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A review of some methods for analysis of space–time disease surveillance data is pre-
sented. Increasingly, surveillance systems are capturing spatial and temporal data on dis-
ease and health outcomes in a variety of public health contexts. A vast and growing suite of
methods exists for detection of outbreaks and trends in surveillance data and the selection
of appropriate methods in a given surveillance context is not always clear. While most
reviews of methods focus on algorithm performance, in practice, a variety of factors deter-
mine what methods are appropriate for surveillance. In this review, we focus on the role of
contextual factors such as scale, scope, surveillance objective, disease characteristics, and
technical issues in relation to commonly used approaches to surveillance. Methods are
classified as testing-based or model-based approaches. Reviewing methods in the context
of factors other than algorithm performance highlights important aspects of implementing
and selecting appropriate disease surveillance methods.

� 2010 Elsevier Inc. All rights reserved.
1. Introduction

Early detection of unusual health events can enable
coordinated response and control activities such as travel
restrictions, movement bans on animals, and distribution
of prophylactics to susceptible members of the population.
Our experience with Severe Acute Respiratory Syndrome
(SARS), which emerged in southern China in late 2002
and spread to over 30 countries in 8 months, indicates
the importance of early detection (Banos and Lacasa,
2007). Disease surveillance is the principal tool used by
the public health community to understand and manage
the spread of diseases, and is defined by the World Health
Organization as the ongoing systematic collection, colla-
tion, analysis and interpretation of data and dissemination
. All rights reserved.
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of information in order for action to be taken (World
Health Organization, 2007). Surveillance systems serve a
variety of public health functions (e.g., outbreak detection,
control planning) by integrating data representing human
and/or animal health with statistical methods (Diggle,
2003), visualization tools (Moore et al., 2008), and increas-
ingly, linkage with other geographic datasets within a GIS
(Odiit et al., 2006).

Surveillance systems can be designed to meet a number
of public health objectives and each system has different
requirements in terms of data, methodology and imple-
mentation. Outbreak detection is the intended function of
many surveillance systems. In syndromic surveillance sys-
tems, early-warning signals are provided by analysis of
pre-diagnostic data that may be indicative of people’s
care-seeking behaviour during the early stages of an out-
break. In contrast, systems designed to monitor food and
water-borne (e.g., cholera) pathogens are designed for case
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detection, where one case may trigger a response from
public health workers. Similarly, where eradication of a
disease in an area is a public health objective, surveillance
may be designed primarily for case detection. Alterna-
tively, where a target disease is endemic to an area, per-
haps with seasonal variation in incidence, such as rabies,
monitoring space–time trends may be the primary surveil-
lance objective (Childs et al., 2000).

Surveillance systems differ with respect to a number of
qualities which we term contextual factors. For evaluation
of surveillance systems, this is well known, as the evalu-
ative framework set out by the Centre for Disease Control
and Prevention (CDC) encompasses assessment of sim-
plicity, flexibility, data quality, acceptability, sensitivity,
predictive value positive, representativeness, timeliness,
and stability (Buehler et al., 2004). Selection of appropri-
ate methods for space–time disease surveillance should
consider system-specific factors indicative of the context
under which they will be used (Table 1). These factors
are summarized in Table 1, and are the axes along which
we will review methods for space–time disease
surveillance.

There has been rapid expansion in the development of
automated disease surveillance systems. Following the
2001 bioterrorism attacks in the United States, there was ex-
panded interest and funding for the development of elec-
tronic surveillance networks capable of detecting a
bioterrorist attack. Many of these were designed to monitor
data that precede diagnoses of a disease (i.e., syndromic sur-
veillance). By May 2003 there were an estimated 100 syn-
dromic surveillance systems in development throughout
the US (Buehler et al., 2003). Due to the noisy nature of syn-
dromic data, these systems rely heavily on advanced statis-
tical methods for anomaly detection. As data being
monitored in syndromic systems precede diagnoses they
contain a signal that is further removed from the pathogen
than traditional disease surveillance, so in addition to hav-
ing potential for early warning, there is also greater risk of
false alarms (i.e., mistakenly signaling an outbreak) (Stoto
et al., 2004).
Table 1
Contextual factors for evaluation of methods for space–time disease
surveillance.

Factor Description

Scale The spatial and temporal extent of the
system (e.g., local/regional/national/
international)

Scope The intended target of the system (e.g., single
disease/multiple disease, single host/multiple
host, known pathogens/unknown pathogens)

Function The objective(s) of the systems (outbreak
detection, outbreak characterization, outbreak
control, case detection, situational awareness
(Mandl et al., 2004; Buehler et al., 2004), bio-
security and preparedness (Fearnley, 2008))

Disease
characteristics

Is the pathogen infectious? Is this a chronic
disease? How does it spread? What is known
about the epidemiology of the pathogen?

Technical The level of technological sophistication in the
design of the system and its users (data type
and quality, algorithm performance, computing
infrastructure and/or reliability, user expertise)
One example is a national surveillance system called
BioSense developed by the CDC in the United States. Bio-
Sense is designed to support early detection and situa-
tional awareness for bioterrorism attacks and other
events of public health concern (Bradley et al., 2005). Data
sources used in BioSense include Veterinary Affairs and
Department of Defense facilities, private hospitals, national
laboratories, and state surveillance and healthcare sys-
tems. The broad mandate and national scope of the system
necessitated the use of general statistical methods insensi-
tive to widely varying types, quality, consistency and vol-
ume of data. Two methods used in BioSense are a
generalized linear mixed-model which estimates counts
of syndrome cases based on location, day of the week
and effects due to seasonal variation and holidays. Counts
are estimated weekly for each syndrome-location combi-
nation. A second temporal surveillance approach com-
puted for each syndrome under surveillance is a
cumulative sum of counts where events are flagged as unu-
sual if the observed count is two standard deviations above
the moving average. The selection of surveillance methods
in BioSense considered factors associated with heterogene-
ity of data sources and data volume among others.

