
EATIS 2007

A Model-Driven Approach for Reusing Service Compositions

Carlos Granell, Michael Gould, Dolores María Llidó, Rafael Berlanga
Department of Information Systems

Universitat Jaume I, Castellón (Spain)
{carlos.granell, gould, doloresmaria.llido, berlanga}@uji.es

Abstract
The web service approach provides mechanisms for

simplifying application integration. However, to
meaningfully facilitate scalable development and
maintenance of web service applications it is necessary to
pay attention to the reuse of not only atomic web services
but also existing compositions. In an effort to increase the
level of service reusability, we present a model-driven
approach providing a more flexible, structured service
model to facilitate reuse of existing compositions to
create new complex compositions. The goal of this
approach is two-fold: provide a simple but expressive
service model represented jointly in terms of reusable
services, building blocks for constructing and reusing
new compositions, and abstract patterns, for managing
reusable service composition; and provide a model-
driven approach for transforming such reusable building
blocks into executable processes. The paper focuses on
both how the abstract pattern set is derived and how the
model-driven approach facilitates the creation of
executable process.

1. Introduction

Recent advances in the development of web services

technology has led to several approaches addressing the
common problem of web service composition [13]. In
[16] the authors state that this problem can be viewed as
three basic tasks: the first one is to make a plan composed
of activities that describes the needed functionality to
provide a solution of the problem. The second task is to
discover the web services that fit the activities in the plan.
Finally, the third one establishes concrete interactions
with those web services involved in the plan and executes
the resulted service composition. Although all tasks are
important (see [11] for details about how to combine
service discovery, composition and execution), here we
focus just on the last problem so-called concrete
composition and execution in order to provide a way for
maximizing service composition reuse and generating

executable processes following a model-driven approach
that facilitates the scalable development and maintenance
of web service applications.

In this paper we also address service flexibility,
feature that are closely related to service granularity and
have a great impact on the level of reusability. It is
necessary to pay a close attention to the granularity of a
web service to be composed because modeling systems as
small pieces offers great flexibility and reusability.
Moreover, that leads to a better decoupling of the system.

Our research on providing the above features of
reusability and flexibility for the web service composition
has lead to model-driven approach, which defines the
notion of reusable service as a building block with which
to assemble and manage reusable services (building
blocks) to construct new, more elaborated reusable
services. Here, we present the abstract patterns, the
second key piece in our model-driven approach that
permits to put together reusable services. Our framework
interprets the model, reusable services and abstract
patterns, to semi-automatically generate executable
processes by means of model-driven transformations. We
then discuss its implementation in order to underscore the
need for quick and flexible service composition.

2. Model

Our belief is that web service composition solutions

require basic building blocks in terms of a simple and
useful model for simplifying the design of complex
applications and enabling high-level reuse. Then, we
define our model that is the basis for the model-driven
approach proposed in this work: a reusable service model
to represent and manipulate service descriptions as
building blocks; and abstract patterns for managing such
reusable services and their orchestration. Once defined
the model, the model-driven approach describes a
methodology that allows us to manage and reuse reusable
services and eventually transform them into executable
processes in a semi-automated way according to abstract
pattern’s business logic. The rest of the section overviews

EATIS 2007

the proposed model to later discuss in more detail the
abstract patterns in section 3. Section 4 completes our
approach presenting the model-driven framework and
prototype implementation.

2.1. Reusable service model

Assuming the service-oriented architecture (SOA)

paradigm, the core of our model-driven approach is
essentially collections of reusable services that are easy to
handle and use by users or programs. The key idea here is
to include aspects that are needed to discover and
compose services —simple, composite or WSBPEL
process— but avoiding overloading the underlying model
with uncommon features, making the service model ease
to be reused later. To obtain a simple but representative
reusable service model, this is described by an interface
captured in an abstract description, which is characterized
by a set of aspects expressing what functionality a
reusable service offers and how to structure the data
exchanged with it [8]. We then define the following
aspects for defining a reusable service:

Descriptive aspects are metadata concerned with the
context in which a reusable service performs. Some
examples are textual description and service category.

Functional aspects detail, syntactic and semantically,
service functionality in terms of the operation name and
input-output parameters.

Structural aspects show how a reusable service is
internally organised as a combination of other simpler
reusable services (orchestration).

Binding aspects establish and filter (additional) data
flow between reusable services permitting two services
combine syntactically.

A reusable service encapsulates all the above aspects
representing different but complementary views. For
example, descriptive and functional aspects are useful for
discovery because they express the functionality offered
by a reusable service, while structural and binding aspects
are critical for composition and execution. As the latter
aspects are not necessary during the discovery process,
they should be kept unknown to the user in this phase for
simplicity and clarity reasons. To offer a suitable level of
encapsulation, access to a reusable service is controlled
by a public and private interface. The public interface
openly expresses the service’s descriptive and functional
aspects. The private interface represents an internal view
of the service, encapsulating structural features such as
abstract patterns as well as the necessary binding aspects
for data flow. From a practical view, a reusable service is
a simple but expressive enough model to represent
features needed in practice (see [9] for details about
reusable service model in a real scenario).

