are grouped together 

to have similar power consumption across the super tasks. The task scheduling problem 

becomes simple as in 2D microprocessors, since the super tasks and the super cores are in 

2D space. In other words, the algorithm assigns the super tasks to the super cores while 

balancing the power consumption across the super cores. In case of thermal emergency, 

conventional thermal management schemes usually cool down the hottest core. However, 

their algorithm cools down the core which consumes the highest power in the same super 

core considering the vertical heat convection. Recall that the hottest core is not always 

the highest power consuming core, because the vertical location of the cores is also a 

crucial factor in 3D microprocessors. Compared to the other algorithms such as the Linux 

base algorithm, random, round-robin, and balancing by core
5
, the algorithm shows much 

less temperature fluctuation. Compared to the Linux 2.6 scheduler, the proposed 

technique has 7.22% speedup while the balancing by core technique has only 1.35% 

speedup.  

                                                           
5 Balancing by core schedules the maximum power consuming task to the coolest core, the second highest 
power consuming task to the second coolest core, and so on. 
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Fig. 11 A thermal-aware scheduling technique in 3D microprocessors [Zhou et al. 2008] 
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3.4.1.2. For Embedded/Real-time Microprocessors 

There have been several studies for embedded/real-time applications. In real-time 

applications, tasks should be completed before the predefined deadline. Otherwise, the 

applications cannot guarantee their QoS. Embedded applications also have a different 

optimization goal: to minimize energy consumption as much as possible. The temperature 

optimization process for embedded/real-time applications should therefore be different 

from that for high-performance processors, because temperature and energy should be 

optimized jointly, instead of temperature and performance. 

Chen et al. [2007] proposed a temperature minimization technique for periodic real-

time systems. They extended the technique presented in [Aydin et al. 2001], which is 

based on Earliest Deadline First (EDF) algorithm. The proposed technique solves the task 

scheduling problem by using the n-approximation algorithm [Vazirani 2001]. For uni-

processor systems, they used a 2.719-approximation algorithm to minimize the maximum 

temperature in the discrete voltage/frequency system. They also extended it for multi-

processor systems with the Largest Task First (LTF) policy in a 3.072-approximation 

bound. Another similar approach was proposed by Yuan and Qu [2007]. Their main aim 

is to operate the system with minimal energy consumption while the system temperature 

is kept below the threshold temperature without any deadline miss. They also utilized the 

EDF algorithm; however, they considered temperature as well as the amount of 

computation. If the amount of the computation is more than the maximum achievable, the 

system is simply shut down. Otherwise, the system runs at the lowest voltage level to 

finish the task before its deadline. This algorithm reduces the system energy consumption 

by 21% compared to the typical DVFS. Moreover, it alleviates overheating, which leads 

to less invocation of DVFS so that more tasks can meet their deadline (2% improvement 

of task completion ratio compared to the typical DVFS). 

In order to take into account both soft real-time tasks and best-effort tasks, Jayaseelan 

and Mitra [2009] proposed a temperature-aware scheduling technique. The proposed 

technique schedules real-time tasks by looking at their predicted execution time. With the 

results of the real-time task scheduling, a temperature adjustment phase calculates the 

starting temperature of the next phase and the timing slack. The temperature adjustment 

phase ensures the temperature of real-time tasks stays below the threshold. The remaining 

best-effort tasks are then scheduled in a modified round-robin manner so that the 

temperature of the microprocessor remains below the threshold. The proposed scheduling 

policy improves throughput of the microprocessor by 7.4% and 14.4% compared to 

DVFS and clock gating, respectively. 

Several techniques have been proposed to efficiently manage the temperature in multi-

core embedded systems. Mulas et al. [2008] proposed a thermal balancing policy for 

embedded multi-core microprocessors with a task migration technique. Since 

performance of the microprocessor is sensitive to the size of the migrating task, the 

migrating task selection considers the overall overhead, including the migration overhead. 

According to their analysis, as the task size is increased, the number of clock cycles for 

task migration is also linearly increased. In case that migrating task size is 1024KB, the 

required delay is about 10 million clock cycles, which are not trivial. Their technique 

targets the coolest core in determining the destination core. This technique shows much 
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more balanced temperature results across the cores compared to the stop-go policy or the 

other energy balancing policies [Merkel et al. 2005]. Note that migration techniques may 

not be beneficial in case that many parallel workloads occupy all available bandwidth on 

a chip. Thus, when designing a thermal-aware task migration technique, efficient 

bandwidth utilization on the chip should be also carefully considered. 