Another example is provided by a state-level disease
surveillance system developed for Massachusetts called
the Automated Epidemiological Geotemporal Integrated
Surveillance (AEGIS) system, where both time-series mod-
elling and spatial and space–time scan statistics are used
(Reis et al., 2007). The modular design of the system al-
lowed for ‘plug-in’ capacity so that functionality already
implemented in other software (i.e., SaTScan) could be lev-
eraged. In AEGIS, daily visit data from 12 emergency
department facilities are collected and analyzed. The re-
duced data volume and greater standardization enable
more advanced space–time methods to be used as well
as tighter integration with the system’s communication
and alerting functions (Reis et al., 2007).

Decisions on method selection and utilization are based
on a variety of factors, yet most reviews of statistical meth-
ods for surveillance data compare and describe algorithms
from a purely statistical or computational perspective (e.g.,
Buckeridge et al., 2005; Sonesson and Bock, 2003; Yan
et al., 2006). The selection of statistical approaches to sur-
veillance for implementation as part of a national surveil-
lance system is greatly impacted by design constraints
due to scalability, data quality and data volume whereas
the use of surveillance data for a standalone analysis by a
local public health worker may be more impacted by soft-
ware availability, learning curve, and interpretability.
Selection of appropriate statistical methods is key to en-
abling a surveillance system to meet its objectives.

A frequently cited concern of surveillance systems is
how to evaluate whether they are meeting their objectives
(Reingold, 2003; Sosin and DeThomasis, 2004). A frame-
work for evaluation developed by the CDC considers out-
break detection a function of timeliness, validity, and
data quality (Buehler et al., 2004). The degree to which
these factors contribute to system effectiveness may vary
for different surveillance systems, especially where objec-
tives and system experiences differ. For example, newly
developed systems in developing countries may place a
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greater emphasis on evaluating data quality and represen-
tativeness, as little is known about the features of the data
streams at early stages of implementation (Lescano et al.,
2008). Algorithm performance is usually measured by sen-
sitivity, specificity and timeliness. Sensitivity is the proba-
bility of an alarm given an outbreak, and specificity is the
probability of no alarm when there is no outbreak. Timeli-
ness is measured in number of time units to detection, and
has been a focus of systems developed for early outbreak
detection (Wagner et al., 2001). The importance of each
of these measures of performance need to be evaluated
in light of the system’s contextual factors outlined in
Table 1.

Our goal in this review of approaches to space–time dis-
ease surveillance is to synthesize major surveillance meth-
ods in a way that will focus on the feasibility of
implementation and highlight contrasts between different
methods. First, we aim to place methods in the context of
some key aspects of practical implementation. Second,
we aim to highlight how methods of space–time disease
surveillance relate to different surveillance contexts. Dis-
ease surveillance serves a number of public health func-
tions under varying scenarios and methods need to be
tailored and suited to particular contexts. Finally, we pro-
vide guidance to public health practitioners in understand-
ing methods of space–time disease surveillance. We limit
our focus to methods that use data encoded with both spa-
tial and temporal information.

This paper is organized as follows. The next section de-
scribes space–time disease surveillance. Following, is a
description of different statistical approaches to space–
time disease surveillance with respect to the contextual
factors outlined in Table 1. We conclude with a summary
and brief discussion of our review.
2. Space–time disease surveillance methods

Methods for space–time disease surveillance can ad-
dress a surveillance objective in a variety of ways. Most
methods assume a study area made up of smaller, non-
overlapping sub-regions where cases of disease are being
monitored. The variable under surveillance is the count
of the number of cases. In retrospective analysis, the data
are fixed and methods are used to determine whether an
outbreak occurred during the study period, or characterize
the spatial-temporal trends in disease over the course of
the study period (Marshall, 1991). In the prospective sce-
nario, the objective is to determine whether any single
sub-region or collection of sub-regions is undergoing an
outbreak (currently), and analysis occurs in an automated,
sequential fashion as data accumulate over time. Prospec-
tive methods require special consideration as data do not
form a fixed sample from which to make inferences about
(Sonesson and Bock, 2003). Parallel surveillance methodol-
ogies compute a test statistic separately for each sub-re-
gion and signal an alarm if any of sub-regions are
significantly anomalous (Fig. 1A). While in vector accumu-
lation methods, test statistics in a parallel surveillance set-
ting are combined to form one general alarm statistic
(Fig. 1B). Conversely, a scalar accumulation approach com-
putes one statistic over all sub-regions for each time period
(Frisen and Sonesson, 2005) (Fig. 1C). For example, Roger-
son (1997) used the Tango (1995) statistic to monitor
changes in spatial point patterns.

2.1. Statistical tests

Statistical tests in space–time disease surveillance gen-
erally seek to determine whether disease incidence in a
spatially and temporally defined subset is unusual com-
pared to the incidence in the study region as a whole. Thus,
this class of methods is designed to detect clusters of dis-
ease in space and time, and suit surveillance systems de-
signed for outbreak detection. Most spatial cluster
detection methods such as the Geographical Analysis Ma-
chine (Openshaw et al., 1987), density estimation (Bithell,
1990; Lawson and Williams, 1993), Turnbull’s method
(Turnbull et al., 1990), the Besag and Newell (1991) test,
spatial autocorrelation methods such as the Gi* (Getis
and Ord, 1992), and LISAs (Anselin, 1995), and the spatial
scan statistic (Kulldorff and Nagarwalla, 1995) are types
of statistical tests. The development of methods for
space–time cluster detection naturally evolved from these
purely spatial methods. We can stratify methods in the sta-
tistical test class into three types: tests for space–time
interaction, cumulative sum methods, and scan statistics.

