

ACM Computing Survey, Vol. X, No. X, Article X, Pub. date:.

Recent Thermal Management Techniques for
Microprocessors

JOONHO KONG, SUNG WOO CHUNG

Korea University, Seoul, Korea

AND

KEVIN SKADRON

University of Virginia, Charlottesville, VA
__

Microprocessor design has recently encountered many constraints such as power, energy, reliability and
temperature. Among these challenging issues, temperature-related issues have become especially important

within the past several years. We summarize recent thermal management techniques for microprocessors,

focusing on those that affect or rely on the microarchitecture. We categorize thermal management techniques
into six main categories: temperature monitoring, microarchitectural techniques, floorplanning, OS/compiler

techniques, liquid cooling techniques, and thermal reliability/security. Temperature monitoring − a requirement

for dynamic thermal management (DTM) − includes temperature estimation and sensor placement techniques

for accurate temperature measurement or estimation. Microarchitectural techniques include both static and

dynamic thermal management techniques that control hardware structures. Floorplanning covers a range of
thermal-aware floorplanning techniques for 2D and 3D microprocessors. OS/compiler techniques include

thermal-aware task scheduling and instruction scheduling techniques. Liquid cooling techniques are higher-

capacity alternatives to conventional air cooling techniques. Thermal reliability/security issues cover
temperature-dependent reliability modeling, dynamic reliability management (DRM), and malicious codes that

specifically cause overheating. Temperature-related issues will only become more challenging as process
technology continues to evolve and transistor densities scales up faster than power per transistor scales down.

The overall objective of this survey is to give microprocessor designers a broad perspective on various aspects

of designing thermal-aware microprocessors and to guide future thermal management studies.

Categories and Subject Descriptors: C.5.3 [Computer System Implementation]: Microcomputers—
Microprocessors; C.5.4 [Computer System Implementation]: VLSI Systems; D.4.1 [Operating Systems]:

Process Management—Scheduling;

General Terms: Design, Management

Additional Key Words and Phrases: Thermal management, microprocessor, performance and reliability

ACM File Format:

KONG, J., CHUNG, S. W., AND SKADRON, K., 2010. Recent Thermal Management Techniques for

Microprocessors. ACM Comput. Surv.,

__

__

Authors’ addresses: J. Kong and S. W. Chung, Department of Computer Science and Engineering, Korea
University, Seoul, Korea. E-mail: {luisfigo77, swchung}@korea.ac.kr; K. Skadron, Department of Computer

Science, University of Virginia, Charlottesville, VA. E-mail: skadron@cs.virginia.edu

Permission to make digital/hard copy of part of this work for personal or classroom use is granted without fee
provided that the copies are not made or distributed for profit or commercial advantage, the copyright notice, the

title of the publication, and its date of appear, and notice is given that copying is by permission of the ACM, Inc.
To copy otherwise, to republish, to post on servers, or to redistribute to lists, requires prior specific permission

and/or a fee. Permission may be requested from the Publications Dept., ACM, Inc., 2 Penn Plaza, New York, NY

11201-0701, USA, fax: +1 (212) 869-0481, permission@acm.org
© 2001 ACM 1530-0226/07/0900-ART9 $5.00 DOI 10.1145/1290002.1290003 http://doi.acm.org/10.1145/

1290002.1290003

mailto:permission@acm.org
http://doi.acm.org/10.1145/%201290002.1290003
http://doi.acm.org/10.1145/%201290002.1290003
skadron
Typewritten Text

skadron
Typewritten Text
This is the authors' version of the work. The definitive version will appear in ACM Computing Surveys.

skadron
Typewritten Text

X: 2 ● J. KONG, S. W. CHUNG, and K. SKADRON

ACM Computing Survey, Vol. X, No. X, Article X, Pub. date:

1. INTRODUCTION

Using performance as the primary objective in microprocessor design has led to

increasingly sophisticated processor organizations such as superscalar, out-of-order issue,

and Very Long Instruction Word (VLIW). In addition to such microarchitectural

techniques, process technology continues to double the number of transistors per unit

area every 1.5~2 years by reducing feature sizes and shrinking the distance between

devices, allowing continued increases in operating frequency as well as supporting ever

more sophisticated processor organizations within a given area or cost budget.

Unfortunately, these performance improvements have come at increasingly high costs in

power and cooling requirements. As processor structures become more sophisticated and

operate at higher frequency, they dissipate more power per unit area and the processors

overall dissipate more total power. Both power density and total power have increased

steadily over the last 25 years. Even if microarchitectural complexity stops increasing,

power densities will still rise, because supply voltage is no longer scaling down as fast as

feature size [SIA 2009]. At the same time, we are approaching the limits of air cooling

(around 150~200W) [SIA 2009], and no mass-market alternatives have become apparent.

Clearly, this growth in power dissipation cannot be sustained. Of course, the shift to

multi-core architectures has temporarily alleviated the problem, as performance can now

be achieved through parallelism and microarchitectural complexity has indeed slowed or

even reversed. However, as more cores are integrated and supply voltage scaling slows

even more, power densities will again become a severe challenge.

High temperatures pose a reliability challenge, since many aging mechanisms, such as

electro-migration and dielectric breakdown, are exponentially dependent on temperature.

Inadequate thermal control can lead to complete failure, as several recent products have

shown (e.g., [ARS Technica 2008; EE Times 2008]). Moreover, temperature must be

addressed from the earliest design stages, because early design choices, such as the

number and complexity of cores, dictate the basic activity patterns that a processor will

exhibit [Li et al. 2006]. As a result, microprocessor architects have begun to study

thermal management more carefully in the early-stage of design-time. In order to design

efficient thermal management techniques, accurate thermal analysis at the design-time is

essential. However, thermal analysis in the design stage is not an easy process. The

reasons are as follows: 1) Temperature is typically represented by complex non-linear

equations (e.g., Newton’s law of cooling or Fourier’s law), making thermal analysis for

microprocessors in the design-time difficult without complex as well as accurate

simulations. Furthermore, due to its complexity, temperature simulations typically need

quite longer time than other metrics such as performance and power. 2) The RC thermal

time constant is heavily dependent on environmental parameters such as material and

packaging [Mesa-Martinez et al. 2010]. Thus, the designers should be careful when

analyzing a thermal behavior since temperature response can be different according to the

various environmental parameters. It calls for simple and accurate simulation tools for

microprocessor designers.

To support early-stage thermal-aware microprocessor design, several temperature

simulation tools have been developed. These include HotSpot [Skadron et al. 2003;

Huang et al. 2008] and ATMI [Michaud and Sazeides 2007]. These rely on compact

models for the heat transport, and generally represent each microarchitectural unit with a

uniform power density. They also rely on some external source for the power dissipation

Recent Thermal Management Techniques for Microprocessors ● X: 3

ACM Computing Survey, Vol. X, No. X, Article X, Pub. date:

in each unit. Analytical models or empirical values extracted and scaled from prior

hardware (coupled with cycle-accurate microarchitectural simulations to obtain activity

factors) are the most common sources. Using such early-stage-design simulation tools,

hardware support for thermal management can be explored without the need for

traditional but computationally expensive thermal modeling tools based on finite-

difference or finite-element methods, or empirical measurements using hardware.

However, note that thermal modeling is beyond the scope of this paper. We restrict the

main topic of our survey only to thermal management techniques, excluding thermal

modeling techniques.

Power management can help control temperatures, because reducing power dissipation

may also reduce power density. However, reducing power alone is not always effective

and may in fact conflict with thermal management: if power reductions are achieved by

turning off under-utilized structures and concentrating activity in a smaller area, power

density actually increases! Conventional power-saving techniques also tend to exploit

slack when the processor is under-utilized and power-saving techniques will typically

have less impact on performance [Venkatachalam and Franz 2005], while thermal

management is chiefly a concern when the processor is heavily utilized and power-saving

techniques may severely affect performance. Power-saving techniques used for managing

current delivery or energy efficiency may also target structures that are not hot, and hence

have limited impact on temperature. Furthermore, temperature changes slowly compared

to the potential rate of change of activity within processor structures—over microseconds

or longer—because even a small silicon die contains significant material mass. This

means that power management will affect temperature only if the power reduction is

maintained for a sufficiently longer time. For these reasons, even though power

management for power delivery or energy efficiency concerns may use the same

techniques as for thermal management, the policies may be different and even potentially

in conflict.

In this paper, we introduce recent thermal-aware microarchitecture techniques. We

restrict our survey to the temperature-related studies, excluding studies which only

consider power (or energy). Note we do not provide all of the evaluation results under the

identical evaluation framework since the evaluation environments (such as packaging,

cooling, and processor parameters) of the studies vary. The rest of this paper is organized

as follows. Section 2 provides a brief organization of our survey. Section 3 introduces

recent representative temperature management techniques. In the last section, we

conclude our paper.

2. A HIERARCHICAL ORGANIZATION OF OUR SURVEY
Prior to conducting a detailed survey, we categorize our survey hierarchically into six

main parts; temperature monitoring, microarchitectural techniques, floorplanning,

OS/compiler techniques, liquid cooling techniques, and thermal reliability/security. We

summarize the organization of our survey as depicted in Fig. 1. The Temperature

monitoring section discusses how to monitor the temperature of microprocessors

effectively and accurately, and breaks down into two sub-sections. In the Temperature

estimation sub-section, we introduce many cost-effective and accurate temperature

estimation techniques, and in the On-chip sensor placement sub-section, we introduce

X: 4 ● J. KONG, S. W. CHUNG, and K. SKADRON

ACM Computing Survey, Vol. X, No. X, Article X, Pub. date:

several techniques which take into account the appropriate allocation of thermal sensors.

The Microarchitectural techniques section is composed of three sub-sections. In the For

microprocessor cores sub-section, we introduce recent outstanding microarchitectural

thermal management techniques for microprocessor cores. The next sub-section, For On-

chip caches, introduces several techniques to reduce power density of on-chip caches by

spreading heat while maintaining locality. In the Novel design techniques sub-section, we

introduce microprocessor structures to reduce the power density of the microprocessor by

dividing it into several clusters or restructuring the typical microprocessor architectures.

The Floorplanning section summarizes recent floorplanning techniques from both CAD

and microarchitectural perspectives. The For 2D planar microprocessors and For 3D

die-stacked microprocessors sub-sections introduce thermal-aware floorplanning

techniques for 2D and 3D microprocessors, respectively. In the OS/compiler techniques

section, we explore many temperature management techniques orchestrated by OS or

compilers. The Thermal-aware task scheduling sub-section discusses how to schedule

and assign the tasks (processes or threads) to cores for managing the temperature of

microprocessors. The Compiler-directed techniques sub-section introduces thermal

management techniques based on compiler optimizations. Several thermal-aware code

optimization techniques are introduced here. In the Liquid cooling techniques section, we

investigate liquid cooling techniques for microprocessors that are outstanding alternatives

to conventional air cooling, and evaluate the effectiveness of liquid cooling in the

computer architectural-level. The last section, Thermal reliability/security, discusses

thermal-aware reliability modeling techniques, reliability improvement techniques, and

several techniques for thermal security.

Thermal

Management
Techniques
(Section 3)

Microarchitectural

Techniques (3.2)

Liquid Cooling Techniques (3.5)

Compiler-directed Techniques (3.4.2)

Temperature

Monitoring
(3.1)

Temperature Estimation (3.1.1)

On-chip Sensor Placement (3.1.2)

Floorplanning(3.3)

For Microprocessor

Cores (3.2.1)

For On-chip Caches (3.2.2)

For 2D Planar Microprocessors (3.3.1)

For 3D Die-stacked Microprocessors (3.3.2)

Thermal Reliability/Security (3.6)

Thermal-aware

Task Scheduling
(3.4.1)

For General Purpose Microprocessors (3.4.1.1)

For Embedded/Real-time Microprocessors (3.4.1.2)

OS/Compiler

Techniques (3.4)

For General Applications (3.2.1.1)

For Media (streaming) Applications (3.2.1.2)

Novel Design

Techniques (3.2.3)

Clustered Architectures (3.2.3.1)

Restructured Architectures (3.2.3.2)

Fig. 1 A hierarchical organization of our survey (the number in the parentheses indicates the section number)

Recent Thermal Management Techniques for Microprocessors ● X: 5

ACM Computing Survey, Vol. X, No. X, Article X, Pub. date:

3. THERMAL MANAGEMENT TECHNIQUES
3.1. Temperature Monitoring

Prior to introducing temperature management techniques, we first introduce

temperature monitoring techniques, which are crucial for efficient dynamic thermal

management. For example, the IBM Power7 microprocessor [Ware et al. 2010] employs

44 digital thermal sensors on a chip. Though such a large number of thermal sensors

might be considered excessive, Power7 aims to capture almost all the corner cases that

could not detected by a smaller number of thermal sensors. This implies that the large

number of thermal sensors is worthwhile for accurate temperature monitoring.

3.1.1. Temperature Estimation

Temperature sensing or estimation is important, since DTM (Dynamic Thermal

Management) uses the current temperature as feedback to adjust its control and force

further reductions in temperature or permit higher performance, as appropriate. Thus, the

thermal sensor or temperature estimation should be cost-efficient but measure on-chip

temperature accurately. Note that a thermal sensor has its own power and area cost and

temperature estimation also has run-time performance overheads as well as power

overheads.

Typically, there are two types of thermal sensors used for thermal sensing of

microprocessors: digital and analog thermal sensors. An analog thermal sensor is mainly

composed of ring oscillators. It utilizes the fact that CMOS inverter delay depends on the

temperature. On the other hand, a digital thermal sensor utilizes a band-gap voltage

reference circuit whose output voltage is dependent on the temperature. In recent

microprocessor design, due to higher accuracy and smaller area overhead, digital thermal

sensors are more preferred than analog thermal sensors. In practice, digital thermal

sensors are mainly used to detect localized hotspots, while analog thermal sensors are

used to read on-die temperatures [Naveh et al. 2006]. Many robust and accurate thermal

sensor design techniques have been proposed so far [Chen et al. 2005; 2006; Remarsu

and Kundu 2009; Zhang and Srivastava 2009]. However, they are out of scope of this

paper, since thermal sensor design techniques themselves are not microarchitectural

techniques. Thus, we limit the scope of this sub-section only to the exploration of

temperature estimation techniques, not including thermal sensor design.

For more accurate thermal measurements under process variation, there have been

many studies using model-based temperature estimation. The main advantage of model-

based temperature estimation is that it is more robust to severe noise or process variation,

in contrast to relying on temperature sensors that are also vulnerable to noise or process

variation. The model-based approach is shown to successfully compensate for inaccurate

thermal sensing. Jung and Pedram [2008] proposed a Kalman-filter-based temperature

and power estimation technique, based on junction temperature and the power state. The

junction temperature estimation uses a Kalman filter [Kalman 1960], while the power

estimation is based on POMDP
1
 [Puterman 1994]. Another technique using the Kalman

filter was proposed by Sharifi et al. [2008]. Their first step is an off-line step which

1 POMDP stands for Partially Observable Markov Decision Process, which is one of generalizations of Markov
Decision Process.

X: 6 ● J. KONG, S. W. CHUNG, and K. SKADRON

ACM Computing Survey, Vol. X, No. X, Article X, Pub. date:

utilizes a thermal model to generate a steady-state Kalman filter by calibrating the model

with previously-gathered, imprecise temperature sensing and power estimation results.

Then, by using the steady-state Kalman Filter in the on-line step, temperature

measurement is accurate despite inaccurate temperature sensing from actual sensors. This

technique reduces sensor reading error by 3.03ºC, on average, with little run-time

performance overhead.

Kursun and Cher [2008] proposed a performance-counter-based temperature

estimation technique for multi-core systems that also reflects process variation. In an off-

line phase, a variation map is generated by analyzing chip information such as the results

of a thermal stressmark or sensed temperature. Since process variation (including within

die and die-to-die variation) may vary the process parameters in each core and processor,

utilizing variation maps leads to more accurate temperature estimation. By applying this

temperature estimation technique to a thermal-aware task-scheduling technique, tasks are

assigned to cores in a temperature-aware fashion (e.g., hot tasks are assigned to cool

cores and cool tasks are assigned to hot cores). As a result, the temperature with the

variation-aware technique is reduced by 4.5ºC compared to the variation-unaware

technique.

In another temperature estimation technique considering process variation, Jaffari and

Anis [2008] proposed a statistical method. Process variation induces severe leakage

variation. With the conventional deterministic temperature/power estimation, process

variation may lead to inaccurate temperature estimation because this leakage variation

may make power and hence temperature estimation results inaccurate. For example,

actual power consumption of equivalent Functional Units (FU) may be different across

chips even with the same access rate to the FUs. Moreover, this inaccuracy may be more

serious due to temperature-leakage dependence. In the proposed technique, the chip area

is divided into a grid. Leakage power variability is modeled as a statistical function. The

expected value of the temperature is found using this probability density function, whose

inputs are dynamic power consumption and the package model. As a result, the proposed

probabilistic method presents less than 0.3% error in temperature estimation compared to

Monte Carlo simulation results.

In addition to CMOS thermal sensors, there have been studies on thermal sensing

using software techniques. Localized temperature measurement is difficult because

thermal sensors cannot detect localized hotspots that are far away from the limited

number of sensor locations. To cover the entire chip area, the chip designer may deploy

many thermal sensors. However, deploying many CMOS thermal sensors incurs area and

power overhead. To detect unmonitored localized hotspots with minimal hardware

thermal sensor overhead, a novel software thermal sensor was proposed by Chung and

Skadron [2006a]. Their proposed technique is based on the performance-counter-based

temperature estimation proposed by Lee and Skadron [2005]. Their run-time temperature

estimation model uses the HotSpot tool and the run-time power model from Isci and

Martonosi [2003]. However, in order to calculate the localized temperatures using Lee

and Skadron’s model, microprocessors should solve 4th order differential equations (the

Runge-Kutta method in the HotSpot thermal model), and this is too complex to be

executed at run-time. In order to avoid heavy computations, Chung and Skadron’s

technique uses a simple regression method for sensing localized temperatures. A simple

linear equation, Y=aX+b is used, where X is the performance counter value (the access

rate of the functional unit) and Y is the temperature of the functional unit. The constants a

Recent Thermal Management Techniques for Microprocessors ● X: 7

ACM Computing Survey, Vol. X, No. X, Article X, Pub. date:

and b are determined through a simple regression analysis at design-time. Chung and

Skadron’s technique shows reasonable accuracy (at most 2.4ºC of the temperature

difference with the peak temperature in the integer register file) with significantly low

overhead. This work was evaluated using Dynamic Voltage and Frequency Scaling

(DVFS) with off-line traces [Chung and Skadron 2006b] and it was actually adopted for

the DVFS technique in the Intel Core2 Duo microprocessor by Lee et al. [2010]. The

proposed technique detects and avoids most thermal emergencies by predicting localized

hotspots with negligible performance overhead (mostly below 1%).