2.2. Abstract patterns

Workflow patterns [2] are crucial to fully define our

model because they express how a reusable service is
internally organized, so workflow patterns are closely
related to the reusable service’s structural aspects and
hence to the reusable service’s private interface.

Since a composition process can be considered the
application of a composition operator [17], in our model-
driven approach, workflow patterns serve as composition
operators for composing reusable services. However, as
referenced in [1, 13], several modeling languages exist
for describing web services compositions yet they support
different and overlapping workflow patterns. It is then
necessary to define a subset of consistent and non-
redundant workflow patterns, named abstract patterns
here, which let managing more easily reusable service
orchestration, as we see in the next section.

Reusable services by definition address reusability. To
complement the reusable service model, abstract patterns
permit service flexibility. Users usually find service
operations that have operation-level mismatches but
perform the same functionality. For example two service
operations have the same functionality but may differ in
the operation name or type of parameters. Abstract
patterns provide a solution to avoid mismatches of service
operations by hiding them under the same reusable
service operation due to abstract patterns. This lets us
take advantage of the flexibility feature due to availability
of multiple service operations for the same reusable
service functionality.

3. Abstract patterns analysis

Before starting the abstract pattern analysis, we should

explain why we have chosen the workflow pattern
approach [2] as basis of our work and which requirements
and criteria guide our pattern analysis.

Most existing languages for web service composition
and for describing business processes come from the
workflow area [3]. Various works compare such
composition languages with workflow patterns [1, 18, 20]
highlighting the strong link between them. Furthermore,
our pattern analysis takes the workflow patterns provided
by [2] as starting point to derive the target set of abstract
patterns for our approach.

Our pattern analysis is driven by the following criteria.
Simplicity is one goal in order to keep the number of
redundant workflow patterns to a minimum, in contrast to
overlapping and alternative patterns present in WSBPEL
[15]. In addition, the derived abstract patterns should fit
nicely with the reusable service model features such as
independence (no data dependence), flexibility, and

EATIS 2007

reusability. The remainder of this section details our
pattern analysis through a three-step approach. First,
patterns suitable for web service context in general are
identified; then these are fully fitted for specific
requirements of reusable services; finally, the target set of
abstract patterns are grouped into two categories to
underscore either reusability or flexibility support.

Id Pattern name WS RS
Basic control flow patterns

 1 Sequence √ √
 2 Parallel split √ √
 3 Synchronization √ √
 4 Exclusive choice √ √
 5 Simple merge √ √

Advanced branching and synchronization patterns
 6 Multi choice √ √
 7 Synchronizing merge √ √
 8 Multi merge √ √
 9 Discriminator √ √*

Structural patterns
10 Arbitrary cycles √ √*
11 Implicit Termination x x

Patterns involving multiple instances
12 M.I. without Synchronization √ x
13 M.I. with design time knowledge √ x
14 M.I. with Runtime Knowledge x x
15 M.I. without Runtime Knowledge x x

State-based patterns
16 Deferred choice √ x
17 Interleaved Parallel Routing √ x
18 Milestone x x

Cancellation patterns
19 Cancel activity x x
20 Cancel case x x

Table 1. Workflow patterns relevance for web
services (WS) and reusable services (RS). Symbol *

denotes pattern original meaning has changed.

3.1. Abstract patterns for web services

We begin with the workflow patterns listed in Table 1

that are grouped in five categories regarding their original
functionality. Numbers in brackets throughout this section
correspond to the “Id” column in Table 1.

Basic control flow patterns. All these patterns are
considered relevant because they are simpler but also
basic patterns: sequence (1), parallel split (2), exclusive
choice (4), and their respective counterpart patterns
regarding synchronization such as synchronization (3)
and simple merge (5).

Advanced branching and synchronization patterns.
These patterns are fully supported neither by some
workflow engines [2] nor by most composition languages
[1]. Multi choice (6) and synchronization merge (7)
patterns are significant for web services because they
provide the logical function OR. The next one, multi
merge pattern (8), joins two or more branches without
synchronization. For instance, a user wants to execute
two gazetteer services –a service that takes a toponym,
address or business name and returns a list of possible
matching geographic locations, typically as street
addresses or x,y coordinate pairs in a known coordinate
reference system such as latitude/longitude–, returning a
list of possible matching geographic locations. Multi
merge may be suitable when such gazetteer services are
being executed in parallel arriving at the joining service
“post locations list to user”, which is executed twice for
each incoming gazetteer service. On the other hand, the
discriminator pattern (9) is quite useful because can
potentially improve service flexibility. Now both
gazetteer services are executed in parallel yet, in contrast
to multi merge, the first gazetteer service to complete its
task will execute the following service in the chain (“post
locations list to user”) while the other gazetteer service’s
result will be ignored. Then, two alternative services with
the same functionality are available for execution.