2.1.1. Tests for space–time interaction
Space–time interaction of disease indicates that the

cases cluster such that nearby cases in space occur at about
the same time. The form of the null hypotheses is usually
conditioned on population, and can factor in risk covariates
such as age, occupation, and ethnicity. Detecting the pres-
ence of space–time interaction can be a step towards
determining a possible infectious etiology for new or
poorly understood diseases (Aldstadt, 2007). Additionally,
non-infectious diseases exhibiting space–time interaction
may suggest the presence of an additional causative agent,
such as a point source of contamination and/or pollution or
an underlying environmental variable. These methods re-
quire fixed samples of space–time data representing cases
of disease.

All tests for space–time interaction consider the num-
ber of cases of disease that are related in space–time, and
compare this to an expectation under a null hypothesis
of no interaction (Kulldorff and Hjalmars, 1999). The Knox
test (1964) uses a simple test statistic which is the number
of case pairs close both in space and in time. This count is
compared to the null expectation conditional on the num-
ber of pairs close only in space, and the number of pairs
close only in time; i.e., the times of occurrence of the cases
are independent of case location. A major shortcoming of
the Knox (1964) method is that the definition of ‘‘close-
ness” is arbitrary. Mantel’s (1967) test addresses this by
summing across all possible space–time pairs, while Diggle
et al. (1995) identify clustering at discrete distance bands
in the space–time K function. For infectious diseases, it is
likely that near space–time pairs are of greater importance,
so Mantel suggests a reciprocal transformation such that
distant pairs are weighted less than near pairs. The Mantel
test can in fact be used to test for association between any
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Fig. 1. Methods for prospective surveillance. (A) Parallel surveillance where a test statistic is computed separated for each region under surveillance and
each assessed individually. (B) Vector accumulation where test statistics in a parallel setting are combined to form one alarm statistic which is evaluated.
(C) Scalar accumulation where on statistic is computed over all regions under surveillance and evaluated.
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two distance matrices, and is often used by ecologists to
test for interaction between space and another distance
variable such as genetic similarity (Legendre and Fortin,
1989).

The reciprocal transformation used in the Mantel statis-
tics assumes a distance decay effect. While this may be
appropriate for infectious diseases, for non-infectious dis-
eases or diseases about which little is known, this assumed
functional form of disease clustering may be inappropriate.
A different approach is taken by Jacquez (1996) where
relations in space and time are defined by a nearest neigh-
bour relation rather than distance. Here, the test statistic is
defined by the number of case pairs that are k nearest
neighbours in both space and time. When space–time
interaction is present, the test statistic is large. Another
method for testing an infectious etiology hypothesis given
by Pike and Smith (1974), assesses clustering of cases rel-
ative to another control disease, though selection of appro-
priate controls can be difficult.

The scale of the disease surveillance context can impact
the selection of space–time interaction tests because these
tests are sensitive to changes in the underlying population
at risk (population shift bias). Therefore, large temporal
scales will be more likely to exhibit changes in population
structure and introduce population shift bias. An unbiased
version of the Knox test given by Kulldorff and Hjalmars
(1999) accounts for this by adjusting the statistic by the
space–time interaction inherent in the background popula-
tion. Changes in background population over time can be
incorporated into all space–time interaction tests using a
significance test based on permutations conditioned on
population changes. However, this obviously requires data
on the population over time which may not always be easy
to obtain.

Space–time interaction tests are univariate and there-
fore only suitable for testing cases of a single disease. Con-
sideration of multiple host diseases is possible, though
there is no mechanism to test for interaction or relation-
ships between different host species. Another major con-
sideration is the function of the surveillance system or
analytic objective. Interaction tests can only report the
presence or absence of space–time interaction. They give
no information about the spatial and temporal trends in
cases, nor consider naturally occurring background hetero-
geneity. A final point is that these tests use case data, and
therefore require geo-coded singular event data, making
these methods unsuitable when disease data are aggre-
gated to administrative units.

2.1.2. Cumulative sum (CUSUM) methods
Cumulative sum methods for space–time surveillance

developed out of traditional statistical surveillance appli-
cations such as quality control monitoring of industrial
manufacturing processes. In CUSUM analysis, the objective
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is to detect a change in an underlying process. In applica-
tion to disease surveillance, the data are in the form of case
counts for sub-regions of a larger study area. A running
sum of deviations is recalculated at each time period. For
a given sub-region, a count yt of cases at time t is moni-
tored as follows

St ¼ maxð0; St�1 þ yt � kÞ ð1Þ

where St is the cumulative sum alarm statistic, k is a
parameter which represents the expected count, so that
observed counts in exceedence of k are accumulated. At
each time period, an alarm is signalled if St is greater than
a threshold parameter h. If a CUSUM is run long enough,
false alarms will occur as exceedences are incrementally
accumulated. The false-positive rate is controlled by the
expected time it takes for a false alarm to be signalled,
termed the in-control average run length, denoted ARL0.
The ARL0 is directly related to the threshold value for h,
which can be difficult to specify in practice. High values
of h yield long ARL0 and vice versa. In practice, approxima-
tions are used to estimate a value for h for a chosen ARL0

(Siegmund, 1985), though this remains a key issue in CU-
SUM methods.

The basic univariate CUSUM in (1) can be extended to
incorporate the spatial aspect of surveillance data. In this
sense, CUSUM is a temporal statistical framework around
which a space–time statistical test can be built. In an initial
spatial extension, Rogerson (1997) coupled the (global)
Tango statistic (1995) for spatial clustering in a CUSUM
framework. For a point pattern of cases of disease, compute
the spatial statistic, and use this value of the statistic to
condition the expected value at the next time period. Ob-
served and expected values are used to derive a z-score
which is then monitored as a CUSUM (Rogerson, 2005a).
One scalar approach taken by Rogerson (2005b) is to mon-
itor only the most unexpected value, or peak, of each time
period as a Gumbel variate (Gumbel distribution is used as
a statistical distribution for extreme values). An additional
approach is to compute a univariate CUSUM in a parallel
surveillance framework (Woodall and Ncube, 1985). Here
the threshold parameter h must be adjusted to account
for the multiple tests occurring across the study area. Yet
this approach takes no account of spatial relationships be-
tween sub-regions (i.e., spatial autocorrelation).