Khan and Kundu [2008] proposed a general software framework for predictive

temperature management. While reactive thermal management techniques are sometimes

inefficient due to the late response, their predictive technique eliminates this inefficiency.

The proposed Virtual Thermal Manager (VTM) manages temperature by collaboration

with hardware and software. The VTM maintains a Temperature History Table (THT) to

predict near future temperatures. Each history entry corresponds to live threads in the

system. Based on the history of latest temperatures and information of sensor readings,

the predicted temperature is generated with using linear approximation. The hardware

mechanism supports DTM by throttling Instruction-Level Parallelism (ILP) − for

example, by adjusting issue width, retire width or speculation control. There are nine

hierarchical severity levels which have different instruction bandwidths by throttling ILP.

Considering the predicted temperature from the VTM, the last two temperature readings,

the average temperature, and the last DTM action, the current DTM action (the severity

level) is determined. The proposed technique improves the performance by 45%

compared to DVFS and has almost identical thermal and performance efficiency to the

control-theoretic technique [Skadron et al. 2002] (this technique will be discussed in

Section 3.2.1.1), with a smaller hardware overhead and DTM response time.

3.1.2. On-chip Sensor Placement

We have discussed how to accurately sense (estimate) the temperature of

microprocessors. However, sensor location is just as important as sensing (estimation)

method in monitoring localized temperatures, since faraway thermal sensors are not

sufficiently accurate. To measure localized temperatures accurately, we have to deploy

many thermal sensors, which may be too costly. To resolve this problem, many

researchers have studied efficient location of the limited number of the thermal sensors.

Gunther et al. [2001] introduced a thermal sensor placement on the Intel Pentium 4

microprocessor. By analyzing extracted thermal maps, they found optimized locations of

the thermal sensors by identifying common hotspots. A thermal map is extracted by

observing thermal behaviors of popular applications. To cover the entire chip area with

the limited number of sensors, they set a thermal guard-band. This thermal guard-band

ensures that no part of the microprocessor is in thermal emergency as long as the sensed

temperature does not go over the threshold. Lee et al. [2005] proposed an analytical

model that defines the magnitude of required guard-band. According to their model,

temperature sensing gets less accurate as the distance between the heat source and the

thermal sensor increases. Their analytical model fits well on the Intel Pentium 4, and they

showed that the sensor placement and thermal guard-band setting of the Pentium 4 are

appropriate.

X: 8 ● J. KONG, S. W. CHUNG, and K. SKADRON

ACM Computing Survey, Vol. X, No. X, Article X, Pub. date:

Memik et al. [2008; Murkherjee and Memik 2006a] proposed a thermal sensor

placement technique which considers thermal hotspots when executing general

benchmark applications (SPEC2000). Utilizing the k-means clustering algorithm, with k

sensors (clusters) and n hotspots (data points), the proposed technique finds the optimal

point of each k (thermal sensors). Both global and local placements are considered for

optimizing the sensor locations. The global placement is a chip-wide placement which

considers well-known hotspots in the microprocessor. The local placement is at the

component level, which is required for more fine-grained thermal optimizations (e.g.,

thermal-aware register banking). While their technique originally deploys a thermal

sensor to each functional unit, it also provides a trade-off between the number of thermal

sensors and temperature sensing accuracy through a hybrid technique which can deploy

multiple thermal sensors in one functional unit. The proposed technique reduces the

thermal sensing error down to 1.63ºC (3.18ºC at the worst case).

To sense the localized temperature with the limited number of thermal sensors, an

interpolation scheme and interpolation-based dynamic selection method were proposed

[Long et al. 2008; Memik et al. 2008]. In grid-based uniform sensor placement

techniques, inaccurate temperature measurement may be carried out if the thermal sensor

is far away from the hotspot. With collaborations among thermal sensors around each

hotspot, the proposed interpolation scheme enables accurate temperature estimation of

hotspots where thermal sensors are not deployed. An interpolation-based dynamic

selection method is used to find localized hotspots with minimal sensor activation. With a

large scale of processing data from many grid thermal sensors, there are serious

interconnect power overheads due to heavy communication overheads. To reduce the

large scale of data from many grid thermal sensors, the number of enabled thermal

sensors should be minimized. To optimize the number of enabled thermal sensors, the

interpolation-based dynamic selection method forms a hierarchy of the thermal sensors,

as depicted in Fig. 2. First, coarse-grained thermal sensors (s0~s15 in Fig. 2) measure the

temperature of each sensor location. Four adjacent thermal sensors deployed near the

hottest spot (s5, s6, s9, and s10 in Fig. 2) are selected and nine grid thermal sensors

within the selected four thermal sensors are activated. Among the estimated temperatures

with nine grid sensors, the sensor location which shows the highest temperature is a

hotspot. This technique enables a reduced number of the activated thermal sensors by a

hierarchical usage while maintaining reasonable accuracy.

S0 S1 S2 S3

S4 S5 S6 S7

S8 S9 S10 S11

S12 S13 S14 S15

Estimated Hotspot Location

S0 S1 S2 S3

S4 S5 S6 S7

S8 S9 S10 S11

S12 S13 S14 S15

The Nearest Grid Sensor

Fig. 2 An interpolation-based dynamic selection technique [Long et al. 2008; Memik et al. 2008]

Recent Thermal Management Techniques for Microprocessors ● X: 9

ACM Computing Survey, Vol. X, No. X, Article X, Pub. date:

3.2. Microarchitectural Techniques

3.2.1. For Microprocessor Cores

3.2.1.1. For General Applications

As predicted by Borkar [1999], temperature problems in microprocessors have become

severe as process technology scales down feature sizes. Even though technology scaling

allows higher clock frequencies and more sophisticated microarchitectures that make

microprocessors faster and more power-efficient, they also increase power density. Even

if clock frequencies and microarchitectural complexity abate, a growing problem is that

supply voltage for full performance is no longer scaling down as fast as device feature

size is being reduced [SIA 2009], and this leads to growing power densities at full

performance. Although the operating supply voltage can be decreased by low power

techniques such as DVFS, such techniques reduce performance and do not alleviate the

growing severity of thermal stress at the rated performance.

Thermal problems have been addressed by many researchers since the early 2000s and

thermal management is still an active research area. One representative thermal

management research area is Dynamic Thermal Management (DTM). Early studies in

DTM focused only on temperature management, ignoring performance optimization. The

basic insight was to design the cooling solution for the worst expected power dissipation

rather than a theoretical worst case with the maximum possible power dissipation. To

protect against unexpected or malicious behaviors that exceed the capacity of such a

cooling solution, temperature should be monitored and thermal excursions must throttle

down the processor's activity and hence power dissipation. Initially, simplistic and costly

throttling was used; for example, it is known that the Intel Pentium 4 simply reduces the

duty cycle on the clock, and hence the overall activity of the processor, by 50% [Intel

2002].

If the thermal design power or TDP − the power dissipation that the thermal solution

is designed to accommodate − is high enough, thermal excursions are unlikely and

performance with throttling engaged is unimportant. However, as power dissipation and

cooling costs continue to grow, more aggressive reductions in cooling costs become

appealing. This increases the likelihood that DTM may engage during a legitimate

application, and performance optimization becomes important to avoid the inevitable

performance loss caused by DTM. Brooks and Martonosi [2001] evaluated the

Trigger

Reached

Turn

Response
On

Check

Temperature
Check

Temperature

Turn

Response
Off

Response On

Initiation Delay Response Delay

Policy Delay Shutoff Delay
Fig. 3 DTM mechanisms [Brooks and Martonosi 2001]

X: 10 ● J. KONG, S. W. CHUNG, and K. SKADRON

ACM Computing Survey, Vol. X, No. X, Article X, Pub. date:

performance impact of many DTM techniques for high performance microprocessors.

They proposed DTM triggering, response, and initiation mechanisms focusing on

reducing performance loss. Fig. 3 illustrates DTM mechanisms for microprocessors.

When the temperature of the microprocessor reaches the pre-defined trigger temperature,

there is an initiation delay before triggering DTM. After the DTM response is engaged,

the microprocessor checks the temperature at each time interval. When the sensed

temperature drops below the DTM trigger temperature, the DTM is disengaged and the

microprocessor runs normally again. Disengagement may also incur some delay. Their

proposed DTM response mechanisms can be categorized into voltage/frequency scaling

and processor rate throttling. Clock frequency scaling and voltage/frequency scaling

techniques adjust the clock frequency and/or voltage of the microprocessor dynamically.

The relationship among dynamic power consumption, clock frequency, and supply

voltage is given by P∝Vdd
2
f, and we can approximate performance loss as being

proportional to clock frequency. This means that frequency scaling alone, as well as

voltage and frequency scaling together (DVFS, or dynamic voltage and frequency

scaling), are both able to reduce temperature. Another approach proposed by Brooks and

Martonosi is the use of microarchitectural techniques to throttle the instruction bandwidth

of the microprocessor (thus throttling ILP and these techniques can also be referred to as

ILP techniques). Note that DVFS is able to achieve a cubic reduction in power relative to

the performance loss, while ILP throttling techniques generally only achieve linear

reductions in power. Decode throttling and speculation control restrict the decode width

and the number of unresolved branches, respectively. I-cache toggling turns off the front-

end of the microprocessor, so that in-flight instructions continue but no new instructions

are fetched. These all have the effect of reducing switching power, but like frequency

scaling, achieve only linear reductions in power relative to the performance loss. An

important distinction, however, is that ILP throttling techniques can be engaged with

much lower latency than a change in the voltage and clock frequency. Actually, in their

study, DVFS invocation overhead is assumed to be 10~50us which are much larger than

the invocation overhead of ILP throttling techniques. In case of commercial processors

such as Pentium M, DVFS invocation overhead is also 10~20us [Intel 2003]. Recently,

however, DVFS invocation overhead (approximately ~5us) became much smaller [Intel

2010] due to the advance of control circuitry, which is still larger than ILP throttling

overhead though.

To efficiently alleviate performance losses due to thermal management, hybrid and

hierarchical DTM techniques were proposed. Fig. 4 is a conceptual structure of the

hierarchical and hybrid DTM. The hierarchical DTM uses a gradual response mechanism

to minimize the performance loss caused by the fixed DTM response [Huang et al. 2000].

The fixed DTM response applies the same DTM technique to different thermal stresses.

Hence, it may over-react, and consequently incur excessive performance losses. On the

other hand, the hierarchical DTM technique selects one out of four thermal management

techniques (a small filter cache, data cache sub-banking, DVFS, and clock gating). The

hierarchical DTM selects a more aggressive thermal management technique in case of

thermal emergency, resulting in lower performance loss compared to using only clock

gating or four techniques at once (combined DTM). A challenge with the hierarchical

technique, however, is to select the correct mix of techniques. The hierarchical DTM

technique shows much better performance than the combined DTM under various

Recent Thermal Management Techniques for Microprocessors ● X: 11

ACM Computing Survey, Vol. X, No. X, Article X, Pub. date:

thermal constraints.

The hybrid DTM technique uses several response mechanisms to adaptively respond to

thermal stresses for better performance [Skadron 2004]. This differs from the hierarchical

DTM technique, because the response mechanism can be changed to achieve optimal

performance, notably when thermal stress is not severe. For instance, in case of mild

thermal stress, a DTM controller selects microarchitectural throttling techniques with low

initiation delay, such as decode throttling or I-cache toggling, and further uses a feedback

controller to select the duty cycle on this toggling mechanism. Conversely, in case of

severe thermal stress (though not yet a thermal emergency), the controller engages DVFS,

which has higher initiation delay but once engaged, achieves much better reductions in

power for a given performance penalty. The key challenge in designing the hybrid DTM

technique is to determine the proper balance between ILP techniques and DVFS.

Compared to the conventional DVFS, the hybrid DTM reduces performance overheads

(incurred by DTM) by 25%, on average.

Feedback control can be applied to most DTM techniques to minimize performance

loss by adapting the specific setting (voltage/frequency, throttling duty cycle, etc.) to the

minimal level required to maintain a safe temperature, and by adapting the setting as

application behavior changes [Skadron et al. 2002; 2003]. PI control appears to suffice

[Skadron et al. 2003; 2004]. Open-loop response, on the other hand, should use an

aggressive response to ensure that temperature is controlled no matter how severe the

stress, and as a result, the system is likely to over-react and performance then suffers

unnecessarily. In one study by Skadron et al. [2002], closed-loop control reduces the

performance loss by 65% on average compared to open-loop techniques.

Jung and Pedram [2006] proposed a stochastic dynamic thermal management

technique which takes into account the stochastic nature of temperature variation. This

technique utilizes DVFS for thermal management. They modeled thermal states and used

a Markov decision process to determine the next state. A dynamic thermal manager

decides the next action (the thermal state). Based on the temperature, the dynamic

thermal manager calculates the cost of each state and selects the next state which has the

minimum cost. As a result, this technique guarantees the thermal safety and shows better

A small filter cache

Cache sub-banking

DVFS

Clock gating

Thermal

stress

Mild

thermal

stress

Severe

thermal

stress

ILP techniques DVFS

(a) Hierarchical DTM [Huang et al. 2000] (b) Hybrid DTM [Skadron 2004]

Fig. 4 Hierarchical DTM and hybrid DTM

X: 12 ● J. KONG, S. W. CHUNG, and K. SKADRON

ACM Computing Survey, Vol. X, No. X, Article X, Pub. date:

performance compared to three fixed voltage/frequency settings (1.95V/500MHz,

1.80V/350MHz, 1.65V/200MHz). Shin et al. [2009] instead proposed a DTM technique

which considers fan speed. In most high performance microprocessors, there is a cooling

fan helping the microprocessor quickly convect heat to the ambient. Conventional

thermal management techniques maintain the lowest cooling fan speed just to avoid

thermal emergencies. However, those techniques may incur DTM inefficiencies due to

temperature-dependent leakage power consumptions. Using the lowest cooling fan speed

just to avoid thermal emergencies leads to excessively high temperatures (though under

the threshold temperature) in the microprocessor, and substantial temperature-dependent

leakage power is consumed. Their proposed technique optimizes energy consumption by

using a convex function considering temperature-dependent leakage power and cooling

fan power. Their technique reduces energy by up to 17.6%, which means that only

considering thermal emergencies may incur energy inefficiencies due to the temperature-

dependent leakage power consumption.

In order to target thermal control to specific functional units, Patel et al. [2007]

proposed a bank-switching technique for the register files. The architectural insight is that

there is little performance loss with the smaller register file. Hence, this technique divides

the register file into two banks, the primary and the secondary bank. Each bank is

activated periodically, thus halving the power density of the register file. This technique

reduces the temperature by 3.4ºC with 0.75% of the performance overhead. Another work

concentrating on a specific functional unit is the O
2
C (occasional two-cycle operation)

architecture proposed by Ghosh et al. [2008]. They applied O
2
C to the adder and the

multiplier. The overall architecture is shown in Fig. 5. When thermal sensors detect the

overheating of the microprocessor, VDDL (lower level of the supply voltage) is supplied to

the EX pipeline stage instead of VDDH (the nominal VDD). Consequently, the latency of

the EX pipeline stage is increased to two cycles (originally one cycle) due to the reduced

supply voltage. This technique reduces throughput by 11% and reduces temperature by

6.6% on average.

Donald and Martonosi [2005] proposed a thermal management technique for

Simultaneous Multi-Threading (SMT) architectures. Their proposed technique adjusts the

instruction fetch policy of conventional SMT processors. When the integer register file or

the floating point register file is overheated, their thread selection mechanism chooses the

Instruction

Fetch

Instruction

Decode
Execution Memory

Write

Back

CLK

freeze

Pre-decoder
0

1
VDDL

VDDH

Temperature

Sensor

TREF

Fig. 5 O2C Pipeline Architecture [Ghosh et al. 2008]

Recent Thermal Management Techniques for Microprocessors ● X: 13

ACM Computing Survey, Vol. X, No. X, Article X, Pub. date:

coolest thread by looking at the profiled register file access frequency. This technique

shows 30% performance improvement as well as 44% ED
2
 (Energy-Delay

2
) reduction, on

average, compared to the conventional fetch toggling technique. As another work on

SMT architectures, Winter and Albonesi [2008] proposed DTM techniques for clustered

SMT architectures. The main drawback with conventional DTM techniques for SMT

processors is that the performance of cool threads can also be degraded as a side effect of

global DTM techniques, because both cool and hot threads share the resources of the

SMT processor in a tightly interleaved fashion. They proposed three main policies for

DTM: dispatch gating policies, heat spreading policies, and hybrid policies. The dispatch

gating policy simply stops dispatching of instructions issued by hot threads when the

temperature reaches the DTM trigger temperature. According to the granularity of

dispatch gating control, the dispatch gating policy can be classified into three different

policies: global, thread, and cluster-dispatch gating policies. The heat spreading policy is

to reallocate threads to clusters for thermal balancing across clusters. Since hot threads

are assigned to cool clusters and vice versa, it makes temperatures of clusters more

balanced. The hybrid policy is a combined version of the heat spreading policy and

DVFS. According to their evaluation results, the hybrid policy shows performance

slowdown of 2.8% compared to the baseline (without any DTM techniques) while only

adopting DVFS incurs 4.3% performance slowdown compared to the baseline.

With the advent of multi-core architectures (also sometimes referred to as chip

multiprocessors or CMPs), Powell et al. [2004] proposed thermal-aware thread mapping

and migrating techniques in SMT/CMP environments. The goal of their heat and run

technique is to maximize the throughput of SMT/CMP without overheating. Their

technique consists of Heat-and-Run Task Assignment (HRTA) and Heat-and-Run Task

Migration (HRTM). HRTA gathers threads from several cores to one SMT processor,

which maximizes the throughput of one execution core (heat). Obviously, the

temperature of the heated core increases, and then the threads are migrated from the

heated core to the idle cores by HRTM (run). Since there is a resource limitation in one

core, threads should avoid the resource contention as much as possible. Thus, they

suggested that the combination of threads in the same core have different characteristics,

such as combining integer and floating point operations, or computation-bound and

memory-bound behavior. Since their main focus is to enhance the throughput using a

simple technique, the detailed thermal simulation results are not provided. However,

throughput is improved by 9% through leveraging HRTA and HRTM, compared to the

conventional temperature management techniques such as DVFS or stop-go (stop-go

Table I. Classifications of thermal management techniques for multi-core
microprocessors [Donald and Martonosi 2006]

 No Migration With Migration

 Stop-go DVFS Stop-go DVFS

Global Stop-go Global DVFS
Stop-

go+Migration

Global

DVFS+Migration

Distributed
Distributed Stop-

go
Distributed DVFS

Distributed Stop-

go+Migration

Distributed

DVFS+Migration

X: 14 ● J. KONG, S. W. CHUNG, and K. SKADRON

ACM Computing Survey, Vol. X, No. X, Article X, Pub. date:

simply pauses the execution of the cores in case of thermal emergency).