Coskun et al. [2008a] proposed a task scheduling technique using integer linear 

programming for real-time MPSoCs. The proposed technique considers two factors, 

thermal hotspots and spatial thermal gradients. To minimize thermal hotspots, the 

proposed technique minimizes the duration of thermal emergency (85ºC in their study). 

To minimize spatial thermal gradients at the same time, adjacent cores have no assigned 

work when a task is fetched to the core. It also balances the temperature of each core. 

Compared to the energy-only minimization technique, the proposed technique reduces 

the duration of thermal emergency by 35%. Moreover, it reduces 60% of the spatial 

thermal gradient. They also combined the proposed technique with a coolest-FLP 

technique [Coskun et al. 2007] for uncertainty of running tasks (called the hybrid 

technique [Coskun et al. 2008a]). Based on the temperature measurement of thermal 

sensors, the coolest-FLP executes tasks in the coolest core while considering spatial 

thermal gradients. The hybrid technique shows approximately 5% thermal emergency 

duration out of the entire execution time, while only coolest-FLP shows over 15% 

thermal emergency duration. However, as the workload variation becomes severe, the 

duration of thermal emergency of the hybrid technique converges to that of the coolest-

FLP technique.  

Chantem et al. [2008] also explored a temperature-aware task scheduling problem for 

hard real-time applications in MPSoCs. Mixed-Integer Linear Programming (MILP) is 

used to schedule and assign hard real-time tasks considering both temporal and spatial 

thermal variations. However, their MILP-based technique has a shortcoming that is not 

scalable as the problem size becomes large. To overcome this shortcoming, they also 

proposed a heuristic technique which is based on the binary-searching algorithm. Either 

steady-state or transient temperature is taken into consideration when the heuristic-based 

technique searches for a solution. Their MILP-based solution achieves the average 

temperature reduction of 8.75ºC compared to the energy-optimal technique. Moreover, 

their proposed heuristic approach (using transient temperature analysis) reduces the 

algorithm running time by 9.02 times, on average, compared to their MILP-based 

technique. 

 

3.4.2. Compiler-directed Techniques 

Static code analysis by compilers can be applied to thermal management as well as 

traditional performance optimizations. Since compiler-directed techniques are static, they 

cannot capture dynamic behavior of programs. However, they do not require hardware 

support. Since the instruction scheduling of VLIW (Very Long Instruction Word) 

processors is carried out at compile-time, many compiler-directed temperature 

management techniques have been proposed for VLIW processors. In VLIW 

architectures, the thermal behavior of the processor may change, depending on the 

arrangement of instructions in an instruction bundle and the scheduling of instruction 

bundles.  

Recent compiler-directed thermal management techniques on VLIW processors are 
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concentrated on both instruction bundle packing and scheduling. Mutyam et al.’s 

technique [2006] reduces the temperature of the microprocessor through load balancing 

and IPC tuning. The load balancing is carried out by calculating the predictive dynamic 

power in advance when the source code is compiled. The compiler assigns the functional 

units where the calculated dynamic power is distributed most evenly. In order to reduce 

leakage power consumption, the IPC tuning turns off unused functional units if only a 

fixed number are active in a loop. For instance, if a loop uses only two out of six integer 

ALUs, they gate the power supply of the remaining four ALUs, which reduces their 

leakage. Although IPC tuning reduces the leakage power of the idle functional units, it 

raises the problem that dynamic power consumption becomes concentrated on the active 

functional units. Over many loop iterations, this can lead to a hotspot. The authors 

therefore incorporated a rotation technique into the IPC tuning, rotating the active units. 

Consequently, the temperature of all functional units converges to the average.  