CUSUM surveillance of multiple sub-regions can be con-
sidered a multivariate problem where a vector of differ-
ences between the observed and expected counts for
each sub-region is accumulated. Spatial relationships be-
tween sub-regions can be incorporated by explicitly mod-
elling the variance–covariance matrix. Rogerson and
Yamada (2004) demonstrate this approach by monitoring
a scalar variable representing the multivariate distance of
the accumulated differences between observed and ex-
pected over all sub-regions. This is modelled as

MC1t ¼maxð0; jjSt jj � kntÞ ð2Þ

where ||St|| =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
St

t

P�1St

q
, and

P
is a variance–covariance

matrix capturing spatial dependence, and St is a 2 � p vec-
tor of differences between observed and expected cases of
disease in time t for each p sub-region (Rogerson and Yam-
ada, 2004).
CUSUM methods are attractive for prospective disease
surveillance because they offer a temporal statistical
framework within which spatial statistics can be inte-
grated. They therefore overcome one of the limitations of
traditional spatial analysis applied to surveillance in that
repeated testing over time (and space) can be corrected
for. A full description of the inferential properties of the
CUSUM framework is given by Rogerson (2005a). These
methods are therefore most appropriate for long temporal
scales, especially when historical data are used to estimate
the baseline. Multivariate CUSUM given by Rogerson and
Yamada (2004) is for a singular disease over multiple
sub-regions, but could be used to monitor multiple dis-
eases over multiple sub-regions. This may be most applica-
ble in a syndromic surveillance application. The simplicity
of univariate CUSUM makes training and technical exper-
tise less of a factor than the multivariate case. Multivariate
CUSUM is also more difficult to interpret and specification
of the threshold parameter requires simulation experimen-
tation or a large temporal extent from which to establish a
baseline.

2.1.3. Scan statistics
Scan statistics developed originally for temporal clus-

tering by Naus (1965) test whether cases of disease in a
temporally defined subset exceed the expectation given a
null hypothesis of no outbreak. The length of the temporal
window is varied systematically in order to detect out-
breaks of different lengths. This approach was first ex-
tended to spatial cluster detection in the Geographical
Analysis Machine (Openshaw et al., 1987). The spatial ap-
proach looks for clusters by scanning over a map of cases
of disease using circular search areas of varying radii. Kull-
dorff and Nagarwalla (1995) refined spatial scanning with
the development of the spatial scan statistic which adjusts
for the multiple testing of many circular search areas. The
spatial scan statistic overcomes the multiple-testing prob-
lem (common to many local spatial analysis methods) by
taking the most likely cluster defined by maximizing the
likelihood that the cases within the search area are part
of a cluster compared to the rest of the study area. Signif-
icance testing for this one cluster is then assessed via
Monte Carlo randomization. Secondary clusters can be as-
sessed in the same way and ranked by p-value.

In Kulldorff (2001), the spatial scan statistic is extended
to space–time, such that cylindrical search areas are used
where the spatial search area is defined by cylinder radius,
and the temporal search area is defined by cylinder height.
In prospective analysis, candidate cylinders are limited to
those that start at any time during the study period and
end at the current time period (i.e., alive clusters). Signifi-
cance is determined through randomization and compar-
ing random permutations to the likelihood ratio
maximizing cylinder in the observed data. An additional
consideration to take account of multiple hypothesis test-
ing over time (correlated sequential tests) is given by
including previously tested cylinders (which may be cur-
rently ‘dead’) in the randomization procedure (Kulldorff,
2001).

The space–time scan statistic (Kulldorff, 2001) ap-
proaches the surveillance problem in a novel way and
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aptly handles some key shortcomings of other local meth-
ods (multiple testing, locating clusters, pre-specifying clus-
ter size). However, a limitation is that the expectation is
conditional on an accurate representation of the underly-
ing population at risk, data which may be hard to obtain.
In long term space–time surveillance scenarios, accurate
population estimates between decennial censuses are rare
or must be interpolated. In syndromic applications, where
cases are affected by unknown variations in care-seeking
behaviours, the raw population numbers may not accu-
rately reflect the at-risk population. In Kulldorff et al.
(2005), the expected value for each unit under surveillance
is estimated from historical case data rather than popula-
tion data. Generating the expected value from the history
of the process under surveillance is most suitable for
real-time prospective surveillance contexts where the
current state of the process is of interest. This extension
allows the application of the space–time scan statistic in
a wider range of surveillance applications.

A remaining limitation of the cylindrical space–time
scan statistic is the use of circular search area over the
map. The power of the scan statistics that use circular-
based search areas decline as clusters become more irreg-
ular in shape, for example, for cases clustered along a river
valley or where disease transmission is linked to the road
network. The spatial scan statistic has been extended to
detect irregularly-shaped clusters in Patil and Taillie
(2004) and Tango and Takahashi (2005). Extensions of
these approaches to space–time are active areas of re-
search. A space–time version of the Tango and Takahashi
(2005) method uses spatial adjacency of areal units added
incrementally up to K nearest neighbour units which are
connected through time to form 3-dimensional prism
search areas (Takahashi et al., 2008). A similar approach
is given by Costa et al. (2007). However, these methods
are very computationally intensive.