In order to optimize performance of multi-core processors under DTM techniques,

Donald and Martonosi [2006] compared many thermal management techniques for multi-

core architectures. They classified thermal control techniques for multi-core architectures

into twelve techniques. Table I shows their classification. Though only eight techniques

are shown in Table I, each With Migration technique can be divided again into the

counter-based and the sensor-based techniques. Thus, the total number of techniques is

twelve. The counter-based techniques use performance counters to detect the thermally

intensive cores, while the sensor-based techniques use the thermal sensors. The

difference between the global and the distributed technique is a control granularity. The

global techniques control all of the cores at the same time, while the distributed

techniques can control each core separately. Migration techniques move tasks from hot

cores to cool cores. Consequently, the hot cores can be cooled down for a while and the

cool cores accommodate the thermally intensive tasks. The migration techniques support

the heat balancing of each core to prevent a specific core from being overheated. Since

the migration technique is orthogonal to stop-go or DVFS techniques, it can be applied

simultaneously with stop-go or DVFS techniques. From the perspective of performance,

the distributed DVFS technique shows the best performance result. In another approach

for high-performance microprocessors, Murali et al. [2008] proposed a dynamic thermal

control technique with a design-time profiling support. It consists of two phases; design-

time phase and run-time phase. When a chip is manufactured, a look-up table is

embedded for the frequency selection. The look-up table is filled up through a convex

optimization process and the appropriate frequency is determined according to the initial

temperature and performance requirement (target clock frequency). In the run-time phase,

the processor chooses the optimal frequency by looking at this table. This technique

reduces 60% of task waiting time. It means that the tasks efficiently avoid the thermal

emergency while the performance requirements are satisfied. Chantem et al. [2009] also

proposed an optimal DVFS control technique to maximize throughput of a

microprocessor that has discrete voltage/frequency levels. Of course, temperature of the

microprocessor should be maintained under the maximum allowable temperature. By

using their formulations, they found that only two voltage/frequency levels (a high and a

low level) out of the entire range of voltage/frequency levels are enough for maximizing

throughput. Their proposed DVFS control technique also determines the optimal duration

that the microprocessor stays in each voltage/frequency level. By adopting this technique,

the microprocessor runs at high speed until the temperature gets to the maximum

allowable temperature. Once the temperature reaches the maximum allowable

temperature, the voltage/frequency level fluctuates between the high and low levels over

the entire execution time. For their evaluation, seven discrete voltage/frequency levels are

used − 0.462, 0.615, 0.692, 0.769, 0.846, 0.923, and 1.000 (numbers mean the

normalized speed). Their proposed technique selects 0.846 and 0.923 as high and low

voltage/frequency levels, respectively. As a reference, they also present a naïve policy

that uses the lowest (0.462) and highest (1.000) voltage/frequencies. When adopting their

proposed optimal DVFS control technique, throughput is improved by 47.7%, compared

to the throughput when adopting the naïve policy.

Recent Thermal Management Techniques for Microprocessors ● X: 15

ACM Computing Survey, Vol. X, No. X, Article X, Pub. date:

For Multi-Processor System-on-Chips (MPSoC), Coskun et al. [2008b] proposed an

online learning algorithm. Their proposed technique formulates a loss function. The loss

function takes into account four factors; hotspots, thermal cycles, spatial gradients, and

performance. Note that thermal cycles and spatial gradients are used to consider

reliability. The thermal cycle means a temporal spike of temperature fluctuations and the

spatial gradient means temperature difference between the coolest and the hottest core.

While the conventional algorithms typically consider performance and temperature, this

algorithm also considers reliability. Using the loss function, their algorithm chooses the

appropriate policy which has the least overhead. On average, the algorithm reduces 20%

of hotspots, and 60% of thermal cycles. For more optimization, Zanini et al. [2009]

proposed a thermal-aware balancing technique using a control theory for MPSoCs. Fig. 6

depicts an overview of the proposed control system. The thermal balancing regulator is

the main thermal controller of the system. To meet the performance requirement of

MPSoCs, the regulator receives the frequency requirement. The other input is the thermal

profile feedback from the MPSoC. The output of the controller is the regulated frequency.

The role of the emergency saturation block in the thermal balancing regulator is to avoid

thermal emergency. If the maximum temperature of the MPSoC (Max Temp in Fig. 6) is

higher than the pre-defined threshold temperature (Tmax in Fig. 6), the regulated

frequency is saturated to avoid thermal emergency. This technique reduces the task

waiting delay by 17.7% compared to the best case of the convex optimization technique

explained above [Murali et al. 2008]. In addition, the duration during which temperature

differences among the cores are over 4ºC is reduced by 27.45% compared to the convex

optimization technique by Murali et al. [2008].

For saving energy while considering temperature, Bao et al. [2008] proposed a DVFS

technique with design-time support for MPSoCs. They add a temperature analysis

process to the design-time analysis to an existing DVFS technique by Andrei et al. [2007]

which only considers the energy optimization under fixed temperature. However, the

thermal profile of MPSoC dynamically changes at run-time. Since leakage energy

consumption is deeply related to temperature, the assumed (fixed) temperature may lead

Thermal balancing

regulator
MPSoC

Performance

requirements
Frequency

assignment

Thermal

profile

Performance

requirements

Thermal profile

Thermal policy controller

Regulated

frequency
Emergency saturation block

Max Temp > Tmax ?

Yes: Saturate frequency

to a specific value to

prevent overheating

No: Use regulated frequency

Frequency

assignment

Fig. 6 Overview of the control system proposed by Zanini et al. [2009]

X: 16 ● J. KONG, S. W. CHUNG, and K. SKADRON

ACM Computing Survey, Vol. X, No. X, Article X, Pub. date:

to inaccurate energy estimation at design-time, which eventually results in incorrect

voltage and frequency selection for energy minimization. In their proposed technique, to

take into account run-time temperature (which is dynamically changed, not fixed) of

MPSoCs, they used the HotSpot tool [Skadron et al. 2004]. Based on estimated run-time

temperature, they calculate the optimized voltage (both supply voltage and body bias

voltage) and frequency to minimize energy consumption considering temperature-

dependent leakage. Compared to DVFS using the assumed temperature, the temperature-

aware DVFS shows better energy savings (over 4% and 8% at the best case with the

MPEG4 and GSM voice codec, respectively).

For many-core (64 cores) designs, Mukherjee and Memik [2006b] proposed a

frequency selection technique for multi-core microprocessors. This technique chooses the

optimum frequency for the core when a thermal emergency is detected at run-time. The

main benefit of this technique is a consideration of neighboring cores. Their proposed

technique adjusts the clock frequency of the hot core and its neighboring cores together

by applying the DVFS technique to minimize the performance loss. Their proposed

technique is fast enough to be applied for run-time thermal management.

Recently, 3D processor technology has emerged and offers many advantages compared

to traditional 2D processors: reductions in wire length, chip area, and energy. In 3D

microprocessors, however, the increased power density due to stacked dies leads to

higher temperature. Accordingly, thermal management is even more important for 3D

microprocessors and DTM techniques for 3D multi-core architectures have been

developed. 3D-Wave [Sun et al. 2007] was proposed to tackle the temperature problem in

3D MPSoCs. As a basic assumption, their main target is 3D MPSoCs which have two

layers, each of which has four cores (the total number of cores is eight). Their algorithm

(3D-Wave) tries to balance the power consumption of all the cores, which eventually

lowers the peak temperature. Moreover, the supply voltage is scaled to the optimal point

that minimizes power consumption and meets the deadline of the task to further reduce

the power consumption (PBMCA: for Power Balancing and Minimization − a

Constructive Algorithm). When hot tasks are detected, they are migrated by an Iterative

Hotspot Migration algorithm (IHM), which iteratively finds the optimum migration

decision considering the physical location of the cores. Compared to only PBMCA, 3D-

Wave (PBMCA+IHM) shows average temperature reduction of 27.9ºC across benchmark

sets including SPEC2000, MediaBench, and AlpBench. Compared to IHM-P (an iterative

hotspot migration technique which only considers the power consumption, not

temperature), the proposed technique also shows temperature reduction of 6.5ºC.

Several techniques were also proposed to resolve thermal problems in 3D Chip Multi-

Processors (CMP). Zhu et al. [2008] proposed a thermal management technique for 3D

CMPs by collaboration between the hardware and operating system (OS). Their main

goal is to extract the maximum instruction throughput from 3D CMPs. First, to maximize

throughput of a 3D CMP, OS determines power-thermal budgets (a voltage/frequency

setting) of the cores by considering the physical location of the cores and monitoring

temperature as well as activity of the cores. Considering the workload characteristics

(IPC: Instruction Per Cycle), the OS assigns tasks to cores. Tasks can also be migrated to

maximize performance by considering cooling efficiency of the cores and IPC of tasks.

This technique also considers run-time transient thermal behaviors that cannot be

statically captured by OS. By engaging DVFS (not global, but per-core), this technique

Recent Thermal Management Techniques for Microprocessors ● X: 17

ACM Computing Survey, Vol. X, No. X, Article X, Pub. date:

avoids thermal emergency. As a result, the instruction throughput is improved by 29.84%

(on average) compared to the simple distributed DVFS technique [Donald and Martonosi

2006].

Coskun et al. [2009] proposed another technique to manage temperature for 3D multi-

core processors. They introduced an adaptive temperature-aware job allocation algorithm

(Adapt3D) and a hybrid technique which combines Adapt3D with DVFS. Their

algorithm balances application loads considering the location of the cores. Using the

thermal index which reflects the location of the cores, the cores which can be easily

heated up due to their location have less intensive loads than the other cores. In this

technique, a special value is maintained for each core to assign tasks to cores. Each value

in the core represents the possibility that a task is fetched to the core. Therefore, the

scheduler gives higher priority to cores that have higher value. Note that this value of

each core is determined using both the thermal index of each core and thermal behaviors.

If the thermal index of the core is high (more prone to be a hotspot), the value of this core

is decreased faster. Thermal behavior is incorporated by increasing the value in case that

the average temperature in the history window of the core is lower than the preferred

temperature and decreasing the value in the opposite case. In summary, the thermal index

determines the slope of the value change while thermal behavior determines the rise and

fall of the value compared to the previous value. Adapt3D shows almost same

performance compared to the default system configuration (dynamic load balancing: the

default task scheduling policy in modern operating systems) but considerably reduces

hotspots. In addition, more hotspots are reduced when Adapt3D is combined with DVFS

(additionally 20~40%).

Since temperature is one of the most crucial factors for microprocessor design, many

microprocessor vendors already implemented some DTM techniques in their commercial

microprocessors. In Intel Pentium 4 microprocessors, there is a thermal management

mechanism, named Thermal Monitor 1 (TM1) [Berktold and Tian 2009]. TM1 is known

to periodically stop the microprocessor’s clock for up to 2 microseconds, reducing the

duty cycle of the microprocessor by 50% (and other duty cycles can be programmed).

This is somewhat similar to adjusting frequency. Intel’s other thermal management

mechanism, Thermal Monitor 2 (TM2), is present in the Pentium M and Core 2 lines

[Berktold and Tian 2009]. They also implement TM1, but TM2 adjusts voltage as well as

frequency. It can be implemented by adjusting Phase-Locked Loop (PLL) circuits and

adding a voltage regulator. Typically, TM2 shows better performance (the performance

difference of 4% when the temperature is 77ºC) than TM1 under the same temperature

[Rotem et al. 2004]. Turbo boost technology [Intel 2008] enhances performance by

raising voltage/frequency of specific cores when there is sufficient room in the thermal or

power budget (typically because some cores are under-utilized or idle). This technique is

applied to Intel Nehalem-based microprocessors such as the Core i5 and i7, but the

frequency boost is limited, so that the active core cannot exceed the rated TDP, even if

the temperature is not at a dangerous level. In contrast, Sandy Bridge (Intel’s next

generation microarchitecture) allows more aggressive boosting because it is controlled by

directly monitoring temperature [Gwennap 2010]. AMD microprocessors use

Cool’n’Quiet [AMD 2005], which regulates voltage/frequency and fan speed to balance

power and temperature considering utilization of microprocessors. When the

microprocessor needs high performance, the Cool’n’Quiet technology enables the

X: 18 ● J. KONG, S. W. CHUNG, and K. SKADRON

ACM Computing Survey, Vol. X, No. X, Article X, Pub. date:

microprocessor to raise its voltage/frequency and fan speed. By raising the fan speed

together with voltage/frequency, temperature can be maintained below the emergency

temperature. In the opposite case that the microprocessor does not need high performance,

both the voltage/frequency and fan speed are reduced. While Cool’n’Quiet is for

desktop/server microprocessors, PowerNow! [AMD 2005] is another version of

Cool’n’Quiet for laptop/mobile microprocessors. The only difference from Cool’n’Quiet

is that PowerNow! operates under tighter thermal constraints (laptop/mobile

microprocessors have quite lower TDP of around 30~40W compared to the desktop

processors’ TDP of around 100W) than Cool’n’Quiet. Power7 [Ware et al. 2010] also

employs DVFS and the turbo mode, which are similar to Intel’s TM2 and Turbo boost,

respectively.

3.2.1.2. For Media (streaming) Applications

Unlike general applications, multimedia applications have a streaming feature. Thus,

multimedia applications require different thermal management solutions. Srinivasan and

Adve [2003] proposed a predictive DTM technique for multimedia applications. Unlike

conventional thermal management techniques that are reactive rather than predictive

(reactive thermal management techniques engage the DTM operations when the

temperature of the microprocessor reaches the threshold temperature), their algorithm

takes advantage of the frame rate, which imposes an upper bound on the required

performance. Predictability comes from the repeatability of multimedia operations; frame

types tend to exhibit similar properties. Their DTM technique using this predictability

improves the performance of the processor up to 3.6 times. Lee et al. [2006; 2008] also

proposed a GOP (Group of Pictures)-level temperature management technique for

MPEG2 decoding. The big difference compared to the previous techniques is that this

algorithm avoids thermal emergency by slightly degrading the quality of the frames. The

frame quality degrading is divided into the spatial and temporal degradation. The spatial

degradation is carried out by omitting the SNR (Signal-to-Noise Ratio) scalability step

and the saturation control step among the entire decoding steps. The temporal

degradation drops discardable B frames when deadline misses occur. This technique

maintains the thermal safety with 0.12 RMSE (Root Mean Square Error) due to the frame

quality degradation and a frame-drop probability of 12.5%, on average.

A thermal management technique focused on MPEG4, rather than MPEG2, was

proposed by Yeo et al. [2007]. They utilize GOP history to determine the optimum

frequency for decoding the current GOP. Generally, MPEG video frames tend to have a

similar complexity between the previous GOP and the current GOP since continuous

GOPs typically have similar scenes. Thus, we can refer to the previous GOP information

for predicting the complexity of the subsequent GOP. The determined frequency is

thermally safe as well as satisfying Quality of Service (QoS). To support it efficiently,

they improved a feedback controller already proposed by Lu et al. [2003]. The main

problem of Lu et al.’s technique is that they did not consider frame complexity: they

assume all the frames in the frame buffer have the same complexity. On the other hand,

Yeo et al.’s improved feedback controller considers the complexity of frames by referring

to the information of successive GOPs. Due to the predictability of GOP information,

their DTM technique totally removes frame misses in twelve real-world MPEG4 movies.

The proposed technique decreases temperature by up to 13% compared to the

Recent Thermal Management Techniques for Microprocessors ● X: 19

ACM Computing Survey, Vol. X, No. X, Article X, Pub. date:

conventional DTM techniques.

For multimedia applications such as MPEG or H.264/AVC, a Hybrid DTM technique

using statistical methods for multimedia applications (HDTM) was proposed [Yeo and

Kim 2008] to avoid thermal emergency while maintaining QoS. The performance

requirement of each application is different among multimedia applications such as

MPEG or H.264/AVC. To tackle this problem, the HDTM hardware consists of three

main parts, an application characteristics profiler, a thermal characteristics predictor, and

an optimal frequency adapter. The application characteristics profiler estimates required

clock cycles for decoding frames. Using the estimated clock cycle requirement, they

build a Probability Density Function (PDF) of the performance requirement to determine

the optimal frequency for each multimedia application. The thermal characteristics

predictor predicts the future temperature using Fourier thermal model. The optimal

frequency adapter determines the system-wide frequency including overheads in the

entire system environment, such as OS overheads as well as the multimedia application

itself (the required clock cycles and the predicted future temperature). The HDTM

reduces the temperature by 15ºC with the frame drop rate of 0.2%, on average.

3.2.2. For On-chip Caches

Originally, the on-chip caches have been thought to be relatively cool units, because

dynamic power is expected to be spatially distributed across the cache structures, and

indeed the average temperature of the on-chip caches is relatively low compared to

functional units with high localized activity, such as the register files or the ALUs.

However, leakage power is increasing and becoming severe, typically accounting for

30~50% of total power dissipation now (though employing sleep-mode transistors can

reduce leakage in caches). Since on-chip caches contain so many transistors and occupy

such a large area in most microprocessors, their leakage accounts for a large fraction;

their high leakage contributes significantly toward their temperature, which in turn

exacerbates sub-threshold leakage, which is exponentially dependent on temperature. To

reduce excessive leakage power in on-chip caches, many techniques have been proposed

(e.g., [Kaxiras et al. 2001; Flautner et al. 2002; Li et al. 2002]). These techniques

efficiently reduce cache leakage power while minimizing performance overhead.

However, the purpose of these techniques is to mainly reduce leakage power consumed

by idle or inactive cache lines or banks; if accessed more often than the sleep mode’s

timeout period, a line or bank will not be able to sleep. Moreover, many processors are

not employing sleep-mode transistors in caches because it has substantial design and

validation effort. Thus, if a single cache location is targeted with an intensive access

pattern, it may be a hotspot depending on the layout of the cache sub-structures

[Sankaranarayanan et al. 2009]. For example, there can be a thermal attack in L1

instruction caches as shown by Kong et al. [2010], and described in Section 3.6.

John et al. [2005] observed thermal behaviors of the on-chip caches in finer granularity

and proposed two optimizing techniques; a separated subarray scheme and an interleaved

subarray scheme. The separated scheme scatters cache accesses from one to several rows,

which reduces the power density of the cache subarrays. In the interleaved subarray

scheme (not to be confused with bitline interleaving), which is more aggressive than the

separated subarray scheme, a subblock pre-decoder allows only one word to be accessed

X: 20 ● J. KONG, S. W. CHUNG, and K. SKADRON

ACM Computing Survey, Vol. X, No. X, Article X, Pub. date:

rather than a full cache block. In summary, only one subarray is accessed at once in the

interleaved subarray scheme, while several subarrays should be accessed at once in the

separated subarray scheme in order to access a full cache block instead of a word.