Schafer and Kim [2007] introduced another instruction assignment algorithm in VLIW 

processors. Their target is a Digital Signal Processor (DSP) architecture, for which VLIW 

organizations are common. They proposed a temperature-aware instruction binding 

technique (TempIB and TempIB-f) and a NOP insertion technique. The TempIB 

algorithm binds instructions to cool functional units first. It spreads out the power density 

to all functional units. The main problem of TempIB algorithm is the long running time 

(when compiling the source codes) caused by the required thermal simulation that guides 

instruction binding. The TempIB-f reduces the running time of the TempIB using a 

simple heuristic while maintaining the accuracy of the thermal simulation. The third 

algorithm, named TempNOP, inserts NOP instructions when a severe thermal stress is 

predicted by the thermal simulation during the compilation of source codes. Because the 

NOP instruction does nothing after it is decoded, it lets the processor rest for a cycle. The 

number of inserted NOP instructions depends on the degree of the thermal severity. 

In addition to VLIW processors, some compiler-directed thermal management 

techniques are applied to superscalar architectures in which instructions are scheduled 

dynamically. Hsu and Kremer [2003] proposed a compiler optimization technique for 

DVFS-based DTM that can be applied to superscalar architectures. In their technique, the 

compiler generates a table for DVFS invocation when the source codes are compiled. To 

minimize the performance loss, this technique looks for program regions that are 

performance-insensitive at compile-time. In these performance-insensitive regions, the 

voltage and frequency are reduced to minimize energy consumption, which in turn lowers 

temperature. In their implementation, they extended SUIF2 [Aigner et al. 1999] for their 

compiler-directed DVFS. This technique reduces energy consumption by 9% and the 

energy-delay product by 11%.  

Narayanan et al. [2006] proposed power density-aware compiler techniques for many-

core NoC designs. Their proposed technique considers both performance and temperature 

when mapping threads to the processor cores. Their algorithm consists of two phases. 

The first phase reduces the overall power density of the chip. Available threads are 

mapped in a distributed fashion to reduce the power density of the chip. The second 

phase divides high-power-density threads into several low power density threads and 

maps these threads to the cores. Although this technique uses more cores to reduce the 

power density, it significantly improves performance due to a reduction of DTM triggers. 
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3.5. Liquid Cooling Techniques 

Most high performance microprocessors rely on air cooling to avoid thermal 

emergency, because it is simple and inexpensive. However, as thermal problems became 

more serious, researchers began to look for more efficient cooling methodologies. Water 

is an emerging coolant for microprocessors since it has a high heat capacity. Since 

thermal problems are much more severe in 3D microprocessors because of vertical and 

lateral heat conduction, several researchers adopted liquid cooling techniques for 3D 

microprocessors.  

Koo et al. [2005] proposed an indirect liquid cooling technique in stacked integrated 

circuits, which utilizes micro-channels between each layer. Brunschwiler et al. [2008] 

proposed a direct liquid cooling technique for 3D integrated microprocessors. Contrary to 

the indirect liquid cooling technique, the coolant (water) encompasses dielectric in the 

direct cooling technique, which means water goes through layers. In their proposed 

structure, there are a water tank, inlet, and outlet. Water flows between the dies and 

Through Silicon Vias (TSV). Jang et al. [2009] analyzed the architectural impact of the 

liquid cooling technique in 3D multi-core processors. They analyzed three factors: 

temperature, leakage power, and reliability. The liquid cooling technique reduces 

temperature by 45ºC (at the best case) compared to the conventional air cooling technique. 

Since leakage power consumption is exponentially dependent on temperature, the liquid 

cooling technique brings a 12.8% average leakage power reduction. The lifetime 

reliability of the L1 instruction cache (the thermal hotspot in their simulation results) is 

therefore improved by 97.9% (at the best case).  

 

3.6. Thermal Reliability/Security 

Since excessively high temperatures incur errors, thermal reliability and security issues 

are also important for microprocessors.  

Srinivasan et al. [2004; 2005] proposed a temperature-related reliability model 

(RAMP). Their reliability model is based on five failure mechanisms: ElectroMigration 

(EM), Stress Migration (SM), Time-Dependent Dielectric Breakdown (TDDB), Thermal 

Cycling (TC), and Negative Bias Temperature Instability (NBTI). Their Mean Time-To-

Failure (MTTF) models are deeply related to temperature. The following equations are 

failure mechanisms in their reliability model: 
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As shown in Equation (5)~(9), each failure mechanism includes temperature as a 
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variable (the detailed descriptions of parameters in Equation (5)~(9) are shown in Table 

II). The critical point in this model is that the MTTF becomes smaller as the temperature 

is increased. Another important implication of this model is that the reliability of 

microprocessors depends on which application is running, since thermal behavior 

depends on application features. Based on their reliability model, they also proposed a 

Dynamic Reliability Management (DRM) technique [Srinivasan et al. 2004]. Since each 

processor has a different target reliability design point, the performance can be 

dynamically adjusted using the DVFS or an architectural adaptation technique. Based on 

the target FIT (Failure In Time) value, if there is a margin in terms of reliability, 

applications can be run with higher performance. Otherwise, performance should be 

degraded to meet the target reliability design point.  