Scan statistics are one of the most widely used statisti-
cal methods for outbreak detection in surveillance sys-
tems. Space–time scan statistics are able to detect and
locate clusters of disease, and can condition expected
counts for individual sub-regions on population data or
on previous case data, making these methods suitable for
implementation where data volume is large. The scope of
scan statistics, like most statistical tests, is limited to mon-
itoring case data, either case event point data or counts by
sub-region. Scan statistics are best served to detect and lo-
cate discrete localized outbreaks. Secondary clusters can
be identified by ranking candidate clusters by their likeli-
hood ratio. Yet region-wide outbreaks cannot be detected
with scan-statistics because of the assumed form of a clus-
ter as a compact geographical region where cases are
greater than expected. Novel space–time methods that
search for raised incidence via graph-based connectivity
may model spatial relationships of disease processes more
accurately than circular search areas. However, the compu-
tational burden and complexity of these approaches limits
their use to expert analysts and researchers. At the root of
the problem is a conceptual discrepancy between the def-
inition of a disease outbreak (which disease surveillance
systems are often interested in detecting) and a disease
cluster (defined by spatial proximity) which is common
to all statistical testing methods for space–time surveil-
lance (Lawson, 2005).

2.2. Model-based approaches

Model-based approaches to surveillance developed re-
cently as the need emerged to include other variables into
the specification of our expectation of disease incidence.
For example, we often expect disease prevalence to vary
with age, gender, and workplace of the population under
surveillance. Statistical models allow for these influences
to adjust the disease risk through space and time. A second
impetus for the development of statistical models for
disease surveillance is that a large part of epidemiology
concerned with estimating relationships between environ-
mental variables and disease risk (i.e., ecological analysis)
provided a methodological basis from which to draw.
Modelling for space–time disease surveillance is relatively
recent, and this is a very active area of statistical surveil-
lance research. Again we stratify statistical models into
three broad classes: generalized linear mixed models,
Bayesian models, and models of specific space–time
processes.

2.2.1. Generalized linear mixed models
Generalized linear mixed models (GLMM) offer a

regression-based framework to model disease counts or
rates using any of the exponential family of statistical dis-
tributions. This allows flexibility in the expected distribu-
tion of the response variable, as well as flexibility in the
relationship between the response and the covariate vari-
ables (the link function). One application of this approach
to prospective disease surveillance for detection of bioter-
rorist attacks is given by Kleinman et al. (2004). Here, the
number of cases of lower respiratory infection syndromes
in small geographic areas act as a proxy for possible an-
thrax inhalation. A GLMM approach is used to combine
fixed effects for covariate variables (i.e., season, day of
the week) with a random effect that accounts for varying
baseline risks in different geographic areas. In Kleinman
et al. (2004), the logit link function is used in a binomial lo-
gistic model to estimate the expected number of cases yit in
area i for time t. This is a function of the probability of an
individual being a case in area i at time t and the number
of people nit in area i at time t.

EðyitjbiÞ ¼ nitpit ð3Þ

This expectation is conditional on a location specific
random effect bi and is then converted to a z-score and
evaluated to determine if it is unusual (i.e., an emerging
cluster). This approach was extended to a model using
Poisson random effects in Kleinman (2005). The use of
GLMM in prospective surveillance has also been suggested
for use in west nile virus surveillance due to the ease with
which covariates can be included and flexibility in model
specification (Johnson, 2008).

The GLMM approach has attractive advantages as a flex-
ible modelling tool. Particularly, relaxation of distribu-
tional assumptions, flexibility in link functions, and the
ability to model spatial relationships (at multiple spatial
scales) as random effects make GLMM useful for prospec-
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tive space–time disease surveillance. The scale and scope
of the surveillance context does not limit a model-based
approach, and models may be even more useful when data
abnormalities such as time lags occur (as estimates can be
based on covariates alone). One feature of GLMM that are
important for many disease surveillance contexts are the
ease with which spatial hierarchies can be incorporated.
Ecological relationships that are structured hierarchically
that impact disease emergence (e.g., climate, vegetation,
vector life-cycle development) can be represented and ac-
counted for. Further, human drivers of disease emergence
(e.g., land-use policies, travel patterns, demographics) are
often organized hierarchically through administrative
units. In social sciences GLMMs are often used (i.e., mul-
ti-level models) that incorporate these ‘contextual effects’
on an outcome variable. A further advantage of GLMMs is
their ability to incorporate spatial variation in the underly-
ing population at risk by conditioning the expected value
on the random effect component (bi in Eq. (3)). Where few-
er people are present, the expected value is adjusted to-
ward the mean. This can somewhat account for the
small-numbers problem of SMRs in epidemiology, reduc-
ing the likelihood of estimating extremely low expected
values in rural areas.
2.2.2. Bayesian models
Bayesian models have been used extensively in disease

mapping studies (Best et al., 2005; Lawson, 2009). Analysis
of disease in a Bayesian framework centers around infer-
ence on unknown area-specific relative risks. Inference
on this unknown risk distribution is based on the observed
data y and a prior distribution. These are combined via a
likelihood function to create a distribution for model
parameters which can be sampled for prediction. Bayesian
models have been applied for retrospective space–time
surveillance (e.g., MacNab, 2003) and are now being devel-
oped for prospective space–time disease surveillance.

The basic Bayesian model can incorporate space and
time dependencies. In Abellan et al. (2008) a model is de-
scribed where the counts of disease are taken to be bino-
mial distributed, and the next level of the model is
composed of a decomposition of the unknown risks into
model parameters for general risk, spatial effects, temporal
effects, and space–time interaction. Estimation requires
specifying prior distributions for each of the model compo-
nents and sampling the posterior distribution via Monte
Carlo markov chain (MCMC) methods. Here, the authors
describe space–time Bayesian models for explanation of
overall patterns of disease, speculating on their use in dis-
ease surveillance contexts. Rodeiro and Lawson (2006a) of-
fer a similar model based on a Poisson distributed disease
count. Specifically, the counts yi are Poisson with mean a
function of the expected number of cases eij in location i
at time j and the area-specific relative risk rrij.

logðrrijÞ ¼ ui þ v i þ tj þ cij ð4Þ

Similar to Abellan et al. (2008), the log (rrij) are decom-
posed into spatial effects ui, uncorrelated heterogeneity vi,
temporal trend tj, and space–time interaction cij: Again,
these components need prior distributions specified. For
the spatial correlation term, a conditional autoregressive
model (CAR) is suggested for modelling spatial autocorre-
lation. Residuals are then extracted from model predictions
for incoming data and can be used to assess how well the
data fits the existing model. As discussed in Rodeiro and
Lawson (2006a), monitoring residuals in this way makes
the detection of specific types of disease process change
feasible by adjusting how residuals are evaluated. While
adding to the complexity of the analysis, this may be of
great use in a surveillance application.