Another advance in thermal management for on-chip caches was proposed by Ku et al.

[2005]. They proposed three techniques; the first technique is not a thermal-aware but a

low-power technique, Selective cache ways with Gated-Vdd Architecture (SGA); the

second technique is Power density Minimized cache Architecture (PMA); and the last

technique is a Block Permutation Scheme (BPS). SGA simply combines the selective

cache way technique [Albonesi 1999] with the gated-Vdd technique for a low-power

cache architecture. Although this technique reduces both the energy consumption and

temperature, it does not show significant temperature reduction since that is not its focus.

The second, PMA cuts off the Vdd signal to the several cache ways depending on the

working set of the application. Compared to the SGA which enables Vdd signals in the

granularity of the entire cache way, the PMA simply distributes enabled cache lines

across several cache ways. For example, assuming that there is a 4-way set associative

cache and only three ways are used out of the entire four cache ways, in the case of the

first row, the PMA disables way3, and enables way0, way1, and way2. In the case of the

second row, the PMA disables way2, and enables way0, way1, and way3. The disabled

cache way is changed row by row. Consequently, the power density is minimized even

though same power is consumed compared to the SGA. The third technique is the BPS.

The BPS shuffles the physical location of the cache lines to relieve thermal interaction

between adjacent cache lines. This means that the physical location of cache access

migrates, distributing heat dissipation, even though contiguous addresses are actually

accessed.

3.2.3. Novel Design Techniques

A variety of non-standard microarchitectures have also been shown to alleviate thermal

stress. We group these into clustered architectures and other forms of restructuring.

3.2.3.1. Clustered Architectures

A clustered architecture is composed of several clusters that are partitioned from the

traditional wide-issue superscalar processor. Consequently, one cluster has narrower

issue widths than its original processor and has its own copy of the register file (with

fewer ports). Clustered architectures were originally studied extensively for their

performance benefits in traditional superscalar, out-of-order processors, where the issue

queue and the rename register file are large, heavily multi-ported, and hence slow and

power hungry. The fact that clustered architectures are smaller also allows higher clock

frequency, thus enabling better performance. Researchers also tried to adopt clustered

architectures to reduce temperature. Clustered organizations replace centralized, highly

multi-ported structures with distributed copies that require fewer ports. This spreads out

activity more uniformly across the chip area and reduces the power density in major

structures such as the register file. However, some performance overhead is introduced

due to communication overheads. Even with dependency-aware steering that tries to

group related instructions, Chaparro et al. [2004] report that, compared to a centralized

architecture with equivalent issue and in-flight instruction capacity, a 4-way clustered

architecture reduces peak temperature by 27% and average temperature by 20% but also

Recent Thermal Management Techniques for Microprocessors ● X: 21

ACM Computing Survey, Vol. X, No. X, Article X, Pub. date:

performance by 20%. They also proposed temperature-aware steering (giving priority to

cooler clusters) and put one or more clusters to sleep (to allow it to cool off). However,

these further increase the performance loss, with only proportional reductions in peak and

average temperatures.

Chaparro et al. [2005] also observed that front-end structures can also be power hungry

and hot, especially the register-rename stage, which is a complex, multi-ported structure.

Renaming and reorder buffers can be partitioned so that each front end renames

independently. For example, each rename unit can only refer to physical registers in its

corresponding cluster. This reduces the number of ports for each structure, so benefits

stem not just from spreading out activity, but also from reducing peak power density. In

their proposed scheme, however, reorder buffers are also partitioned with the front ends,

complicating commit. In a quad-clustered organization with two front ends (each

responsible for two back-end clusters), distributed renaming/reorder buffers/commit only

imposes an average 2% slowdown while reducing power density and hence peak

temperatures by 32~34% in the rename tables and reorder buffers.

The trace cache can also be modified to exploit the banked nature of such an SRAM

structure. A simple technique is bank hopping, in which one or more banks are put to

sleep for some time to allow them to cool off [Chaparro et al. 2005]. For small numbers

of banks, this requires the introduction of an extra bank; otherwise when one bank is

asleep, power density elsewhere would increase. This increases area and may have slight

effects on power and speed due to additional interconnect overhead, but leaves the useful

trace-cache area unchanged. Another possible technique specific to trace caches is to

change the mapping function so that when a new trace is entered into the trace cache (and

will presumably exhibit temporal locality and be used again in the near future), it is

assigned to the coldest bank [Chaparro et al. 2005]. This requires the introduction of a

bank-mapping table for trace-cache reads and writes. These front-end techniques give

better thermal results than the back-end techniques of cluster steering or cluster hopping,

with temperature savings that are more beneficial than the associated slowdown due to

the reduction of leakage energy consumption (recall that there is an exponential

dependence of leakage on temperature). Temperature-aware mapping reduces peak

temperature in the trace cache by only 4% with a 2% slowdown, while bank hopping

reduces it by 12% with a 3% slowdown, and combining the two techniques reduces peak

temperature by 14% with a 4% slowdown.

3.2.3.2. Restructured Architectures

In some of the earliest temperature-aware architecture works, Lim et al. [2002]

proposed a dual pipeline structure to relieve thermal stress on microprocessors. In the

proposed dual pipeline, there is one complex out-of-order pipeline designed for normal

operations with a secondary in-order pipeline which is much simpler (less power-

consuming) than the out-of-order pipeline. Once the temperature of the microprocessor

exceeds the pre-defined threshold temperature, the out-of-order pipeline is clock-gated

and the in-order pipeline is used to execute instructions. When the temperature of the

microprocessor goes down below the threshold, instructions are executed in the out-of-

order pipeline again. The simple in-order pipeline can also be used for mobile devices.

For instance, light workloads such as email accesses can proactively be performed in the

X: 22 ● J. KONG, S. W. CHUNG, and K. SKADRON

ACM Computing Survey, Vol. X, No. X, Article X, Pub. date:

in-order pipeline. It reduces energy consumption, which in turn enhances battery life.

Their results show 11.4%~12.4% improvement in terms of the energy-execution time

metric (energy-delay product) with a small area overhead (4.6%).

Appending an additional pipeline that differs from the others introduces considerable

design complexity in microprocessors, even if the added pipeline is a simple in-order

pipeline. Instead of duplicating the entire pipeline, duplicating only a specific portion

(responsible for hotspots) is more efficient. For more fine-grained pipeline control with

simpler hardware organization, an Activity Migration (AM) technique was proposed by

Heo et al. [2003]. The AM technique duplicates the execution units (the register file and

the ALU) because these units are typical hotspots in microprocessors. The proposed

technique also provides several design options. For example, L1 data caches or

instruction caches can also be duplicated in addition to the execution unit. At design-time,

processor designers determine which functional units are duplicated. Since the original

Functional Unit (FU) and the duplicated FU are identical and redundant, the AM

technique introduces a significant area overhead and also differs operationally from

clustered architectures, where FUs are merely divided into clusters and all the FUs are

expected to be available. The AM technique switches the actual units in use at a specified

time interval. After an interval, execution switches to the spare unit(s), and the original

functional units are idled and placed in a low power state. After one more time interval,

the application switches again, and the units in use are continually rotated in this fashion.

According to their simulation results, the AM technique reduces the peak temperature by

12ºC with the same voltage and frequency settings.

A similar approach was introduced by Skadron et al. [2003], called Migrating

Computation (MC). The main difference between the AM and MC technique is that the

MC technique may only replicate and migrate the register file, while AM replicates

several functional units that are used in one pipeline stage. The other difference is area.

Although there is a trade-off between temperature and area, just replicating the register

file and ALUs in the AM technique already incurs area overhead by 30%. In contrast, the

MC technique concentrates on only the register file and thus incurs much lower overhead.

As described by Skadron et al., this simple technique uses a spare unit (Intreg2 in Fig. 7

FPMap

FPMul

FPReg

FPAdd

Bpred

I-cache D-cache

DTB

ITB

FPQ
LdStQ

IntQIntMap
IntReg

IntExec

IntReg2

FPMul

FPReg

FPAdd

Bpred

I-cache D-cache

DTB

ITBFPQ

FPMap

IntMapLdStQ
IntQ

IntExec

IntReg

(a) Original floorplan (b) New floorplan to support MC

Fig. 7 Alpha 21364 floorplans [Skadron et al. 2003]

Recent Thermal Management Techniques for Microprocessors ● X: 23

ACM Computing Survey, Vol. X, No. X, Article X, Pub. date:

(b)) located in cold areas of the chip, to which computation can migrate only when the

primary unit is overheated. When the primary register file reaches the DTM trigger

temperature, the instruction issue is stalled, instructions ready for write-back are allowed

to be completed, and then the register file is copied to the secondary register file. Then all

integer instructions use the secondary register file, allowing the primary register file to

cool down while computation continues unhindered except for the extra computational

latency incurred by the greater communication distance. The extra distance is accounted

for by charging two extra cycles for every register file access (originally one cycle is

consumed to read a value from the original register file). When the primary register file

returns below the trigger temperature, the process is reversed and the computation

resumes using the primary register file. Fig. 7 depicts the original Alpha 21364 core

floorplan (a) and their new Alpha 21364 core floorplan to support the migrating

computation technique (b). In Fig. 7 (b), the unit, IntReg2, is introduced to support the

MC technique which is located relatively cool area near the floating point units. However,

the limitation of the MC is that there is no way to guarantee prevention of thermal

violations; overheating is still possible if the hotspot is not directly associated with the

register file. Thus, an additional failsafe mechanism is needed, such as DVFS.

Another approach for designing a thermal-aware microprocessor structure is to enlarge

typically hot functional units, as proposed by Powell and Vijaykumar [2007]. They

proposed a Resource Area Dilation (RAD) technique. Typically hot functional units are

enlarged to spread heat well, at the cost of higher latency. S-RAD (Simple-RAD) makes

the hot functional unit bigger while the clock frequency of the microprocessor is reduced

due to the increased delay of the dilated functional units. Another technique, a P-RAD

(Pipelined-RAD) technique, sizes functional units like S-RAD but clock frequency is not

reduced, because the dilated functional units are pipelined. By adopting the P-RAD

technique, the average throughput is increased by 41% in case of thermally constrained

applications because DTM is less frequently triggered than the baseline. However, with

thermally un-constrained applications, the RAD techniques show lower throughput

because of the increased clock cycle of the dilated functional units or the reduced clock

frequency of the microprocessor. Compared to DVFS techniques, P-RAD shows 56%

higher throughput with thermally constrained workloads.

Raju et al. [2008] proposed a microprocessor restructuring technique for both

performance improvement and die temperature minimization. The proposed technique

adjusts the width and height of specific functional units or relocates several functional

units. Through the relocation of the functional units, the technique reduces the maximum

junction temperature of the Pentium 4 floorplan by 9ºC under the same wire length. By

adjusting the width and height of specific functional units on the Alpha architecture,

temperature is reduced by 5ºC at the best case.

Microprocessor restructuring has also been studied for multi-core architectures. Li et al.

[2006] analyzed trade-offs among processor design parameters for multi-core design

under various thermal and area constraints. They assumed three types of thermal

constraints: no thermal limit (an upper bound on performance), low constraints (an

aggressive cooling solution), and high constraints (a low-cost cooling solution). They

evaluated performance in terms of aggregate throughput for a multi-programmed

workload as a function of pipeline depth, pipeline width, the number of cores, and L2

cache size. Thermal constraints lead to pipelines with narrower width and shallower

X: 24 ● J. KONG, S. W. CHUNG, and K. SKADRON

ACM Computing Survey, Vol. X, No. X, Article X, Pub. date:

depth: frequency and ILP cost more in thermal throttling than they can provide in

performance. More severe thermal constraints lead to fewer cores, because increasing

core count incurs too much throttling.

Monchiero et al. [2006] explored the thermal impact of floorplanning and the trade-off

among design parameters in multi-core microprocessors. They also found that the wider

the issue width, the higher the temperature. In order to analyze the thermal impact of

floorplanning in multi-core microprocessor design, they categorized their floorplan into

three types. Fig. 8 describes three types of the floorplan. Similar thermal characteristics

(the thermal hotspots are cores rather than L2 caches or buses) are observed in each

floorplan. With a paired and lined up floorplan, their maximum temperature is higher by

0.4ºC and 1.2ºC, respectively, compared to the centered floorplan. The reason is that the

centered floorplan can spread heat from the cores to relatively cool areas such as L2

caches or buses, while a paired or lined up layout cannot spread heat well due to the

core’s location at the edge or corner of the floorplan. Another factor is thermal coupling

between the cores. The lined up floorplan places cores directly adjacent to each other,

while there are L2 caches or buses between the cores with the paired and centered

floorplans.

In 3D microprocessor design, Puttaswamy and Loh [2007] proposed a thermal-aware

microprocessor architecture called thermal herding. This technique herds microprocessor

activities to one die (the nearest die to the heat spreader and heat sink) among four dies.

Since the most active die is located near the heat spreader and the heat sink, heat is

dissipated more effectively. The utilization of the other dies is restricted. In other words,

this technique relieves the thermal problems by reducing the power density and

considering the distance to the heat spreader and the heat sink. In order to use only one

active die, they used an architectural insight which utilizes narrow-width values; only the

lower several bits are significant and the remaining upper bits are filled with ‘0’s. In their

assumptions, if a meaningful part of data can be represented within 16 bits (out of a 64-

bit word), the data is regarded as a narrow-width value, and vice versa. To support

thermal herding in hardware, there is a quarter portion of the datapath in each vertical

layer. In other words, each layer is similar to a small microprocessor with a 16-bit data

path (originally a 64-bit data path). If operands are narrow-width values, it uses only the

die nearest to the heat spreader and heat sink. Although the temperature of the hottest

functional unit (L1 data cache) in their 3D thermal-herding architecture is increased by

12ºC compared to the temperature of the hotspot (reservation station) in the 2D planar

microprocessor, their 3D thermal-herding architecture reduces the temperature of the L1

Shared Bus

L2 cache

L2 cache

Core0 Core1

Core2 Core3

Shared Bus

L2 cache

Core0 Core1 Core2 Core3

Shared Bus

L2 cache

L2 cache

Core0 Core1

Core2 Core3

(a) Paired (b) Lined up (c) Centered

Fig. 8 Three types of floorplan in multi-core microprocessor design [Monchiero et al. 2006]

Recent Thermal Management Techniques for Microprocessors ● X: 25

ACM Computing Survey, Vol. X, No. X, Article X, Pub. date:

data cache by 29% compared to the conventional 3D design’s worst-case temperature,

regardless of the application.

3.3. Floorplanning

A classic goal of microprocessor floorplanning is performance improvement and

energy reduction by decreasing wire length. However, as power density becomes more

severe, floorplanning techniques should consider temperature (which itself affects

performance) as well as performance improvement and energy reduction. The basis of

thermal-aware floorplanning is maximizing the distance of two hot units to prevent

thermal conduction while improving the performance and reducing the energy/power

consumption. The importance of the temperature-aware floorplanning is shown in Fig. 9

[Sankaranarayanan et al. 2005]. While the performance loss by the DTM techniques is

from 6%~21% depending on the threshold temperature, the performance loss with

thermal-aware floorplanning is less than 2%. In other words, well-designed floorplans

can significantly reduce the performance overheads, which might be caused by the DTM

techniques.

3.3.1. For 2D Planar Microprocessors

First, we introduce floorplanning techniques using simulated annealing, the most

widely used algorithm. The other techniques using genetic algorithms and linear

programming are introduced in the later part of Section 3.3.1.

Sankaranarayanan et al. [2005] developed a temperature-aware floorplanning tool

called HotFloorplan. Based on simulated annealing [Wong and Liu 1986] which is a

classical floorplanning algorithm, their proposed algorithm considers peak steady-state

temperature, as well as chip area and wire delay. Wire length in the critical paths is

considered more than that in the non-critical paths. Thus, each wire needs an associated

weight. If there are relatively more critical paths between two functional blocks, these

two functional blocks are placed adjacently, because their algorithm considers the

weighted wire length. Their objective function is denoted as follows:

25

20

15

10

5

0

P
e

rf
o

rm
a

n
c

e
 S

lo
w

d
o

w
n

 (
%

) DVFS-105

DVFS-110

DVFS-115

DVFS-120

Temperature-

aware

floorplanning

Fig. 9 A performance comparison between the temperature-aware floorplanning and the DTM technique

(DVFS with various threshold temperatures). In DVFS-a, a represents the DTM (DVFS) trigger temperature.

[Sankaranarayanan et al. 2005]

X: 26 ● J. KONG, S. W. CHUNG, and K. SKADRON

ACM Computing Survey, Vol. X, No. X, Article X, Pub. date:

Obj = (A + λW)T (1)

where A is the chip area, T is the peak steady-state temperature for some sets of

benchmarks, and W is the aggregate wire-length metric according to ∑ cijdij. cij is the

weighted number of wires connecting two blocks. dij is the Manhattan distance between

the blocks’ centers. λ is a heuristic weighting parameter that controls the relative

importance of A and W. As a result, this technique reduces the peak temperature by

21.9ºC on average, which leads to performance improvement due to the reduced DTM

invocations.

Another simulated annealing based floorplanning algorithm was proposed by Han and

Koren [2007]. They added temperature-aware features to the existing floorplanning tool,

Parquet [Adya and Markov 2003]. Their algorithm is much faster than Sankaranarayanan

et al.’s technique [2005], since it uses an approximation of performance and temperature.

The objective function they used is denoted as follows:

Obj=CA*A+CL*L-CD*DT (2)

Unlike Parquet's objective function, which only considers the area and the wire length,

their proposed algorithm appends the term regarding the thermal diffusion between

adjacent blocks. In Equation (2), A represents the area, L represents the wire length, and

DT represents thermal diffusion that is an approximation of the temperature. Note that CA,

CL, and CD are coefficients for weighing the terms. For further speedup of the simulated

annealing process, this algorithm considers the thermal diffusion of only the top-4 hottest

functional units. They also consider the criticality of interconnections using a weighted

interconnection matrix, like HotFloorplan [Sankaranarayanan et al. 2005]. The weighted

interconnection matrix represents the weighted wire length between functional units

considering their interconnection criticality. Using their algorithm, temperature is

reduced by 20.6ºC, while total weighted wire length is increased by only 1.7%. This

algorithm shows similar temperature reduction (22ºC) compared to HotFloorplan.

However, their proposed technique is much faster than HotFloorplan due to the

approximation method, though the detailed evaluation results on algorithm running time

are not provided.