For better performance compared to the traditional DTM techniques, reliability 

banking (simple dynamic reliability management and profiled-based dynamic reliability 

management) was proposed [Lu et al. 2005]. Designers should rely on temperature-

dependent reliability models to derive the expected lifetime of their circuits. Traditionally, 

a worst-case temperature is used to evaluate the reliability of the system, often resulting 

in excessive design margins. In addition, under such pessimistic assumptions, DTM 

techniques may be engaged unnecessarily and incur performance loss. The main concept 

of the reliability banking is that the lifetime of the microprocessor is banked (deposited) 

when it operates in low temperatures and wear-out accumulates more slowly than 

expected. The surplus lifetime is then used when operating at higher temperatures (higher 

than the nominal lifetime consumption rate). When the remaining banked lifetime drops 

below a threshold value, the microprocessor should engage some DTM techniques. This 

approach is called Simple Dynamic Reliability Management (SDRM). Since the lifetime 

consumption rate of DTM cannot exceed the nominal lifetime consumption rate, 

performance of SDRM is better than that of DTM. However, SDRM only considers the 

current lifetime balance and the current temperature. To leverage longer-term 

characteristics of server workloads, Lu et al. also proposed Profile-based Dynamic 

Reliability Management (PDRM). This is similar to the SDRM during the low-

 

Table II. Description of parameters in equation (5)~(9) [ Srinivasan et al. 2004; 2005] 

Equation Parameter  Description 

Common in 

(5)~(9) 

N Material dependent constants 

K Boltzmann's constant 

T Absolute temperature 

(5) 

J The current density in the interconnect 

Jcrit The critical current density required for electromigration 

EaEM Material dependent constants 

(6) 
T0 The stress free temperature 

EaSM Material dependent constants 

(7) 
V The voltage 

a, b, X, Y, Z Fitting parameters 

(8) 

T The average temperature 

Tambient The ambient temperature 

Q The Coffin-Manson exponent 

(9) A, B, C, D, β Fitting parameters 
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temperature phase. However, in the high-temperature phase, PDRM calculates a new 

lifetime consumption rate based on the expected duration of the hot phase (profiled 

information) and the deposited lifetime. The PDRM shows only 6.5% performance 

slowdown, while the pessimistic DTM suffers the highest performance slowdown (16%) 

among the three techniques (DTM, SDRM, and PDRM) under the same configuration. 

Tiwari and Torrellas [2008] proposed a temperature-related aging-aware technique for 

multi-core processors. They proposed an aging-aware scheduling technique to alleviate 

aging effects. Since the clock frequency for all the cores is determined by the slowest 

core, the proposed technique schedules relatively cool applications to the slower cores, 

where the pipeline slack margin is tighter than that of the faster cores, and vice versa. 

Consequently, aging effects are evenly distributed across the cores. The average 

temperature of each application is measured by per-core temperature sensors. Their 

aging-aware scheduling policy slows the aging of the critical path delay from 23% to 

14%, compared to the random scheduling policy.  

In order to measure the reliability of the microprocessor at design-time, a thermal 

stressmark design is also important to the early-stage thermal-aware design. Joshi et al. 

[2008] proposed an automated stressmark generation technique. The stressmark can also 

be used to evaluate the thermal reliability of microprocessors, since it can be used to 

intentionally make thermal hotspots. Their stressmark shows much higher temperatures 

(the maximum is over 30ºC) than SPEC benchmarks or commercial applications. The 

stressmark can also create extreme temperature difference between two functional units. 