Alternative proposals such as Bayesian cluster models
with ‘‘a priori” cluster component for spatiotemporal dis-
ease counts was developed by Yan and Clayton (2006).
More recently, Bayesian and empirical Bayes semi-para-
metric spatiotemporal models with temporal spline
smoothing were developed for the analysis of univariate
spatiotemporal small area disease and health outcome
rates (MacNab, 2007a; MacNab and Gustafson, 2007; Ugar-
te et al., 2009) and multivariate spatiotemporal disease
and health outcome rates (MacNab, 2007b). Tzala and Best
(2008) also proposed Bayesian hierarchical latent factor
models for the modelling of multivariate spatiotemporal
cancer rates. These spatiotemporal models, with related
Bayesian and empirical Bayes methods of inference, may
also be considered for disease surveillance applications.

The statistical methodology for applying Bayesian mod-
els to surveillance in space–time is still being developed,
and as such these approaches are suited primarily to
researchers. Bayesian models are attractive because they
allow expert and local knowledge of disease processes to
be incorporated via the specification of prior distributions
on model parameters. However, this can also be a draw-
back, as a subjective element is introduced to the model.
It is generally recommended that sensitivity analysis be
conducted on a variety of candidate priors for model
parameters (e.g., MacNab and Gustafson, 2007; MacNab,
2007a). These technical aspects of model-fitting require
advanced statistical training. A further complexity of
Bayesian models is estimation. MCMC methods are re-
quired for generating the posterior distributions for these
types of models and are computationally very demanding
(although see Rodeiro and Lawson, 2006b). This might ne-
gate the use of these approaches in surveillance contexts
that require daily refitting of models (i.e., fine temporal
resolution), however, monthly or annual model refitting
may be possible. As with GLMMs, Bayesian models lend
themselves to modelling hierarchical spatial relationships,
and this can be important for both ecological and human-
mediated drivers of disease emergence.

2.2.3. Models of specific space–time processes
Some modelling approaches to surveillance have been

designed to model specific types of spatial processes, gen-
erally represented as a realization from a statistical distri-
bution. While all models require some distributional
assumptions, those considered here purport to associate
specific statistical processes with disease processes in the
context of surveillance. In Held et al. (2005), a model is
based on a Poisson branching process whereby outcomes
are dependent on both model parameters describing a par-
ticular property (e.g., periodicity) and past observed data.
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Spatial and space–time effects can also be included as an
ordinary multivariate extension. A useful aspect of this for-
mulation for disease surveillance is the separation of the
disease process at time t into two parts: an endemic part
v and an epidemic part with conditional rate kyt�1

lt ¼ v þ kyt�1 ð5Þ

The endemic component can also be adjusted for sea-
sonality, day of the week effects and other temporal trends.
Extended to the multivariate case, the model becomes

lt ¼ nitv þ kyi;t�1 ð6Þ

where the endemic rate adjusted by the number of people
in area i at time t, and area-specific previous model esti-
mates for the epidemic part. Spatial dependence can be
incorporated by adding a spatial effects term that accounts
for correlated estimates in kyi;t�1 via a weights matrix.
However, this type of model yields separate parameters
for each geographical unit.

A point process methodology for prospective disease
surveillance is presented in Diggle et al. (2005). Point data
representing cases are modelled with separate terms for
spatial variation, temporal variation, and residual space–
time variation. The method is local, in the sense that recent
cases are used for prediction, producing continuously vary-
ing risk surfaces. However, there are also global model
parameters which estimate the background variation in
space and time estimated from historical data. Outbreaks
are defined when variation in the residual space–time pro-
cess exceeds a threshold value c. Different values for the
threshold parameter are evaluated and exceedence proba-
bilities are mapped. Model parameters are fixed allowing
the model to be run daily on new data. However, as noted
in Diggle et al. (2005), this may fail to capture unknown
temporal trends, and periodic refitting may be required.

A different approach is given by Järpe (1999), which
instead of decomposing the process into separate compo-
nents, monitors a single parameter of spatial relationships
in a surveillance setting. This is similar in spirit to Roger-
son’s work (Rogerson, 1997) monitoring point patterns
with spatial statistics, though here a specific underlying
process is assumed: the Ising model. The Ising model rep-
resents a binary-state two dimensional lattice (sites coded
0 or 1). There are two parameters for the Ising model; one
governs the overall intensity (probability of a site being a
1), and another the spatial interaction (probability of
nearby sites being alike). In Järpe (1999), the intensity
parameter is assumed equal and unchanging, and the sur-
veillance is performed on the interaction parameter under
different lattice sizes and types of change. The interaction
parameter is essentially a global measure of spatial auto-
correlation. This can then be monitored using temporal
surveillance statistics such as CUSUM. Since the properties
of the underlying model are known, Järpe is able to detect
very small changes in spatial autocorrelation which could
indicate the shift of a disease from endemic to epidemic.
While significant spatial autocorrelation is often present
at both endemic and epidemic states, changes in clustering
can reveal threshold dynamics of the process in a surveil-
lance setting. This is a common feature of forest insect
epidemics (Peltonen et al., 2002). Further, the effect of
the lattice size can easily be estimated, and as lattice size
is increased, sensitivity to changes in the interaction
parameter increases as well.