Although the weighted wire length roughly reflects performance, it does not directly

reflect the performance of entire systems. To consider both temperature and performance

more accurately, Chu et al. [2007] proposed a thermal-aware floorplanning technique

considering CPI. Their objective function is denoted as follows:

Obj =
norm

thermal
norm

CPI
norm

area
Thermal

Thermal
W

CPI

CPI
W

Area

Area
W (3)

As shown in Equation (3), their floorplanning technique considers three factors, area

(Area), cycles per instruction (CPI), and stochastic heat diffusion (Thermal). Note that

Warea, WCPI, and Wthermal are weighting factors for each term, and Areanorm, CPInorm, and

Thermalnorm are values for normalization. The main problem of the conventional

deterministic heat diffusion model is that it is too simplistic to model the temperature

accurately. To address this, they proposed a new heat diffusion model, a Stochastic Heat

Diffusion Model (SHDM). While the deterministic model only considers the average

power density of two adjacent blocks and shared length (the length of the shared edge

between two functional units), the SHDM considers the transient behavior of the power

density instead of the average power density. Furthermore, the SHDM considers interplay

of heat flow between the chip and the ambient or the heat sink temperature. The SHDM

Recent Thermal Management Techniques for Microprocessors ● X: 27

ACM Computing Survey, Vol. X, No. X, Article X, Pub. date:

also considers not just adjacency but the degree of the adjacency by using the penetration

window, which is a virtual area that represents the degree of a specific block’s thermal

diffusion effect. Since extremely hot functional units can affect not only adjacent

functional units but also faraway functional units, the penetration window improves the

accuracy. They showed that their floorplanning technique using SHDM outperforms

Sankaranarayanan et al.’s technique [2005] with respect to the algorithm running time

(27 times faster in 90nm technology and 19 times faster in 65nm technology). Their

proposed technique also reduces CPI by 12.5%, temperature by 3.2ºC, and area by 1.25%,

compared to Han and Koren’s technique [2007], on average.

Although the simulated annealing algorithm is well suited for floorplanning problems,

it has a long running time and lacks scalability as the problem size becomes bigger. Thus,

techniques using the other algorithms have been proposed. Hung et al. [2004; 2005]

explored temperature-aware floorplanning, but with a focus on IP blocks in a Network-

on-Chip (NoC) architecture. They used a genetic algorithm to explore possible mappings

to find those that best distribute the steady-state thermal load. Their floorplan reduces

temperature by 4~7ºC and incurs less communication traffic, compared to a placement

optimized solely for minimum total energy.

Healy et al.’s technique [2007] is based on both the Linear Programming (LP) and the

Simulated Annealing (SA) algorithm. Their floorplanning technique consists of two

phases. The first step is to specify a width and a height of the functional units and allocate

them to the chip using the LP algorithm. In the first step, the floorplanner considers three

constraints; 1) no units have overlapping area, 2) after positioning the functional units,

the chip should meet performance requirements, and 3) the chip should not incur thermal

runaway
2
. After the LP-based floorplanning is finished, the SA-based refinement is

carried out (the second step). This technique adopts the SA-based floorplanning step,

because only using LP-based floorplanning is not optimal but suboptimal. This

suboptimality can be covered by the SA-based refinement. Compared to only using SA-

based floorplanning, long running time of SA-based floorplanning can be reduced by

using LP-based floorplanning together with SA. Their two step floorplanning technique

utilizes advantages of two floorplanning methods (SA and LP). Here is the cost function

they used:

Cost = α · per f_wire + β · max_temp + γ · area (4)

As shown in Equation (4), the SA-based floorplanner considers three factors, wire (per

f_wire), temperature (max_temp), and area (area), just like most SA-based thermal-aware

floorplanning algorithms. According to their simulation results, the SA-based

floorplanner is good for area and wire length, but the temperature is much higher than

that from the LP-based or the SA+LP-based (their proposed technique). In contrast,

although the LP-based floorplanner is good for the temperature and the algorithm running

time, it increases the area and the wire delay. Their proposed SA+LP-based floorplanner

shows reasonable results from all perspectives, including temperature, area, wire, and

algorithm running time.

3.3.2. For 3D Die-stacked Microprocessors

2 Thermal runaway denotes the case when excessive heat dissipation causes excessive current on transistors,
which may eventually incur burn-out of devices or transistors.

X: 28 ● J. KONG, S. W. CHUNG, and K. SKADRON

ACM Computing Survey, Vol. X, No. X, Article X, Pub. date:

As briefly introduced in Section 3.2.1.1, the temperature problem in 3D

microprocessors has become more serious than in 2D microprocessors. Since vertical and

horizontal thermal conduction should be included in 3D chip floorplanning, floorplanning

algorithms for 3D microprocessors are more complicated than those for 2D

microprocessors. We first introduce a simulated annealing-based floorplanning technique.

The other floorplanning techniques using linear programming, force-directed algorithms,

or mixed integer linear programming are introduced later.

To properly manage temperature in the 3D chip floorplanning, Cong et al. [2004]

proposed a Combined-Bucket-and-2D-Array (CBA) technique based on the simulated

annealing algorithm. Their proposed technique is based on 2D chips but includes bucket

structures to represent vertical information of the 3D chips. Temperature information is

profiled at every n-operation interval, where the value n can be specified by chip

designers. The cost function takes into account four factors: wire length, chip area, the

number of the inter layer vias, and temperature. They proposed three kinds of techniques

according to the thermal model used for floorplanning. A combined-bucket-and-2D-

array-temperature (CBA-T) is the basic technique that uses the thermal resistive model

[Wilkerson et al. 2004]. The CBA-T is accurate but quite slow. To relieve the complexity

of the technique, they also proposed a CBA-T-Fast, which is based on a closed-form

thermal model
3
. Naturally, this technique is faster but less accurate than the CBA-T. They

also proposed the CBA-T-Hybrid which selectively uses the closed-form thermal model

and the thermal resistive model. Their evaluation results show that temperature and

algorithm running time of CBA-T depend heavily on the value of n (temperature

profiling interval) while CBA-T-Fast shows the consistent temperature and algorithm

running time results regardless of the value n. The CBA-T-Hybrid results are between

these two points.

Some floorplanning techniques use an algorithm other than simulated annealing.

Ekpanyapong et al. [2004] explored temperature-aware floorplanning techniques in 3D

chip stacks. Their algorithm uses linear programming, rather than simulated annealing, to

search for a solution. Their evaluation compared three types of floorplans: thermal-driven,

wire length-driven and profile-driven. The thermal-driven floorplan and the wire length-

driven floorplan show almost identical performance and peak temperature results,

because their wire length-driven approach concentrates on only reducing the aggregated

wire length, which reduces energy and thus temperature. The profile-driven approach

mainly considers performance through weighing each wire. As a result, both the thermal-

driven and the wire length-driven approach deteriorate performance by about 20~25%

compared to the profile-driven approach that purely optimizes the performance, because

they sacrifice the performance for their objectives. The thermal-driven approach reduces

the maximum temperature by 24%.

Based on 2D floorplanning work (LP+SA based floorplanning), Healy et al. [2007]

extended their floorplanning algorithm for 3D. The main consideration is a vertical

overlap optimization process whose goal is to compromise among performance, power,

and temperature. In order to manage temperature, this technique places frequently

communicating functional units closer, while separating thermal hotspots. According to

their experimental results, although the area and wire results are not consistent across the

3 The closed-form thermal model considers the vertical and horizontal heat path separately, never considering
the interplay between the two heat paths.

Recent Thermal Management Techniques for Microprocessors ● X: 29

ACM Computing Survey, Vol. X, No. X, Article X, Pub. date:

benchmarks, their floorplanning technique reduces the temperature by 4~7% compared to

the CBA-T [Cong et al. 2004].

Another approach for 3D floorplanning was proposed by Zhou et al. [2007]. They

modified the existing force-directed thermal-aware placement technique [Goplen and

Sapatnekar 2003; Obermeier and Johannes 2004] for a three-stage 3D floorplanning

technique. The first stage is to spread functional units laterally considering temperature.

The second stage is to optimize the global placement in 3D spaces. Finally, the functional

blocks are assigned to a specific layer. The proposed technique is superior to the thermal-

aware CBA [Cong et al. 2004] in all criteria; temperature, area, wire length, the number

of vias, and algorithm running time.

In the most recent work, Li et al. [2009] proposed an incremental floorplanning

technique using Mixed Integer Linear Programming (MILP), aiming at 3D die-stacked

architectures. Their technique applies five methods to the initial floorplan: moving

adjacent blocks, moving hotspot blocks, moving the blocks under the hotspot, resizing

hotspot blocks, and migrating computation. After the temperature of each block is

profiled, the proposed technique computes the potential gain of each modification. The

modification which leads to the maximum potential gain among the five modifications is

chosen and actually adopted in the floorplan. The iteration is repeated until the optimum

point among the temperature, area, and wire length is obtained. Compared to the

conventional CBA [Cong et al. 2004], their floorplanning technique further reduces the

temperature by 14% and the wire length by 2% with tolerable area (3%) and running time

(9%) overhead, on average.

3.4. OS/Compiler Techniques

As thermal problems in microprocessors become severe, many efficient OS and

compiler techniques have been proposed for temperature management. OS/compiler

thermal management techniques can be more advantageous than hardware-based

techniques because they can reduce associated hardware overheads. However, it may

need additional data structures to maintain states or information. In this section, we

introduce a variety of OS/compiler-directed thermal management techniques.

3.4.1. Thermal-aware Task Scheduling

3.4.1.1. For General Purpose Microprocessors

Conventional task scheduling techniques have focused on performance improvement,

without considering temperature. In this section, we explore state-of-the-art thermal-

aware task scheduling techniques. Kumar et al. [2006; 2008] proposed a temperature

management technique through software-hardware co-operation. The software

component (OS) utilizes process/thread priority queues where the processes/threads are

waiting in order. In the conventional priority queues, tasks are sorted according to their

importance. Contrary to conventional task scheduling, the proposed technique added the

thermal-aware features to the conventional priority queues; their policy gives a lower

priority to the hot tasks (hot task means a task that is likely to exceed pre-defined

threshold temperature due to high power consumption according to their thermal

estimation model) and vice versa. The operating system monitors thermal behavior of a

X: 30 ● J. KONG, S. W. CHUNG, and K. SKADRON

ACM Computing Survey, Vol. X, No. X, Article X, Pub. date:

task at run-time by looking at the performance counter values and determines whether the

task is ‘hot’ or not. However, without any hardware support, thermal emergency may be

inevitable if all tasks are hot tasks. With clock gating as a failsafe mechanism, thermal

emergency can be avoided. Their software-hardware combined technique reduces

temperature by 4.0~10.5ºC while the performance overhead is 9.9%, on average.

A thermal-aware scheduling technique for Symmetric Multi-Processing (SMP)

systems was proposed by Merkel et al. [2005]. The main objective of their scheduling

policy is to balance the energy consumptions among many cores, while maintaining a

load balancing strategy already adopted in typical operating systems. This technique can

be categorized into two main techniques: a passive load balancing and an active hot task

migration technique. The passive load balancing technique balances the length of the run

queues across the cores by moving tasks between the core queues (run queues). For

energy balancing across cores, the OS collects the energy profile of each task. By looking

at the profiled energy information of each task, the passive load balancing technique

assigns tasks to cores, balancing the energy consumption of each core. However, consider

a scenario with an already-running task that is likely to incur the thermal emergency. In

this case, the passive load balancing technique cannot do anything since this task is not in

the run queue. On the other hand, the active hot task migration can move the task running

in a core to the other core in a preemptive manner. Although they did not provide detailed

thermal simulation results, the throughput of the microprocessor is increased by 4.7% due

to less frequent throttling (less DTM invocations).

Choi et al. [2007] proposed four simple software-driven (OS-driven) techniques: heat-

balancing, deferred execution of hot jobs, reducing threading on SMT processors, and

cool loop. The heat-balancing technique assigns tasks to the cores in a balanced manner.

The second technique, deferred execution of hot jobs, postpones hot jobs to be executed

later than cool jobs. During the execution of the cool jobs, these cores can be cooled

down. After the execution of the cool jobs, the execution of the halted hot jobs is resumed.

The third and fourth techniques are reducing the multi-threading bandwidth on SMT

processors and utilizing the cool loop (which does not do anything, consequently reduces

the power consumption) in a single threading environment, respectively. In fact, the cool

loop can also reduce the multi-threading bandwidth by running a cool loop in an SMT

logical processor
4
 among many SMT logical processors in one SMT processor. Their

proposed techniques reduce temperature by 3.5ºC on average in a real Power5 based

system, while performance overhead is only 1.08%. For multiple clock domain CMPs,

another scheduling technique was proposed by Arani [2007]. The task scheduler manages

the task queue where the tasks are waiting in order. In this technique, the task scheduler

determines the queue length of each core. If the sensed temperature of the core is high,

the task scheduler assigns a shorter queue length to the core, and vice versa. If the length

of one queue is long, the core which corresponds to this queue is regarded as a

performance bottleneck (the temperature of this core will be lowest among the cores).

Then, the clock frequency/supply voltage of the other cores (where queue length is short)

can be reduced without any performance loss, since it takes a longer time for the

bottleneck core to execute the waiting tasks in the queue. This technique balances the

4 One physical SMT processor is composed of several SMT logical processors to execute multiple threads

simultaneously. Each logical processor has its own state (e.g., program counter, register file, etc.) to maintain its
own context.

Recent Thermal Management Techniques for Microprocessors ● X: 31

ACM Computing Survey, Vol. X, No. X, Article X, Pub. date:

temperature of all cores, reducing the overall temperature of the microprocessor.

Another approach for temperature-aware scheduling was proposed by Merkel and

Bellosa [2008]. Their technique utilizes a special data structure called a task activity

vector. The task activity vector for each task contains the values from 0 to 1, which

represents the activity degree of each functional unit (the dimension of vectors is the

number of the functional units in the microprocessor). Using the task activity vector, their

algorithm manages run queues to ensure they do not incur thermal violence. For example,

after the integer application is executed, they assign a CPU time slice to the floating point

application, cooling down the integer functional units. To take into account

multiprocessor systems, their algorithm balances the run queues among processors. Note

that fluctuating run queue length across cores means that activities are biased to some

specific cores, which can be thermal hotspots. In case of a SMT processor that has

several SMT logical processors, if the activities of these SMT logical processors are

similar, a specific functional unit is likely to be a hotspot because of the concentrated

activities on it. Thus, to spread the activities to various functional units in an SMT

processor, activity unbalancing (for instance, a mix of integer-heavy and floating point-

heavy threads) is needed among the SMT logical processors. However, to maintain load

balanced status across the cores, the quantity of assigned workloads in different SMT

logical processors should be similar across SMT logical processors. As a result, the

percentage of time when the microprocessor operates over the DTM trigger temperature

(80ºC) is reduced from 25% to 6%, leading to less performance penalty.

While many thermal-aware task scheduling techniques have considered spatial

correlations between cores or functional units through balancing of workloads, the

technique proposed by Yang et al. [2008] considers temporal correlations of thermal

behaviors through task scheduling. In other words, their work is focused on choosing the

appropriate threads while the temperature of microprocessors is maintained below the

DTM threshold temperature. Though the same combination of the applications runs on a

core, the execution sequence of the applications significantly affects temperature of the

microprocessor. Assuming two tasks (one is a hot task and the other is a cool task) are

waiting in a run queue, the hot-cool sequence (the microprocessor runs the hot task first

and the cool task later) shows less temperature increase than the cool-hot sequence as

shown in Fig. 10. Based on this observation, their scheduling algorithm picks the thread

Time

T
e
m

p
e
ra

tu
re

Hot-Cool

Cool-Hot
Context-Switching

Fig. 10 Thermal impact of the task sequencing [Yang et al. 2008]

X: 32 ● J. KONG, S. W. CHUNG, and K. SKADRON

ACM Computing Survey, Vol. X, No. X, Article X, Pub. date:

which is the hottest first, not incurring the thermal violations. Consequently, their

proposed technique improves the performance by 3.25~4.7% on average with fewer

DTM emergencies.

For 3D multi-core microprocessors, Zhou et al. [2008] proposed a thermal-aware

scheduling technique called balancing by stack. Though balancing heat across the cores

has been an effective way to prevent 2D microprocessors from being overheated, it may

incur thrashing among the tasks or large fluctuations of the temperature of cores since

vertically adjacent cores have strong thermal influences in 3D microprocessors. Fig. 11

depicts their thermal-aware scheduling policy, where the super core is a set of cores

which are vertically stacked in the same 2D location but in different layers, and the super

task is a set of tasks which are scheduled together. The super tasks are grouped together

to have similar power consumption across the super tasks. The task scheduling problem

becomes simple as in 2D microprocessors, since the super tasks and the super cores are in

2D space. In other words, the algorithm assigns the super tasks to the super cores while

balancing the power consumption across the super cores. In case of thermal emergency,

conventional thermal management schemes usually cool down the hottest core. However,

their algorithm cools down the core which consumes the highest power in the same super

core considering the vertical heat convection. Recall that the hottest core is not always

the highest power consuming core, because the vertical location of the cores is also a

crucial factor in 3D microprocessors. Compared to the other algorithms such as the Linux

base algorithm, random, round-robin, and balancing by core
5
, the algorithm shows much

less temperature fluctuation. Compared to the Linux 2.6 scheduler, the proposed

technique has 7.22% speedup while the balancing by core technique has only 1.35%

speedup.

5 Balancing by core schedules the maximum power consuming task to the coolest core, the second highest
power consuming task to the second coolest core, and so on.

Super Task 0

Super Task 0

Super Task 1

Super Task 1

Super Task 2

Super Task 2 Super Task 3

Super Task 3

Super core 1

Super core 3Super core 2

Super core 0

Task

Task

Task

Task

Task

Task

Task

Task

Super Task 0 Super Task 1 Super Task 2 Super Task 3

Fig. 11 A thermal-aware scheduling technique in 3D microprocessors [Zhou et al. 2008]

Recent Thermal Management Techniques for Microprocessors ● X: 33

ACM Computing Survey, Vol. X, No. X, Article X, Pub. date:

3.4.1.2. For Embedded/Real-time Microprocessors

There have been several studies for embedded/real-time applications. In real-time

applications, tasks should be completed before the predefined deadline. Otherwise, the

applications cannot guarantee their QoS. Embedded applications also have a different

optimization goal: to minimize energy consumption as much as possible. The temperature

optimization process for embedded/real-time applications should therefore be different

from that for high-performance processors, because temperature and energy should be

optimized jointly, instead of temperature and performance.