Since the number of thermal sensors in microprocessors is limited, there is a possibility 

that un-monitored functional units may be burned out without being detected by thermal 

sensors. The stressmark detects whether the thermal sensor placement or thermal guard-

band setting is safe or not in the early-stage of microprocessor design. They provided 

several stress pattern examples which show the maximum temperature difference of 61ºC 

between the issue unit and the Load/Store Queue (LSQ). 

Thermal security issues in microprocessors have also been explored by several 

researchers. Security is to prevent an intentional attack by people who have some 

malicious intention while reliability is to prevent unintended and incidentally caused 

malfunctions. Dadvar and Skadron [2005] warned of the possibility of potential security 

and reliability vulnerabilities related to temperature. In an example of thermal security 

threats, a malicious code was shown able to induce a Denial-of-Service (DoS) attack in 

an SMT processor [Hasan et al. 2005]. DoS is achieved when malicious threads incur 

DTM triggers and degrade performance for legitimate threads that are running at the 

same time. The malicious threads attack typical hotspots such as the register files. 

Whereas the required time to heat up the register file is 1.2ms, the cool-down time is 

12.5ms, which means a short burst of malicious activity can have a much longer DoS 

effect. To distinguish malicious threads from normal threads, Hasan et al.’s proposed 

protection technique counts the access rate of typical hotspots such as the integer register 

file. Generally, malicious threads have abnormally high access rates to these hotspots. 

The cooling solution is called selective sedation, which only sedates suspected malicious 

threads, while the performance of the normal threads should not be affected. When the 

normal threads are running with the malicious threads, the IPC of normal threads is 

degraded by as much as 88.2%. However, by adopting the selective sedation technique, 

the IPC of the normal threads (1.24) becomes similar to the IPC without malicious 

threads (1.28).  
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Another example of a real security threat was introduced by Kong et al. [2010]. Since 

thermal sensors are typically focused on well-known hot functional units such as the 

integer register file, unmonitored functional units may be attacked. In Kong et al.'s study, 

the L1 instruction caches are targets of thermal attack, since they are typically known as a 

cool functional unit. To successfully attack the L1 instruction caches: 1) a specific 

portion of the L1 instruction cache should be frequently accessed, and 2) the other 

functional units should not incur DTM that would eventually neutralize the thermal attack. 

In order to frequently access only a specific portion of the L1 instruction cache, the 

malicious code consists of an infinite loop which does not incur any cache miss or branch 

misprediction. Moreover, by manipulating the address of instructions, their malicious 

code accesses only specific parts of the L1 instruction cache. To avoid heating other 

functional units, the malicious code contains NOP instructions that do nothing. To 

prevent this attack, they proposed a detection technique which utilizes the access counter 

of each cache data subarray and tag subarray. When a specific data or tag subarray is 

severely and continuously accessed, the instruction fetching is stalled until the L1 

instruction caches are sufficiently cooled down. In addition to the hardware-based 

protection technique, a software-based screening technique using a malicious code 

scanner was proposed to detect the attack. According to their evaluation results, the L1 

instruction cache tag subarray becomes a thermal hotspot (110ºC) when executing their 

malicious code, while the temperatures of the other functional units including typical 

hotspots are sustained below 100ºC. By adopting their hardware-based protection 

technique, the temperature of the L1 instruction cache tag subarray is dropped by 26ºC, 

successfully neutralizing the malicious attack. 

 

4. CONCLUSION 
In this paper, we introduced recent thermal management techniques for 

microprocessors. Through a hierarchical categorization of representative thermal 

management techniques, we have provided a comprehensive overview of recent thermal-

management studies. Temperature is a fundamental design consideration because it is 

directly related to availability of the microprocessor, while power and performance are 

related to efficiency. Moreover, temperature is becoming even more of a constraint, as 

power density increases due to continuing reductions in feature size, while peak supply 

voltage scaling has slowed and air cooling appears to have reached practical limits [SIA 

2009].  