While most methods discussed thus far have been
developed with the analysis of aggregated counts of dis-
ease in mind, analysis of sites on a lattice may have appli-
cability in certain disease surveillance contexts. For
example, square lattices are used for remotely sensed im-
age processing, and surveillance of the presence or absence
of a disease in these sampling units using an Ising model-
based approach could incorporate remotely sensed envi-
ronmental covariates (e.g., normalized differential wetness
index) as is commonly done for zoonotic disease risk map-
ping and forecasting (Kitron et al., 1996; Rogers et al.,
1996; Wilson, 2002). However, it is unclear how covariates
are included in the Ising model. This highlights an impor-
tant point with model-based approaches to prospective
surveillance: the main advantage of models is to incorpo-
rate extra information and to estimate smooth relative
risks, yet as models grow in complexity they become more
difficult to re-fit. This has implications for how suitable
models are in different surveillance contexts. Where the
temporal scale is large, expected counts can be based on
observed data rather than using census or other data
sources. This is particularly important where diseases fol-
low seasonal trends. With limited temporal data available,
estimating model parameters may make be impacted by
regular variation in disease occurrence. For surveillance
systems monitoring many small areas (i.e., large spatial
scale), the Held et al. (2005) model would be of limited va-
lue as separate parameters need to be estimated for every
sampling unit. Broad scale patterns over large areas might
better captured by the point process approach of Diggle
et al. (2005). Although here, case event data with fine spa-
tial resolution is required.

For all modelling approaches, complex decisions are
required such as what covariates to include, how often to
re-fit the model, how to test incoming data for fit against
the existing model which require advanced statistical
knowledge. This limits the applicability of modelling
approaches to advanced analysts and researchers except
for use in a black-box sense by analysts and public health
practitioners. Surveillance models can be tailored to detect
specific types of disease process changes, such as a region-
wide increase, or small changes in spatial autocorrelation
suggesting a shift from endemic to epidemic states. How-
ever, models also required additional tests to determine
if incoming data differ from the expected (i.e., modelled)
pattern of cases. Thus, in practice surveillance models are
best utilized to estimate a realistic relative risk, and can
then be combined with statistical tests such as CUSUM
(Järpe, 1999) and scan statistics (Kleinman et al., 2005).

2.3. Emerging research areas

Research into space–time disease surveillance methods
has increased dramatically over the last two decades.
Many new methods are designed for specific surveillance
systems, or are in experimental/developmental stages
and not used in practical surveillance. Here, we report on
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some newly developed approaches for public health sur-
veillance to alert readers to the most recent developments
in these emerging research areas.

While test and model-based approaches to surveillance
build on classical statistical methods, many recent space–
time disease surveillance methods have been developed
specifically to take advantage of advanced computing
power and data sources. These approaches include net-
works (Reis et al., 2007; Wong and Moore, 2006) simula-
tion-based methods such as agent-based models (Eubank
et al., 2004) and bootstrap models (Kim and O’Kelly,
2008), and hidden markov models (Madigan, 2005; Sun
and Cai, 2009; Watkins et al., 2009).

Other new methods are designed to address limitations
of existing surveillance methods. One problem for most
methods of surveillance, is the specification of the null
hypothesis, or expected disease prevalence. While ex-
pected rates are generally conditional on population data,
spatial heterogeneity in the background rates are rarely ac-
counted for. That is, complete spatial randomness (CSR) is
the underlying null model. Goovaerts and Jacquez (2004)
have used geostatistical approaches, estimating spatial
dependence of background rates via the semivariogram,
to develop more realistic null models for disease cluster
detection. The geostatistical framework has the advantage
of estimating spatial dependence from the data, rather
than defining it a priori via a spatial weights matrix as is
common in disease mapping models.

Another problem common to most surveillance meth-
ods is that maps of disease represent either home address
(case events) or small areas (tract counts). Unusual clusters
on the map imply heightened risk is associated with those
locations. However, movement of animals and people
decouples the location of diagnosis from disease risk by
modifying exposure histories. Methods that account for
mobility may be an important area for future surveillance,
especially in the context of real-time, prospective outbreak
detection. The relationship between case, location, and
exposure is further complicated by disease latency periods,
which gives rise to space–time lags in diagnoses (Schaer-
strom, 1999). This may be most important in the context
of retrospective cluster analysis and investigation of possi-
ble environmental risk factors. Statistical tests have been
developed to account for exposure history and mobility
for case-control data (Jacquez and Meliker, 2009) and
case-only data (Jacquez et al., 2007). Kernel-based ap-
proaches to risk estimation that incorporate duration at
each location have been utilized for amyotrophic lateral
sclerosis (Sabel et al., 2003). The general approach is to
model and analyze the space–time path of individuals in
the sense of Hägerstrand (1967). As personal location data
continues to become ubiquitous due to new technology
such as GPS-enabled cell phones, surveillance methods
that account for individual space–time histories may see
more application in public health surveillance.
3. Summary

The development of space–time disease surveillance
systems holds great potential for improving public health
via early warning and monitoring of health. The selection
of which method(s) to implement in a given context is
dependent on a variety of factors (Table 2). This review
has demonstrated that there is no best method for all sys-
tems. There are many aspects to consider when thinking
about methods for space–time disease surveillance. Many
of the methods described in this review are active areas
of research and new methods are constantly being devel-
oped. As more data sources become available, this trend
is expected to continue, and the methods described here
provide a snapshot of options available to public health
analysts and researchers. A brief outline of some of the fac-
tors reviewed and how they relate to surveillance methods
is given below.