Chen et al. [2007] proposed a temperature minimization technique for periodic real-

time systems. They extended the technique presented in [Aydin et al. 2001], which is

based on Earliest Deadline First (EDF) algorithm. The proposed technique solves the task

scheduling problem by using the n-approximation algorithm [Vazirani 2001]. For uni-

processor systems, they used a 2.719-approximation algorithm to minimize the maximum

temperature in the discrete voltage/frequency system. They also extended it for multi-

processor systems with the Largest Task First (LTF) policy in a 3.072-approximation

bound. Another similar approach was proposed by Yuan and Qu [2007]. Their main aim

is to operate the system with minimal energy consumption while the system temperature

is kept below the threshold temperature without any deadline miss. They also utilized the

EDF algorithm; however, they considered temperature as well as the amount of

computation. If the amount of the computation is more than the maximum achievable, the

system is simply shut down. Otherwise, the system runs at the lowest voltage level to

finish the task before its deadline. This algorithm reduces the system energy consumption

by 21% compared to the typical DVFS. Moreover, it alleviates overheating, which leads

to less invocation of DVFS so that more tasks can meet their deadline (2% improvement

of task completion ratio compared to the typical DVFS).

In order to take into account both soft real-time tasks and best-effort tasks, Jayaseelan

and Mitra [2009] proposed a temperature-aware scheduling technique. The proposed

technique schedules real-time tasks by looking at their predicted execution time. With the

results of the real-time task scheduling, a temperature adjustment phase calculates the

starting temperature of the next phase and the timing slack. The temperature adjustment

phase ensures the temperature of real-time tasks stays below the threshold. The remaining

best-effort tasks are then scheduled in a modified round-robin manner so that the

temperature of the microprocessor remains below the threshold. The proposed scheduling

policy improves throughput of the microprocessor by 7.4% and 14.4% compared to

DVFS and clock gating, respectively.

Several techniques have been proposed to efficiently manage the temperature in multi-

core embedded systems. Mulas et al. [2008] proposed a thermal balancing policy for

embedded multi-core microprocessors with a task migration technique. Since

performance of the microprocessor is sensitive to the size of the migrating task, the

migrating task selection considers the overall overhead, including the migration overhead.

According to their analysis, as the task size is increased, the number of clock cycles for

task migration is also linearly increased. In case that migrating task size is 1024KB, the

required delay is about 10 million clock cycles, which are not trivial. Their technique

targets the coolest core in determining the destination core. This technique shows much

X: 34 ● J. KONG, S. W. CHUNG, and K. SKADRON

ACM Computing Survey, Vol. X, No. X, Article X, Pub. date:

more balanced temperature results across the cores compared to the stop-go policy or the

other energy balancing policies [Merkel et al. 2005]. Note that migration techniques may

not be beneficial in case that many parallel workloads occupy all available bandwidth on

a chip. Thus, when designing a thermal-aware task migration technique, efficient

bandwidth utilization on the chip should be also carefully considered.

Coskun et al. [2008a] proposed a task scheduling technique using integer linear

programming for real-time MPSoCs. The proposed technique considers two factors,

thermal hotspots and spatial thermal gradients. To minimize thermal hotspots, the

proposed technique minimizes the duration of thermal emergency (85ºC in their study).

To minimize spatial thermal gradients at the same time, adjacent cores have no assigned

work when a task is fetched to the core. It also balances the temperature of each core.

Compared to the energy-only minimization technique, the proposed technique reduces

the duration of thermal emergency by 35%. Moreover, it reduces 60% of the spatial

thermal gradient. They also combined the proposed technique with a coolest-FLP

technique [Coskun et al. 2007] for uncertainty of running tasks (called the hybrid

technique [Coskun et al. 2008a]). Based on the temperature measurement of thermal

sensors, the coolest-FLP executes tasks in the coolest core while considering spatial

thermal gradients. The hybrid technique shows approximately 5% thermal emergency

duration out of the entire execution time, while only coolest-FLP shows over 15%

thermal emergency duration. However, as the workload variation becomes severe, the

duration of thermal emergency of the hybrid technique converges to that of the coolest-

FLP technique.

Chantem et al. [2008] also explored a temperature-aware task scheduling problem for

hard real-time applications in MPSoCs. Mixed-Integer Linear Programming (MILP) is

used to schedule and assign hard real-time tasks considering both temporal and spatial

thermal variations. However, their MILP-based technique has a shortcoming that is not

scalable as the problem size becomes large. To overcome this shortcoming, they also

proposed a heuristic technique which is based on the binary-searching algorithm. Either

steady-state or transient temperature is taken into consideration when the heuristic-based

technique searches for a solution. Their MILP-based solution achieves the average

temperature reduction of 8.75ºC compared to the energy-optimal technique. Moreover,

their proposed heuristic approach (using transient temperature analysis) reduces the

algorithm running time by 9.02 times, on average, compared to their MILP-based

technique.

3.4.2. Compiler-directed Techniques

Static code analysis by compilers can be applied to thermal management as well as

traditional performance optimizations. Since compiler-directed techniques are static, they

cannot capture dynamic behavior of programs. However, they do not require hardware

support. Since the instruction scheduling of VLIW (Very Long Instruction Word)

processors is carried out at compile-time, many compiler-directed temperature

management techniques have been proposed for VLIW processors. In VLIW

architectures, the thermal behavior of the processor may change, depending on the

arrangement of instructions in an instruction bundle and the scheduling of instruction

bundles.

Recent compiler-directed thermal management techniques on VLIW processors are

Recent Thermal Management Techniques for Microprocessors ● X: 35

ACM Computing Survey, Vol. X, No. X, Article X, Pub. date:

concentrated on both instruction bundle packing and scheduling. Mutyam et al.’s

technique [2006] reduces the temperature of the microprocessor through load balancing

and IPC tuning. The load balancing is carried out by calculating the predictive dynamic

power in advance when the source code is compiled. The compiler assigns the functional

units where the calculated dynamic power is distributed most evenly. In order to reduce

leakage power consumption, the IPC tuning turns off unused functional units if only a

fixed number are active in a loop. For instance, if a loop uses only two out of six integer

ALUs, they gate the power supply of the remaining four ALUs, which reduces their

leakage. Although IPC tuning reduces the leakage power of the idle functional units, it

raises the problem that dynamic power consumption becomes concentrated on the active

functional units. Over many loop iterations, this can lead to a hotspot. The authors

therefore incorporated a rotation technique into the IPC tuning, rotating the active units.

Consequently, the temperature of all functional units converges to the average.

Schafer and Kim [2007] introduced another instruction assignment algorithm in VLIW

processors. Their target is a Digital Signal Processor (DSP) architecture, for which VLIW

organizations are common. They proposed a temperature-aware instruction binding

technique (TempIB and TempIB-f) and a NOP insertion technique. The TempIB

algorithm binds instructions to cool functional units first. It spreads out the power density

to all functional units. The main problem of TempIB algorithm is the long running time

(when compiling the source codes) caused by the required thermal simulation that guides

instruction binding. The TempIB-f reduces the running time of the TempIB using a

simple heuristic while maintaining the accuracy of the thermal simulation. The third

algorithm, named TempNOP, inserts NOP instructions when a severe thermal stress is

predicted by the thermal simulation during the compilation of source codes. Because the

NOP instruction does nothing after it is decoded, it lets the processor rest for a cycle. The

number of inserted NOP instructions depends on the degree of the thermal severity.

In addition to VLIW processors, some compiler-directed thermal management

techniques are applied to superscalar architectures in which instructions are scheduled

dynamically. Hsu and Kremer [2003] proposed a compiler optimization technique for

DVFS-based DTM that can be applied to superscalar architectures. In their technique, the

compiler generates a table for DVFS invocation when the source codes are compiled. To

minimize the performance loss, this technique looks for program regions that are

performance-insensitive at compile-time. In these performance-insensitive regions, the

voltage and frequency are reduced to minimize energy consumption, which in turn lowers

temperature. In their implementation, they extended SUIF2 [Aigner et al. 1999] for their

compiler-directed DVFS. This technique reduces energy consumption by 9% and the

energy-delay product by 11%.

Narayanan et al. [2006] proposed power density-aware compiler techniques for many-

core NoC designs. Their proposed technique considers both performance and temperature

when mapping threads to the processor cores. Their algorithm consists of two phases.

The first phase reduces the overall power density of the chip. Available threads are

mapped in a distributed fashion to reduce the power density of the chip. The second

phase divides high-power-density threads into several low power density threads and

maps these threads to the cores. Although this technique uses more cores to reduce the

power density, it significantly improves performance due to a reduction of DTM triggers.

X: 36 ● J. KONG, S. W. CHUNG, and K. SKADRON

ACM Computing Survey, Vol. X, No. X, Article X, Pub. date:

3.5. Liquid Cooling Techniques

Most high performance microprocessors rely on air cooling to avoid thermal

emergency, because it is simple and inexpensive. However, as thermal problems became

more serious, researchers began to look for more efficient cooling methodologies. Water

is an emerging coolant for microprocessors since it has a high heat capacity. Since

thermal problems are much more severe in 3D microprocessors because of vertical and

lateral heat conduction, several researchers adopted liquid cooling techniques for 3D

microprocessors.

Koo et al. [2005] proposed an indirect liquid cooling technique in stacked integrated

circuits, which utilizes micro-channels between each layer. Brunschwiler et al. [2008]

proposed a direct liquid cooling technique for 3D integrated microprocessors. Contrary to

the indirect liquid cooling technique, the coolant (water) encompasses dielectric in the

direct cooling technique, which means water goes through layers. In their proposed

structure, there are a water tank, inlet, and outlet. Water flows between the dies and

Through Silicon Vias (TSV). Jang et al. [2009] analyzed the architectural impact of the

liquid cooling technique in 3D multi-core processors. They analyzed three factors:

temperature, leakage power, and reliability. The liquid cooling technique reduces

temperature by 45ºC (at the best case) compared to the conventional air cooling technique.

Since leakage power consumption is exponentially dependent on temperature, the liquid

cooling technique brings a 12.8% average leakage power reduction. The lifetime

reliability of the L1 instruction cache (the thermal hotspot in their simulation results) is

therefore improved by 97.9% (at the best case).

3.6. Thermal Reliability/Security

Since excessively high temperatures incur errors, thermal reliability and security issues

are also important for microprocessors.

Srinivasan et al. [2004; 2005] proposed a temperature-related reliability model

(RAMP). Their reliability model is based on five failure mechanisms: ElectroMigration

(EM), Stress Migration (SM), Time-Dependent Dielectric Breakdown (TDDB), Thermal

Cycling (TC), and Negative Bias Temperature Instability (NBTI). Their Mean Time-To-

Failure (MTTF) models are deeply related to temperature. The following equations are

failure mechanisms in their reliability model:

 kT

E

n

critEM

aEM

eJJMTTF)((5)

 kT

E
n

SM

aSM

eTTMTTF

 0
 (6)

 kT

ZT
T

Y
X

bTa

TDDB e
V

MTTF

)
1

((7)

q

ambient

TC
TT

MTTF

1 (8)

1

21
ln

21
ln

kT

D
kT

B
kT

BNBTI

e

T
C

e

A

e

A
MTTF

 (9)

As shown in Equation (5)~(9), each failure mechanism includes temperature as a

Recent Thermal Management Techniques for Microprocessors ● X: 37

ACM Computing Survey, Vol. X, No. X, Article X, Pub. date:

variable (the detailed descriptions of parameters in Equation (5)~(9) are shown in Table

II). The critical point in this model is that the MTTF becomes smaller as the temperature

is increased. Another important implication of this model is that the reliability of

microprocessors depends on which application is running, since thermal behavior

depends on application features. Based on their reliability model, they also proposed a

Dynamic Reliability Management (DRM) technique [Srinivasan et al. 2004]. Since each

processor has a different target reliability design point, the performance can be

dynamically adjusted using the DVFS or an architectural adaptation technique. Based on

the target FIT (Failure In Time) value, if there is a margin in terms of reliability,

applications can be run with higher performance. Otherwise, performance should be

degraded to meet the target reliability design point.

For better performance compared to the traditional DTM techniques, reliability

banking (simple dynamic reliability management and profiled-based dynamic reliability

management) was proposed [Lu et al. 2005]. Designers should rely on temperature-

dependent reliability models to derive the expected lifetime of their circuits. Traditionally,

a worst-case temperature is used to evaluate the reliability of the system, often resulting

in excessive design margins. In addition, under such pessimistic assumptions, DTM

techniques may be engaged unnecessarily and incur performance loss. The main concept

of the reliability banking is that the lifetime of the microprocessor is banked (deposited)

when it operates in low temperatures and wear-out accumulates more slowly than

expected. The surplus lifetime is then used when operating at higher temperatures (higher

than the nominal lifetime consumption rate). When the remaining banked lifetime drops

below a threshold value, the microprocessor should engage some DTM techniques. This

approach is called Simple Dynamic Reliability Management (SDRM). Since the lifetime

consumption rate of DTM cannot exceed the nominal lifetime consumption rate,

performance of SDRM is better than that of DTM. However, SDRM only considers the

current lifetime balance and the current temperature. To leverage longer-term

characteristics of server workloads, Lu et al. also proposed Profile-based Dynamic

Reliability Management (PDRM). This is similar to the SDRM during the low-

Table II. Description of parameters in equation (5)~(9) [Srinivasan et al. 2004; 2005]

Equation Parameter Description

Common in

(5)~(9)

N Material dependent constants

K Boltzmann's constant

T Absolute temperature

(5)

J The current density in the interconnect

Jcrit The critical current density required for electromigration

EaEM Material dependent constants

(6)
T0 The stress free temperature

EaSM Material dependent constants

(7)
V The voltage

a, b, X, Y, Z Fitting parameters

(8)

T The average temperature

Tambient The ambient temperature

Q The Coffin-Manson exponent

(9) A, B, C, D, β Fitting parameters

X: 38 ● J. KONG, S. W. CHUNG, and K. SKADRON

ACM Computing Survey, Vol. X, No. X, Article X, Pub. date:

temperature phase. However, in the high-temperature phase, PDRM calculates a new

lifetime consumption rate based on the expected duration of the hot phase (profiled

information) and the deposited lifetime. The PDRM shows only 6.5% performance

slowdown, while the pessimistic DTM suffers the highest performance slowdown (16%)

among the three techniques (DTM, SDRM, and PDRM) under the same configuration.

Tiwari and Torrellas [2008] proposed a temperature-related aging-aware technique for

multi-core processors. They proposed an aging-aware scheduling technique to alleviate

aging effects. Since the clock frequency for all the cores is determined by the slowest

core, the proposed technique schedules relatively cool applications to the slower cores,

where the pipeline slack margin is tighter than that of the faster cores, and vice versa.

Consequently, aging effects are evenly distributed across the cores. The average

temperature of each application is measured by per-core temperature sensors. Their

aging-aware scheduling policy slows the aging of the critical path delay from 23% to

14%, compared to the random scheduling policy.

In order to measure the reliability of the microprocessor at design-time, a thermal

stressmark design is also important to the early-stage thermal-aware design. Joshi et al.

[2008] proposed an automated stressmark generation technique. The stressmark can also

be used to evaluate the thermal reliability of microprocessors, since it can be used to

intentionally make thermal hotspots. Their stressmark shows much higher temperatures

(the maximum is over 30ºC) than SPEC benchmarks or commercial applications. The

stressmark can also create extreme temperature difference between two functional units.

Since the number of thermal sensors in microprocessors is limited, there is a possibility

that un-monitored functional units may be burned out without being detected by thermal

sensors. The stressmark detects whether the thermal sensor placement or thermal guard-

band setting is safe or not in the early-stage of microprocessor design. They provided

several stress pattern examples which show the maximum temperature difference of 61ºC

between the issue unit and the Load/Store Queue (LSQ).

Thermal security issues in microprocessors have also been explored by several

researchers. Security is to prevent an intentional attack by people who have some

malicious intention while reliability is to prevent unintended and incidentally caused

malfunctions. Dadvar and Skadron [2005] warned of the possibility of potential security

and reliability vulnerabilities related to temperature. In an example of thermal security

threats, a malicious code was shown able to induce a Denial-of-Service (DoS) attack in

an SMT processor [Hasan et al. 2005]. DoS is achieved when malicious threads incur

DTM triggers and degrade performance for legitimate threads that are running at the

same time. The malicious threads attack typical hotspots such as the register files.

Whereas the required time to heat up the register file is 1.2ms, the cool-down time is

12.5ms, which means a short burst of malicious activity can have a much longer DoS

effect. To distinguish malicious threads from normal threads, Hasan et al.’s proposed

protection technique counts the access rate of typical hotspots such as the integer register

file. Generally, malicious threads have abnormally high access rates to these hotspots.

The cooling solution is called selective sedation, which only sedates suspected malicious

threads, while the performance of the normal threads should not be affected. When the

normal threads are running with the malicious threads, the IPC of normal threads is

degraded by as much as 88.2%. However, by adopting the selective sedation technique,

the IPC of the normal threads (1.24) becomes similar to the IPC without malicious

threads (1.28).

Recent Thermal Management Techniques for Microprocessors ● X: 39

ACM Computing Survey, Vol. X, No. X, Article X, Pub. date:

Another example of a real security threat was introduced by Kong et al. [2010]. Since

thermal sensors are typically focused on well-known hot functional units such as the

integer register file, unmonitored functional units may be attacked. In Kong et al.'s study,

the L1 instruction caches are targets of thermal attack, since they are typically known as a

cool functional unit. To successfully attack the L1 instruction caches: 1) a specific

portion of the L1 instruction cache should be frequently accessed, and 2) the other

functional units should not incur DTM that would eventually neutralize the thermal attack.

In order to frequently access only a specific portion of the L1 instruction cache, the

malicious code consists of an infinite loop which does not incur any cache miss or branch

misprediction. Moreover, by manipulating the address of instructions, their malicious

code accesses only specific parts of the L1 instruction cache. To avoid heating other

functional units, the malicious code contains NOP instructions that do nothing. To

prevent this attack, they proposed a detection technique which utilizes the access counter

of each cache data subarray and tag subarray. When a specific data or tag subarray is

severely and continuously accessed, the instruction fetching is stalled until the L1

instruction caches are sufficiently cooled down. In addition to the hardware-based

protection technique, a software-based screening technique using a malicious code

scanner was proposed to detect the attack. According to their evaluation results, the L1

instruction cache tag subarray becomes a thermal hotspot (110ºC) when executing their

malicious code, while the temperatures of the other functional units including typical

hotspots are sustained below 100ºC. By adopting their hardware-based protection

technique, the temperature of the L1 instruction cache tag subarray is dropped by 26ºC,

successfully neutralizing the malicious attack.

4. CONCLUSION
In this paper, we introduced recent thermal management techniques for

microprocessors. Through a hierarchical categorization of representative thermal

management techniques, we have provided a comprehensive overview of recent thermal-

management studies. Temperature is a fundamental design consideration because it is

directly related to availability of the microprocessor, while power and performance are

related to efficiency. Moreover, temperature is becoming even more of a constraint, as

power density increases due to continuing reductions in feature size, while peak supply

voltage scaling has slowed and air cooling appears to have reached practical limits [SIA

2009].