Implementing thermal management techniques in microprocessors can be thought to 

be a complex process, but this need not be the case. The main reason is that power 

reduction also leads to temperature reduction. As shown in this paper, most power-

managing hardware components can also be used for thermal management, since 

temperature is deeply related to power. Thus, microprocessor designers will generally not 

need to adopt additional hardware components specifically for thermal management 

(except of course for static thermal management techniques such as floorplanning and 

novel design techniques). Since the main difference between power and thermal 

management is the choice of which policy is used, new thermal control algorithm/logic 

and thermal sensors are enough. It is also worth noting that thermal management 

techniques used for commercial microprocessors so far are more simple and intuitive 
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compared to the techniques proposed from academia (though some techniques proposed 

from academia have been already implemented in commercial microprocessors). The 

main reason is likely that temperature management entails associated hardware/software 

costs (though the cost is small). The other important reason is that thermal simulations at 

design-time entail inevitable simulation error. For example, Jang et al. [2010] reported 

that using a fixed ambient temperature incurs temperature simulation error of 31.1ºC (at 

maximum). Thus, simple techniques that have low overhead are preferred in commercial 

microprocessors. Of course, this does not mean that the academic proposals are 

impractical! As thermal problems in microprocessors become more severe in the near 

future, the more aggressive and innovative idea from academia are likely to be considered 

for commercial processors. 

So far, most thermal management techniques have been confined to a single design 

layer within the system, such as the physical chip design, the microarchitecture, the 

compiler, or the cooling solution. These techniques usually operate in isolation and may 

in fact conflict with each other. In practice, most thermal management techniques that are 

in different layers easily co-exist. Thus, they can provide a multi-layer failsafe 

mechanism that makes the microprocessor more robust to thermal threats. Even in case of 

thermal management techniques in the same layer, some of them are complementary. 

Algorithms to coordinate these techniques in the most efficient way will also be 

beneficial. Most temperature-aware design has also failed to coordinate thermal 

management with energy and power-delivery management. Coordination will exploit 

synergies among techniques and across design layers, and improve the robustness and 

long-term impact of thermal research. We hope that in the future, research on thermal 

management will combine efforts from multiple disciplines. 

 

ACKNOWLEDGMENTS 
This survey work was supported in part by a grant from the US NSF under grant 

number CRI-0551630, a grant from Intel Research, and the Korea Science and 

Engineering Foundation (KOSEF) grant funded by the Korea government (MEST) (No. 

R01-2007-000-20750-0). This survey work was also supported in part by the Ministry of 

Knowledge Economy (MKE), Korea, under the Information Technology Research Center 

(ITRC) support program supervised by the National IT Industry Promotion Agency 

(NIPA) (NIPA-2010-C1090-0803-0006). We would like to thank Peter Brownlee 

Bakkum for his extensive feedback. Finally, we would also like to thank the anonymous 

referees for their helpful feedback. 

  

REFERENCES 
ADYA, S. N. AND MARKOV, I. L. 2003. Fixed-outline floorplanning: enabling hierarchical design. IEEE 

Transactions on VLSI, Vol. 11, No. 6, 1120-1135. 

AIGNER, G., DIWAN, A., HEINE, D. L., LAM, M. S., MOORE, D. L., MURPHY, B. R., AND SAPUNTZAKIS, C. 1999. 
An overview of the SUIF2 compiler infrastructure. Computer Systems Laboratory, Stanford University. 

ALBONESI, D. 1999. Selective cache ways: on-demand cache resource allocation. In Proceedings of 

International Symposium on Microarchitecture (MICRO ‘99), 248-259. 
AMD 2005. Processor utilization with Microsoft®  Windows®  Media Center Edition on systems enabled with 

Cool'n'Quiet™ and AMD PowerNow!™ technologies. Application Note, May 2005. 

ANDREI, A., ELES, P., PENG, Z., SCHMITZ, M. T., AND AL-HASHIMI, B. M. 2007. Energy optimization of 
multiprocessor systems on chip by voltage selection. IEEE Transactions on VLSI, Vol. 15, No. 3, 262-275.  



Recent Thermal Management Techniques for Microprocessors                                 ●       X: 41  
 

 

ACM Computing Survey, Vol. X, No. X, Article X, Pub. date: 

 

ARANI, A. S. 2007. Online thermal-aware scheduling for multiple clock domain CMPs. In Proceedings of IEEE 

International SOC Conference (ISOCC ‘07), 137-140. 
ARS TECHNICA 2008. NVIDIA denies rumors of faulty chips, mass GPU failures. Available at: 

http://arstechnica.com/hardware/news/2008/07/nvidia-denies-rumors-of-mass-gpu-failures.ars. 
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