The spatial scale of the surveillance context is an impor-
tant factor for selecting appropriate methods. Spatial ef-
fects (i.e., clustering) are likely only of interest when
cases/counts collected over a relatively large, heteroge-
neous area are being analyzed. Over smaller more homoge-
neous areas, where spatial effects are negligible, temporal
surveillance is optimal. When space–time surveillance is
warranted, choice of which surveillance approach to use
may be impacted by how spatial effects can be incorpo-
rated. Where spatial scale is small, one would likely focus
on either process models or statistical tests which use an
underlying distribution for the null hypothesis (i.e., Pois-
son model). The temporal scale of surveillance is also
important. Large temporal scales can use either testing or
modelling methods, and most suit methods where base-
lines are estimated from previous cases, such as with the
space–time permutation scan statistic. Short temporal
scales are not appropriate for models when diseases have
complex day of the week effects or seasonal variation in
incidence. Scale will also affect the computational burden
placed on the system. Many approaches reviewed here,
particularly statistical tests such as scan statistics, use
approximate randomization to generate a distribution of
a test statistic under the null hypothesis. Methods that uti-
lize randomization procedures, while powerful, impose
constraints when applied with large spatial–temporal
datasets.

Most methods are designed for a single disease and
all methods are suitable for single host diseases, but
finer detail in case distribution may be important for
multiple host zoonotic diseases. Stratification into sepa-
rate diseases by host type will result in a loss of infor-
mation as associations between host types will be lost.
As zoonotic diseases make up the majority of emerging
infectious diseases (Greger, 2007), multiple host surveil-
lance methods are required. Multivariate tests such as
multivariate CUSUM can be used to monitor multiple
signals. Modelling approaches can also be used by creat-
ing a generalized risk index as the variable under sur-
veillance. Multivariate extensions to existing methods
can be used to monitor associations between two dis-
eases, for example, human and animal strains of the
same pathogen.

The objective of surveillance is one of the main drivers
of method selection. All statistical tests are commonly used
for outbreak detection. In general, modelling approaches
are better suited to monitoring space–time trends. For



Table 2
Summary of contextual factors on methods of space–time disease surveillance.

Class Type Scale Scope Function Characteristics Technical

Test CUSUM Temporal statistical
framework useful for
long time periods of
sequential surveillance

Univariate CUSUM
useful for single
diseases while
multivariate CUSUM
useful when multiple
diseases or syndromes
are under surveillance

Primarily for outbreak
detection

Multivariate CUSUM is
not sensitive to
outbreak type (one
extreme vs. many
subtle rises) whereas
the univariate is

Difficulty in
specification and
understanding of the
threshold parameter

Test Interaction Population shift bias
increases with spatial
and temporal scale

Cannot analyze
interactions and
relationships in
multiple host diseases

Can only detect
presence of
interaction. Limited
utility for outbreak
detection. Best used as
screening method

Interaction tests
cannot capture
interactions and flows
between units under
surveillance (spatial
autocorrelation)

Require geo-coded
event data of cases of
disease. Ease of
understanding and
interpretation.
Subjectivity in
specification of critical
distances in space and
time

Test Scan Space–time scan
statistics are able to
detect and locate
clusters. Using the
permutation-based
approach can make
use of temporal
history of data.
Appropriate mostly
where there is a large
volume of data in
space and time

Scan statistics are
designed to monitor
one data stream, and
therefore in and of
themselves are not
suitable for multiple
disease. Can be
combined with models
as in Kleinman et al.
(2005)

Monitoring p-values of
primary and secondary
clusters can be useful
for assessing trends
over time, although
primary function is for
discrete localized
outbreak detection

Cylindrical search
areas assume compact
cluster form.
Extensions using
graph-based
connectivity for search
areas are
computationally very
demanding. Spatial
relationships not
defined by proximity
may be more
important for disease
spatial processes

Can be used with point
event data or count
data. Ease of
understanding and
interpretation of
results of analysis

Model GLMM Increase in utility as
the size of the
surveillance database
grows. Temporal
trends can be
incorporated as model
parameters. Frequent
refitting of complex
models can be difficult

Models can be
formulated for risks,
incidence and counts
of diseases. Very
flexible in how
dependent variable is
structured

Monitoring space–
time trends in disease
incidence, however, all
modelling approaches
need to be coupled
with a statistical test
to determine
unexpected events
(i.e., outbreaks)

Can incorporate
hierarchical effects of
covariates easily
including spatial
effects

The most accessible of
modelling approaches
but requires
knowledge of
statistical
distributions. Limited
mostly to researchers
and statistical
analysts. Flexible
choice of statistical
distributions
compared to OLS
modelling

Model Bayesian Same as above Same as above Same as above Same as above Priors need to be
specified for model
parameters. Advanced
statistical knowledge
required. Fitting
complex space–time
Bayesian models
requires MCMC
methods. Not suitable
if need to be re-fit
often

Model Processes Can be used with data
of any scale as testing
is against a specified
process

Multiple hosts and
pathogens can be
accounted for though
may be difficult to
parameterize

Generally high
sensitivity to detecting
different types of
change such as
periodic outbreaks or
gradual shifts away
from the process.
Needs to be coupled
with a statistical test

Characteristics of
disease (e.g.,
transmission, serial
interval) can
determine choice of
process. Can also be
used as exploratory
tool

Models in this class
vary greatly. Technical
factors will be specific
to individual process
models selected
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what has been termed situational awareness, multiple sig-
nals are usually monitored. This is often the case in large
syndromic applications such as BioSense and ESSENCE.
These contexts are best suited to a modelling approach,
as often heterogeneity needs to be modelled with
covariates.



C. Robertson et al. / Spatial and Spatio-temporal Epidemiology 1 (2010) 105–116 115
Consideration of technical expertise is required for
practical disease surveillance. Broadly speaking, greater
statistical expertise is required for model-based methods
than testing (understanding model assumptions, parame-
terizing models, preparing covariate data, and interpreting
output), while testing concepts are generally easier to
grasp. However, for epidemiologists already familiar with
generalized linear mixed models, some model approaches
that incorporated space and time may be quickly attain-
able, such as that of Kleinman et al. (2004). Yet for analysts
from a health geography or spatial analysis background,
testing methods might be more familiar. In any case, the
use of space–time surveillance methods in public health
will only increase in the future, and it is important that
training and education keep pace with the changing meth-
ods available for surveillance data analysis.
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