Implementing thermal management techniques in microprocessors can be thought to

be a complex process, but this need not be the case. The main reason is that power

reduction also leads to temperature reduction. As shown in this paper, most power-

managing hardware components can also be used for thermal management, since

temperature is deeply related to power. Thus, microprocessor designers will generally not

need to adopt additional hardware components specifically for thermal management

(except of course for static thermal management techniques such as floorplanning and

novel design techniques). Since the main difference between power and thermal

management is the choice of which policy is used, new thermal control algorithm/logic

and thermal sensors are enough. It is also worth noting that thermal management

techniques used for commercial microprocessors so far are more simple and intuitive

X: 40 ● J. KONG, S. W. CHUNG, and K. SKADRON

ACM Computing Survey, Vol. X, No. X, Article X, Pub. date:

compared to the techniques proposed from academia (though some techniques proposed

from academia have been already implemented in commercial microprocessors). The

main reason is likely that temperature management entails associated hardware/software

costs (though the cost is small). The other important reason is that thermal simulations at

design-time entail inevitable simulation error. For example, Jang et al. [2010] reported

that using a fixed ambient temperature incurs temperature simulation error of 31.1ºC (at

maximum). Thus, simple techniques that have low overhead are preferred in commercial

microprocessors. Of course, this does not mean that the academic proposals are

impractical! As thermal problems in microprocessors become more severe in the near

future, the more aggressive and innovative idea from academia are likely to be considered

for commercial processors.

So far, most thermal management techniques have been confined to a single design

layer within the system, such as the physical chip design, the microarchitecture, the

compiler, or the cooling solution. These techniques usually operate in isolation and may

in fact conflict with each other. In practice, most thermal management techniques that are

in different layers easily co-exist. Thus, they can provide a multi-layer failsafe

mechanism that makes the microprocessor more robust to thermal threats. Even in case of

thermal management techniques in the same layer, some of them are complementary.

Algorithms to coordinate these techniques in the most efficient way will also be

beneficial. Most temperature-aware design has also failed to coordinate thermal

management with energy and power-delivery management. Coordination will exploit

synergies among techniques and across design layers, and improve the robustness and

long-term impact of thermal research. We hope that in the future, research on thermal

management will combine efforts from multiple disciplines.

ACKNOWLEDGMENTS
This survey work was supported in part by a grant from the US NSF under grant

number CRI-0551630, a grant from Intel Research, and the Korea Science and

Engineering Foundation (KOSEF) grant funded by the Korea government (MEST) (No.

R01-2007-000-20750-0). This survey work was also supported in part by the Ministry of

Knowledge Economy (MKE), Korea, under the Information Technology Research Center

(ITRC) support program supervised by the National IT Industry Promotion Agency

(NIPA) (NIPA-2010-C1090-0803-0006). We would like to thank Peter Brownlee

Bakkum for his extensive feedback. Finally, we would also like to thank the anonymous

referees for their helpful feedback.

REFERENCES
ADYA, S. N. AND MARKOV, I. L. 2003. Fixed-outline floorplanning: enabling hierarchical design. IEEE

Transactions on VLSI, Vol. 11, No. 6, 1120-1135.

AIGNER, G., DIWAN, A., HEINE, D. L., LAM, M. S., MOORE, D. L., MURPHY, B. R., AND SAPUNTZAKIS, C. 1999.
An overview of the SUIF2 compiler infrastructure. Computer Systems Laboratory, Stanford University.

ALBONESI, D. 1999. Selective cache ways: on-demand cache resource allocation. In Proceedings of

International Symposium on Microarchitecture (MICRO ‘99), 248-259.
AMD 2005. Processor utilization with Microsoft® Windows® Media Center Edition on systems enabled with

Cool'n'Quiet™ and AMD PowerNow!™ technologies. Application Note, May 2005.

ANDREI, A., ELES, P., PENG, Z., SCHMITZ, M. T., AND AL-HASHIMI, B. M. 2007. Energy optimization of
multiprocessor systems on chip by voltage selection. IEEE Transactions on VLSI, Vol. 15, No. 3, 262-275.

Recent Thermal Management Techniques for Microprocessors ● X: 41

ACM Computing Survey, Vol. X, No. X, Article X, Pub. date:

ARANI, A. S. 2007. Online thermal-aware scheduling for multiple clock domain CMPs. In Proceedings of IEEE

International SOC Conference (ISOCC ‘07), 137-140.
ARS TECHNICA 2008. NVIDIA denies rumors of faulty chips, mass GPU failures. Available at:

http://arstechnica.com/hardware/news/2008/07/nvidia-denies-rumors-of-mass-gpu-failures.ars.

AYDIN, H., MELHEM, R., MOSS É, D., AND MEJ ÍA-ALVAREZ, P. 2001. Dynamic and aggressive scheduling
techniques for power-aware real-time systems. In Proceedings of the 22nd IEEE Real-Time Systems

Symposium, 95–105.
BAO, M., ANDREI, A., ELES, P., AND PENG, Z. 2008. Temperature-aware voltage selection for energy

optimization. In Proceedings of the Design, Automation and Test in Europe Conference and Exhibition

(DATE ’08), 1083-1086.
BERKTOLD, M. AND TIAN, T. 2009. CPU monitoring with DTS/PECI. Intel white paper, September 2009.

BORKAR, S. 1999. Design challenges of technology scaling. IEEE Micro, Jul.–Aug, 23-29.

BROOKS, D. AND MARTONOSI, M. 2001. Dynamic thermal management for high-performance microprocessors.

In Proceedings of International Symposium on High-Performance Computer Architecture (HPCA ’01).

BRUNSCHWILER, T., MICHEL, B., ROTHUIZEN, H., KLOTER, U., WUNDERLE, B., OPPERMANN, H., AND REICHL, H.
2008. Forced convective interlayer cooling in vertically integrated packages. In Proceedings of the 11th

Intersociety Conf. on Thermal and Thermomechanical Phenomena in Electronic Systems (ITHERM ’08),
1114-1125.

CHANTEM, T., DICK, R. P., AND HU, X. S. 2008. Temperature-aware scheduling and assignment for hard real-

time applications on MPSoCs. In Proceedings of the Design, Automation and Test in Europe Conference
and Exhibition (DATE ’08), 288-293.

CHANTEM, T., HU, X. S., AND DICK, R. P. 2009. Online work maximization under a peak temperature constraint.
In Proceedings of the International Symposium on Low Power Electronics and Design (ISLPED’ 09), 105-

110.

CHAPARRO, P., GONZÁ LEZ, AND J., GONZÁ LEZ, A. 2004. Thermal-aware clustered microarchitectures. In
Proceedings of International Conference on Computer Design (ICCD’04), 48-53.

CHAPARRO, P., MAGKLIS, G., GONZÁ LEZ, J., AND GONZÁ LEZ, A. 2005. Distributing the frontend for temperature

reduction. In Proceedings of the 11th International Symposium on High-Performance Computer Architecture

(HPCA-11).

CHEN, Q., METERELLIYOZ, M., AND ROY, K. 2006. A CMOS thermal sensor and its applications in temperature
adaptive design. In Proceedings of International Symposium on Quality Electronic Design (ISQED ’06),

243-248.
CHEN, C. -C., LU, W. -F, TSAI, C. -C., AND CHEN, P. 2005. A time-to-digital-converter-based CMOS smart

temperature sensor. In Proceedings of International Symposium on Circuits and Systems (ISCAS ‘05), 560-

563.
CHEN, J. -J., HUNG, C. -M., AND KUO, T. -W. 2007. On the minimization of the instantaneous temperature for

periodic real-time tasks. In Proceedings of 13th IEEE Real-Time and Embedded Technology and
Applications Symposium (RTAS '07), 236-248.

CHOI, J., CHER, C., FRANKE, H., HAMAN, H., WEGER, A., AND BOSE, P. 2007. Thermal-aware task scheduling at

the system software level. In Proceedings of the International Symposium on Low Power Electronics and
Design (ISLPED’ 07).

CHU, C. -T., ZHANG, X., HE, L., AND JING, T. T. 2007. Temperature aware microprocessor floorplanning

considering application dependent power load. In Proceedings of IEEE/ACM International Conference on

Computer Aided Design (ICCAD ‘07), 586-589.

CHUNG, S. W. AND SKADRON, K. 2006a. Using on-chip event counters for high-resolution, real-time temperature
measurements. In Proceedings of the Intersociety Conference on Thermal and Thermomechanical

Phenomena in Electronic Systems (ITHERM ‘06).
CHUNG, S. W. AND SKADRON, K. 2006b. A novel software solution for localized thermal problems. In

Proceedings of the 4th International Symposium on Parallel and Distributed Processing and Applications

(ISPA), Springer-Verlag LNCS, 63-74.
CONG, J., WEI, J., AND ZHANG, Y. 2004. A thermal-driven floorplanning algorithm for 3D ICs. In Proceedings of

IEEE/ACM International Conference on Computer Aided Design (ICCAD ’04), 306-313.
COSKUN, A. K., ROSING, T. S., AND WHISNANT, K. 2007. Temperature aware task scheduling in MPSoCs. In

Proceedings of the Design, Automation and Test in Europe Conference and Exhibition (DATE ’07).

COSKUN, A. K., ROSING, T. S., WHISNANT, K., AND GROSS, K. C. 2008a. Temperature-aware MPSoC scheduling
for reducing hot spots and gradients. In Proceedings of the 2008 Asia and South Pacific Design Automation

Conference (ASP-DAC ‘08), 49-54.

COSKUN, A. K., ROSING, T. S., AND GROSS, K. C. 2008b. Temperature management in multiprocessor SoCs

using online learning. In Proceedings of the Design Automation Conference (DAC ’08), 890-893.

http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/m/Meterelliyoz:Mesut.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/r/Roy:Kaushik.html

X: 42 ● J. KONG, S. W. CHUNG, and K. SKADRON

ACM Computing Survey, Vol. X, No. X, Article X, Pub. date:

COSKUN, A. K., ROSING, T. S., ALONSO, D. A., LEBLEBICI, J. AND AYALA, J. 2009. Dynamic thermal

management in 3D multicore architectures. In Proceedings of the Design, Automation and Test in Europe
Conference and Exhibition (DATE ’09).

DADVAR, P. AND SKADRON, K. 2005. Potential thermal security risks. In Proceedings of the IEEE

Semiconductor Thermal Measurement, Modeling, and Management Symposium (SEMI-THERM ‘05), 229-
234.

DONALD, J., AND MARTONOSI, M. 2005. Leveraging simultaneous multithreading for adaptive thermal control.
In Proceedings of the 2nd TACS Workshop.

DONALD, D. AND MARTONOSI, M. 2006. Techniques for multicore thermal management: classification and new

exploration, In Proceedings of the 33rd annual international symposium on Computer Architecture
(ISCA ’06), 78-88.

EE TIMES 2008. The truth about last year's Xbox 360 recall. Available at: http://www.eetimes.com/electronics-

news/4077187/The-truth-about-last-year-s-Xbox-360-recall.

EKPANYAPONG, M., HEALY, M. B., BALLAPURAM, C. S., LIM, S. K., LEE, H. -H. S., AND LOH, G. H. 2004.

Thermal-aware 3D microarchitectural floorplanning. Technical Report GIT-CERCS-04-37, Georgia
Institute of Technology.

FLAUTNER, K., KIM, N. S., MARTIN, S., BLAAUW, D., AND MUDGE, T. 2002. Drowsy caches: simple techniques
for reducing leakage power, In Proceedings of International Symposium on Computer Architecture (ISCA

‘02).

GHOSH, S., CHOI, J. H., NDAI, P., AND ROY, K. 2008. O2C: occasional two-cycle operations for dynamic thermal
management in high performance in-order microprocessors. In Proceedings of the 2008 International

Symposium on Low Power Electronics and Design (ISLPED ’08), 189-192.
GOPLEN, B. AND SAPATNEKAR, S. 2003. Efficient thermal placement of standard cells in 3D ICs using a force

directed approach. In Proceedings of IEEE/ACM International Conference on Computer Aided Design

(ICCAD ’03), 86–89.
GUNTHER, S. H., BINNS, F., CARMEAN, D. M., AND HALL, J. C. 2001. Managing the impact of increasing

microprocessor power consumption. Intel Technology Journal, Vol. 5, No. 1, February 12.

GWENNAP, L. 2010. Sandy Bridge spans generations. Microprocessor Report (www.MPRonline.com),

September 2010.

HAN, Y. AND KOREN, I. 2007. Simulated annealing based temperature aware floorplanning. The Journal of Low
Power Electronics, Vol. 3, No. 2, 1-15.

HASAN, J., JALOTE, A., VIJAYKUMAR, T. N., AND BRODLEY, C. E. 2005. Heat stroke: power-density-based denial
of service in SMT. In Proceedings of International Symposium on High-Performance Computer

Architecture (HPCA ’05).

HEALY, M. B., VITTES, M., EKPANYAPONG, M., BALLAPURAM, C. S., LIM, S. K., LEE, H. -H. S., AND LOH, G. H.
2007. Multiobjective microarchitectural floorplanning for 2-D and 3-D ICs. IEEE Transactions on

Computer Aided Design of Integrated Circuits and Systems, Vol. 26, No. 1, 38-52.
HEO, S., BARR, K., AND ASANOVI Ć, K. 2003. Reducing power density through activity migration. In

Proceedings of the 2003 International Symposium on Low Power Electronics and Design (ISLPED ’03),

217-222.
HSU, C. -H. AND KREMER, U. 2003. The design, implementation, and evaluation of a compiler algorithm for

CPU energy reduction. In Proceedings of ACM SIGPLAN Conference on Programming Language Design

and Implementation (PLDI '03).

HUANG, M., RENAU, J., YOO, S. -M., AND TORRELLAS, J. 2000. A framework for dynamic energy efficiency and

temperature management. In Proceedings of International Symposium on Microarchitecture (MICRO 2000).
HUANG, W., SANKARANARAYANAN, K., SKADRON, K., RIBANDO, R. J., AND STAN, M. R. 2008. Accurate, pre-

RTL temperature-aware processor design using a parameterized, geometric thermal model. IEEE
Transactions on Computers, Vol. 57, No. 9, 1277-1288.

HUNG, W. -L., ADDO-QUAYE, C., THEOCHARIDES, T., XIE, Y., VIJAYKRISHNAN, N., AND IRWIN, M. J. 2004.

Thermal-aware IP virtualization and placement for networks-on-chip architecture. In Proceedings of
International Conference on Computer Design (ICCD ‘04), 430-437.

HUNG, W.-L., XIE, Y., VIJAYKRISHNAN, N., ADDO-QUAYE, C., THEOCHARIDES, T., AND IRWIN, M. J. 2005.
Thermal-aware floorplanning using genetic algorithms. In Proceedings of International Symposium on

Quality Electronic Design (ISQED ’05), 634-639.

INTEL 2002. Intel Pentium 4 processor in the 478-pin package thermal design guidelines. Design guide, May
2002.

INTEL 2003. Intel Pentium M processor datasheet. June 2003.

INTEL 2008. Intel® Turbo Boost Technology in Intel® Core™ microarchitecture (Nehalem) based processors,

Intel white paper. November 2008.

Recent Thermal Management Techniques for Microprocessors ● X: 43

ACM Computing Survey, Vol. X, No. X, Article X, Pub. date:

INTEL 2010. Intel Core2 duo processor E8000 and E7000 Series, Intel Pentium dual-core processor E6000 and

E5000 Series, and Intel Celeron processor E3x00 series thermal and mechanical design guidelines. April
2010.

ISCI, C. AND M. MARTONOSI, M. 2003. Runtime power monitoring in high-end processors: methodology and

empirical data. In Proceedings of International Symposium on Microarchitecture (MICRO ’03).
JAFFARI, J. AND ANIS, M. 2008. Statistical thermal profile considering process variations: analysis and

applications. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, Vol. 27,
No. 6, 1027-1040.

JANG, H. B., YOON, I., KIM, C. H., SHIN, S., AND CHUNG, S. W. 2009. The impact of liquid cooling on 3D multi-

core processors. In Proceedings of IEEE International Conference on Computer Design (ICCD ‘09), 472-
478.

JANG, H. B., CHOI, J., YOON, I., LIM, S. -S., SHIN, S., CHANG, N., AND CHUNG, S. W. 2010. Exploiting

application-dependent ambient temperature for accurate architectural simulation. In Proceedings of IEEE

International Conference on Computer Design (ICCD ’10).

JAYASEELAN, R. AND MITRA, T. 2009. Temperature aware scheduling for embedded processors. In Proceedings
of the 22nd International Conference on VLSI Design, 541-546.

JOHN, J. K., HU, J. S., AND ZIAVRAS, S. G. 2005. Optimizing the thermal behavior of subarrayed data caches. In
Proceedings of International Conference on Computer Design (ICCD ‘05).

JOSHI, A. M., EECKHOUT, L., JOHN, L. K., AND ISEN, C. 2008. Automated microprocessor stressmark generation.

In Proceedings of International Symposium on High-Performance Computer Architecture (HPCA ’08), 229-
239.

JUNG, H. AND PEDRAM, M. 2006. Stochastic dynamic thermal management: a markovian decision-based
approach. In proceedings of IEEE International Conference on Computer Design (ICCD ‘06).

JUNG, H. AND PEDRAM, M. 2008. A stochastic local hot spot alerting technique. In Proceedings of the 2008 Asia

and South Pacific Design Automation Conference (ASP-DAC ‘08), 468-473.
KALMAN, R. E. 1960. A new approach to linear filtering and prediction problem. Journal of Basic Engineering,

Vol. 82, Series D.

KAXIRAS, S., HU, Z., AND MARTONOSI, M. 2001. Cache decay: exploiting generational behavior to reduce cache

leakage power. In Proceedings of International Symposium on Computer Architecture (ISCA ‘01).

KHAN, O. AND KUNDU, S. 2008. A framework for predictive dynamic temperature management of
microprocessor systems. In Proceedings of IEEE/ACM International Conference on Computer Aided

Design (ICCAD ‘08), 258-263.
KONG, J., JOHN, J. K., CHUNG, E. -Y., HU, J., AND CHUNG, S. W. 2010. On the thermal attack in instruction

caches. IEEE Transactions on Dependable and Secure Computing, Vol. 7, No. 2, 217-223.

KOO, J., IM, S., JIANG, L., AND GOODSON, K. 2005. Integrated microchannel cooling for three-dimensional
electronic circuit architectures. Journal of Heat Transfer, Vol. 127, 49-58.

KU, J. C., OZDEMIR, S., MEMIK, G., AND ISMAIL, Y. 2005. Thermal management of on-chip caches through
power density minimization. In Proceedings of International Symposium on Microarchitecture (MICRO

‘05).

KUMAR, A., SHANG, L., PEH, L. -S., AND JHA, N. K. 2006. HybDTM: a coordinated hardwaresoftware approach
for dynamic thermal management. In Proceedings of the 43rd annual Design Automation Conference

(DAC ’06), 548-553.

KUMAR, A., SHANG, L., PEH, L. -S., AND JHA, N. K. 2008. System-level dynamic thermal management for high-

performance microprocessors. IEEE Transactions on Computer-Aided Design of Integrated Circuits and

Systems, Vol. 27, No. 1, 96-108.
KURSUN, E., AND CHER, C. -Y. 2008. Variation-aware thermal characterization and management of multi-core

architectures. In Proceedings of International Conference on Computer Design (ICCD ’08), 280-285.
LEE, J. S., SKADRON, K., AND CHUNG, S. W. 2010. Predictive temperature-aware DVFS. IEEE Transactions on

Computers, Vol. 59, No. 1, 127-133.

LEE, K.-J. AND SKADRON, K. 2005. Using performance counters for runtime temperature sensing in high-
performance processors. In Proceedings of the Workshop on High-Performance, Power-Aware Computing

(HP-PAC), in conjunction with the 2005 International Parallel and Distributed Processing Symposium.
LEE, K. -J., SKADRON, K., AND HUANG, W. 2005. Analytical model for sensor placement on microprocessors. In

Proceedings of International Conference on Computer Design (ICCD ’05), 24-30.

LEE, W., PATEL, K., AND PEDRAM, M. 2006. Dynamic thermal management for MPEG-2 decoding. In
Proceedings of the 2006 International Symposium on Low Power Electronics and Design (ISLPED ’06),

316-321.

LEE, W., PATEL, K., AND PEDRAM, M. 2008. GOP-level dynamic thermal management in MPEG-2 decoding.

IEEE Transactions on VLSI, Vol.16, No. 6, 662-672.

http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/p/Pedram:Massoud.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/p/Pedram:Massoud.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/p/Patel:Kimish.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/p/Pedram:Massoud.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/p/Patel:Kimish.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/p/Pedram:Massoud.html

X: 44 ● J. KONG, S. W. CHUNG, and K. SKADRON

ACM Computing Survey, Vol. X, No. X, Article X, Pub. date:

LI, L., KADAYIF, I., TSAI, Y. -F., VIJAYKRISHNAN, N., KANDEMIR, M., IRWIN, M. J., AND SIVASUBRAMANIAM, A.

2002. Leakage energy management in cache hierarchies. In Proceedings of 11th International Conference
on Parallel Architectures and Compilation Techniques (PACT '02).

LI, X., MA, Y., AND HONG, X. 2009. A novel thermal optimization flow using incremental floorplanning for 3D

ICs. In Proceedings of the 2009 Asia and South Pacific Design Automation Conference (ASP-DAC ‘09),
347-352.

LI, Y., LEE, B. C., BROOKS, D., HU, Z., AND SKADRON, K. 2006. CMP design space exploration subject to
physical constraints. In Proceedings of the Twelfth IEEE International Symposium on High Performance

Computer Architecture (HPCA ’06), 15-26.

LIM, C. H, ROBERT DAASCH, W., AND CAI, G. 2002. A thermal-aware superscalar microprocessor. In
Proceedings of International Symposium on Quality Electronic Design (ISQED ’02), 517-522.

LONG, J., MEMIK, S. O., MEMIK, G., AND MUKHERJEE, R. 2008. Thermal monitoring mechanisms for chip

multiprocessors. ACM Transactions on Architecture and Code Optimization, Vol. 5, No. 2, Article 9.

LU, Z., LACH, J., STAN, M., AND SKADRON, K. 2003. Reducing multimedia decode power using feedback control.

In Proceedings of International Conference on Computer Design (ICCD ‘03), 489-497.
LU, Z., LACH, J., STAN, M., AND SKADRON, K. 2005. Improved thermal management with reliability banking.

IEEE Micro, Vol. 25, No. 6, 40-49.
MEMIK, S. O., MUKHERJEE, R., NI, M., AND LONG, J. 2008. Optimizing thermal sensor allocation for

microprocessors. IEEE Transactions on Computer Aided Design of Integrated Circuits and Systems (TCAD),

Vol. 27, No. 3, 516-527.
MERKEL, A., BELLOSA, F., AND WEISSEL, A. 2005. Event-driven thermal management in SMP systems. In

Proceedings of the Second Workshop on Temperature–Aware Computer Systems (TACS '05).
MERKEL, A., AND BELLOSA, F. 2008. Task activity vectors: a new metric for temperature-aware scheduling. In

proceedings of Third ACM SIGOPS EuroSys Conference, 2008.

MESA-MARTINEZ, F. J., ARDESTANI, E. K., AND RENAU, J. 2010. Characterizing processor thermal behavior. In
Proceedings of the International Conference on Architectural Support for Programming Languages and

Operating Systems (ASPLOS ’10), 193-204.

MICHAUD, P. AND SAZEIDES, Y. 2007. ATMI: analytical model of temperature in microprocessors. In

proceedings of Third Annual Workshop on Modeling, Benchmarking and Simulation (MoBS ‘07).

MONCHIERO, M., CANAL, R., AND GONZÁ LEZ, A. 2006. Design space exploration for multicore architectures: a
power/performance/thermal view, In Proceedings of the 20th Annual International Conference on

Supercomputing (ICS ’06), 177-186.
MUKHERJEE, R. AND MEMIK, S. O. 2006a. Systematic temperature sensor allocation and placement for

microprocessors. In Proccedings of the Design Automation Conference (DAC ’06), 542-547.

MUKHERJEE, R. AND MEMIK, S. O. 2006b. Physical aware frequency selection for dynamic thermal management
in multi-core systems. In Proceedings of the 2006 IEEE/ACM international conference on Computer-aided

design (ICCAD ‘06), 547-552.
MULAS, F., PITTAU, M., BUTTU, M., CARTA, S., ACQUAVIVA, A., BENINI, L., ATIENZA, D., AND MICHELI, G. D.

2008. Thermal balancing policy for streaming computing on multiprocessor architectures. In Proceedings of
the Design, Automation and Test in Europe Conference and Exhibition (DATE ’08), 734-739.

MURALI, S., MUTAPCIC, A., ATIENZA, D., GUPTA, R., BOYD, S. P., BENINI, L., AND MICHELI, G. D. 2008.

Temperature control of high-performance multi-core platforms using convex optimization. In Proceedings

of the Design, Automation and Test in Europe Conference and Exhibition (DATE ’08), 110-115.

MUTYAM, M., LI, F., VIJAYKRISHNAN, N., KANDEMIR, M. T., AND IRWIN, M. J. 2006. Compiler-directed thermal

management for VLIW functional units. In Proceedings of ACM SIGPLAN/SIGBED Conference on
Languages, Compilers, and Tools for Embedded Systems (LCTES ‘06), 163-172.

NARAYANAN, S. H. K., KANDEMIR, M., AND OZTURK, O. 2006. Compiler-directed power density reduction in
NoC-based multi-core designs. In Proceedings of International Symposium on Quality Electronic Design

(ISQED ’06).

NAVEH, A., ROTEM, E., MENDELSON, A., GOCHMAN, S., CHABUKSWAR, R., KRISHNAN, K., AND KUMAR, A.
2006. Power and thermal management in the Intel core duo processor. Intel Technology Journal, Vol. 10,

No. 2, May 15.
OBERMEIER, B. AND JOHANNES, F. 2004. Temperature aware global placement. In Proceedings of the 2004 Asia

and South Pacific Design Automation Conference (ASP-DAC ‘04), 143-148.

PATEL, K., LEE, W., AND PEDRAM, M. 2007. Active bank switching for temperature control of the register file in
a microprocessor. In proceedings of ACM Great Lakes Symposium on VLSI 2007 (GLSVLSI ’07), 231-234.

POLLACK, F. 1999. New microarchitecture challenges in the coming generations of CMOS process technologies.

International Symposium on Microarchitecture (MICRO ‘99) keynote speech.

POWELL, M. D., GOMAA, M., AND VIJAYKUMAR, T. N. 2004. Heat-and-run: leveraging SMT and CMP to

manage power density through the operating system. In Proceedings of the International Conference on
Architectural Support for Programming Languages and Operating Systems (ASPLOS ’04), 260-270.

http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/m/Mutapcic:Almir.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/a/Atienza:David.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/g/Gupta:Rajesh_K=.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/b/Boyd:Stephen_P=.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/b/Benini:Luca.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/m/Micheli:Giovanni_De.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/l/Lee:Wonbok.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/p/Pedram:Massoud.html

Recent Thermal Management Techniques for Microprocessors ● X: 45

ACM Computing Survey, Vol. X, No. X, Article X, Pub. date:

POWELL, M. D. AND VIJAYKUMAR, T. N. 2007. Resource area dilation to reduce power density in throughput

servers. In Proceedings of the 2006 International Symposium on Low Power Electronics and Design
(ISLPED ’07) 268-273.

PUTERMAN, M. L. 1994. Markov decision processes: discrete stochastic dynamic programming. Wiley Publisher,

New York.
PUTTASWAMY, K. AND LOH, G. H. 2007. Thermal herding: microarchitecture techniques for controlling hotspots

in high-performance 3D-integrated processors. In Proceedings of International Symposium on High
Performance Computer Architecture (HPCA ‘07), 193-204.

RAJU, U., KAISARE, A., AGONAFER, D., HAJI-SHEIKH, A., CHRYSLER, G., AND MAHAJAN, R. 2008. Multi-

objective optimization entailing computer architecture and thermal design for non-uniformly powered
microprocessors. In Proceedings of 11th Intersociety Conference on Thermal and

Thermomechanical Phenomena in Electronic Systems (ITHERM ‘08).

REMARSU, S. AND KUNDU, S. 2009. On process variation tolerant low cost thermal sensor design in 32nm

CMOS technology. In Proceedings of ACM Great Lakes Symposium on VLSI 2009 (GLSVLSI ’09), 487-492.

ROTEM, E., NAVEH, A.,MOFFIE, M., AND MENDELSON, A. 2004. Analysis of thermal monitor features of the
Intel® Pentium® M processor. In Proceedings of Workshop on Temperature-aware Computer Systems

(TACS ’04).
SANKARANARAYANAN, K., VELUSAMY, S., STAN, M. R., AND SKADRON, K. 2005. A case for thermal-aware

floorplanning at the microarchitectural level. The Journal of Instruction-Level Parallelism, Vol. 7, Oct.

SANKARANARAYANAN, K., HUANG, W., STAN, M. R., HAJ-HARIRI, H., RIBANDO, R. J., AND SKADRON, K. 2009.
Granularity of microprocessor thermal management: a technical report. Tech. Report CS-2009-03, Univ. of

Virginia Dept. of Computer Science, April 2009.
SCHAFER, B. C. AND KIM, T. 2007. Thermal-aware instruction assignment for VLIW processors. In Proceedings

of 11th Workshop on Interaction between Compilers and Computer Architectures (INTERACT ‘07), 1-7.

SHARIFI, S., LIU, C., AND ROSING, T. S. 2008. Accurate temperature estimation for efficient thermal management.
In Proceedings of International Symposium on Quality Electronic Design (ISQED ’08), 137-142.

SHIN, D., KIM, J., CHOI, J., CHUNG, S. W., CHUNG, E. -Y., AND CHANG, N. 2009. Energy-optimal dynamic

thermal management for green computing. In Proceedings of IEEE/ACM International Conference on

Computer-Aided Design (ICCAD ‘09).

SIA 2009. Int'l technology roadmap for semiconductors (ITRS). Available at http://www.itrs.netreports.html
SKADRON, K., ABDELZAHER, T., AND STAN, M. R. 2002. Control-theoretic techniques and thermal-RC modeling

for accurate and localized dynamic thermal management. In Proceedings of International Symposium on
High-Performance Computer Architecture (HPCA ‘02).

SKADRON, K., STAN, M. R., HUANG, W., VELUSAMY, S., SANKARANARAYANAN, K., AND TARJAN, D. 2003.

Temperature-aware microarchitecture. In Proceedings of International Symposium on Computer
Architecture (ISCA ‘03).

SKADRON, K., SANKARANARAYANAN, K., VELUSAMY, S., TARJAN, D., STAN, M. R., AND HUANG, W.
2004. Temperature-aware microarchitecture: modeling and implementation. ACM Transactions on

Architecture and Code Optimization, Vol. 1, No. 1, 94-125.

SKADRON, K. 2004. Hybrid architectural dynamic thermal management. In Proceedings of the Design,
Automation and Test in Europe Conference and Exhibition (DATE ’04), Vol. 1.

SRINIVASAN, J., AND ADVE, S. V. 2003. Predictive dynamic thermal management for multimedia applications. In

Proceedings of International Conference on Supercomputing (ICS’03).

SRINIVASAN, J., ADVE, S. V., BOSE, P., AND RIVERS, J. A. 2004. The case for lifetime reliability-aware

microprocessors. In Proceedings of 31st International Symposium on Computer Architecture (ISCA '04).
SRINIVASAN, J., ADVE, S. V., BOSE, P., AND RIVERS, J. A. 2005. Exploiting structural duplication for lifetime

reliability enhancement. In Proceedings of the 32nd International Symposium on Computer Architecture
(ISCA '05).

SUN, C., SHANG, L., AND DICK, R. P. 2007. Three-dimensional multiprocessor system-on-chip thermal

optimization. In Proceedings of International Conference on Hardware/Software Codesign and System
Synthesis (CODES+ISSS ’07), 117-122.

TIWARI, A. AND TORRELLAS, J. 2008. Facelift: hiding and slowing down aging in multicores. In Proceedings of
International Symposium on Microarchitecture (MICRO ‘08). 129-140.

VAZIRANI, V. V. 2001. Approximation algorithms. Springer.

VENKATACHALAM, V. AND FRANZ, M. 2005. Power reduction techniques for microprocessor systems, ACM
Computing Surveys (CSUR), Vol. 37 No. 3, 195-237, September 2005.

WARE, M., RAJAMANI, K., FLOYD, M., BROCK, B., RUBIO, J. C., RAWSON, F., AND CARTER, J. B. 2010.

Architecting for power management: the IBM® POWER7™ approach. In Proceedings of International

Symposium on High-Performance Computer Architecture (HPCA ‘10).

http://ieeexplore.ieee.org/xpl/RecentCon.jsp?punumber=4147635
http://ieeexplore.ieee.org/xpl/RecentCon.jsp?punumber=4147635
http://ieeexplore.ieee.org/xpl/RecentCon.jsp?punumber=4147635
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/s/Shang:Li.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/d/Dick:Robert_P=.html
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=Authors:.QT.Ware,%20M..QT.&newsearch=partialPref
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=Authors:.QT.Rajamani,%20K..QT.&newsearch=partialPref
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=Authors:.QT.Floyd,%20M..QT.&newsearch=partialPref
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=Authors:.QT.Brock,%20B..QT.&newsearch=partialPref
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=Authors:.QT.Rubio,%20J.C..QT.&newsearch=partialPref
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=Authors:.QT.Rawson,%20F..QT.&newsearch=partialPref
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=Authors:.QT.Carter,%20J.B..QT.&newsearch=partialPref

X: 46 ● J. KONG, S. W. CHUNG, and K. SKADRON

ACM Computing Survey, Vol. X, No. X, Article X, Pub. date:

WILKERSON, P., RAMAN, A., AND TUROWSKI, M. 2004. Fast, automated thermal simulation of three-dimensional

integrated circuits. In Proceedings of 11th Intersociety Conference on Thermal and
Thermomechanical Phenomena in Electronic Systems (ITHERM ‘04).

WINTER, J. A. AND ALBONESI, D. H. 2008. Addressing thermal non-uniformity in SMT workloads, ACM

Transactions on Architecture and Code Optimization (TACO), Vol. 5, No. 1, May 2008.
WONG, D. F., AND LIU, D. L. 1986. A new algorithm for floorplan design. In Proceedings of the Design

Automation Conference (DAC ’86), 101-107.
YANG, J., ZHOU, X., CHROBAK, M., ZHANG, Y., AND JIN, L. 2008. Dynamic thermal management through task

scheduling. In Proccedings of the IEEE International Symposium on Performance Analysis of Systems and

software (ISPASS ’08), 191-201.
YEO, I., LEE, H. K., KIM, E. J., AND YUM, K. H. 2007. Effective dynamic thermal management for MPEG-4

decoding. In Proceedings of International Conference on Computer Design (ICCD ’07), 623-628.

YEO, I. AND KIM, E. J. 2008. Hybrid dynamic thermal management based on statistical characteristics of

multimedia applications. In Proceedings of the 2008 International Symposium on Low Power Electronics

and Design (ISLPED ’08), 321-326.
YUAN, L. AND QU, G. 2007. ALT-DVS: dynamic voltage scaling with awareness of leakage and temperature for

real-time systems. In Proceedings of the Second NASA/ESA Conference on Adaptive Hardware and Systems
(AHS 2007), 660-670.

ZANINI, F., ATIENZA, D., AND MICHELI, G. D. 2009. A control theory approach for thermal balancing of MPSoC.

In Proceedings of the 2009 Asia and South Pacific Design Automation Conference (ASP-DAC ‘09), 37-42.
ZHANG, Y. AND SRIVASTAVA, A. 2009. Accurate temperature estimation using noisy thermal sensors. In

Proccedings of the Design Automation Conference (DAC ’09), 472-477.
ZHOU, P., MA, Y., LI, Z., DICK, R. P., SHANG, LI., ZHOU, H., HONG, X., AND ZHOU, Q. 2007. 3D-STAF: scalable

temperature and leakage aware floorplanning for three-dimensional integrated circuits. In Proceedings of

the 2007 IEEE/ACM international conference on Computer-aided design (ICCAD ‘07), 590-597.
ZHOU, X., XU, Y., DU, Y., ZHANG, Y., AND YANG, J. 2008. Thermal management for 3D processors via task

scheduling. In Proceedings of 37th International Conference on Parallel Processing (ICPP ’08), 115-122.

ZHU, C., GU, Z., SHANG, L., DICK, R. P., AND JOSEPH, R. 2008. Three-dimensional chip-multiprocessor run-time

thermal management. IEEE Transactions on Computer Aided Design of Integrated Circuits and Systems

(TCAD), Vol. 27, No. 8, 1479-1492.

http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/l/Lee:Heung_Ki.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/k/Kim:Eun_Jung.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/y/Yum:Ki_Hwan.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/s/Srivastava:Ankur.html