Structural patterns. This category groups arbitrary
cycles (10) and implicit termination (11) patterns. For the
former, loops are basic constructs for modeling web
services composition. For the latter, the implicit
termination pattern simply ends a workflow execution
because there is nothing to do. From a web services
viewpoint, there is no need to support explicitly a
termination pattern.

Patterns involving multiple instances. This set of
patterns generates several instances of one activity,
normally at run-time. The first two patterns (12-13) are
interesting in the web service context. The pattern 12
involves multiple instances running in parallel without
synchronization. Suppose that users are now interested in
retrieving locations for a places (toponym) list. A
gazetteer service will be invoked several times depending
on the number of requested places in the list. The pattern
13 is similar to the previous one but involving
synchronization in this case. Regarding the last two
patterns (14-15), they are not relevant for web services
because the number of instances is unknown at design
time, just when our model-driven approach is carried out.

State-based patterns. This category involves deferred
choice (16), interleaved parallel routing (17), and
milestone (18). Deferred choice (16) is identical to
exclusive choice (4) except that the condition is given by
an external input. Next pattern (17) is actually an
unordered sequence of activities. Both patterns are

EATIS 2007

attractive for the web services context. The milestone
pattern (18) holds great importance at run-time yet it has
no relevant impact at design-time. Moreover, taking into
account the simplicity criterion, the sequence (1), parallel
split (2), choice (4, 6), and loops (10) constructs can be
jointly combined to offer the same meaning of milestone
pattern [14].

Cancellation patterns. Lately, we do not consider
necessary either an explicit cancel activity (19) or cancel
case (20) patterns for the web services context, as in the
case of implicit termination (11).

3.2. Abstract patterns for reusable services

Workflow patterns considered for web services

(marked with “√” in column “WS” in Table 1) are the
starting point for defining the abstract patterns for
reusable services.

Beginning with the case in sequence, we consider only
ordered sequences (1) of reusable services. Because
unordered sequences (17) assume no data dependence
among contained workflow activities [2] they can be
modeled as sequential. Therefore, in our approach, a
sequence is always modeled by the pattern (1).

Regarding parallel patterns (2-8, 16) we select the
minimum pattern set for defining the basic logical
functions AND, XOR and OR applied to reusable
services. Every logical function is fully defined by a split
and a join pattern. For instance, both parallel split (2) and
synchronization (3) correspond to the logical function
AND. The function XOR comprises exclusive choice (4)
and simple merge (5). The same rationale is applied to
OR function that is represented by multi-choice (6) and
synchronizing merge (7).

The remaining parallel patterns (8, 16) are not
considered. Multi-merge (8) can be represented as a
combination of parallel split (2) and synchronization (3)
patterns [10]. Then, the multi-merge pattern (8) is non
relevant as our goal is to avoid alternative, overlapping
patterns due to simplicity. Deferred choice pattern (16) is
not an appropriated pattern either since it depends on
external inputs. Obviously, we prefer reusable services
without external data dependences to increase the
reusability level among reusable services.

The following discussion is about discriminator
pattern (9) that is not only useful for web services but also
for modeling reusable services as it meets nicely with
flexibility requirement. However this pattern cannot be
directly transformed into WSBPEL constructs [18]. Then,
we derive a sequential discriminator, renamed here to
denote a change, that maintains the essential meaning of
the discriminator (9) but now contained services are
running in sequence. Returning to our gazetteer example,

the main difference now is that gazetteer services are
executed in sequence rather than in parallel. If the first
gazetteer completes successfully it returns its locations
list and the other gazetteer is ignored. If first one fails, the
next gazetteer is invoked. The essential meaning is
maintained: consider either the first service’s result or the
second service’s result, but not both.

As in discriminator (9), we assume a simple loop,
renamed here to denote a change, instead of arbitrary
cycles (10) because the former consider a single entry and
exit point. In addition, arbitrary cycles are not supported
by WSBPEL [1, 18, 20]. Finally, patterns 12 and 13 are
not relevant for reusable services applying the same
simplicity rationale as in the case of multi-merge (9): both
can be modeled with basic patterns [14] already
contemplated in our analysis.

3.3. Selection and composition abstract patterns

Here we focus on how to combine the relevant set of

abstract patterns (marked with “√” in column “RS” in
Table 1) derived from the previous analysis.

Id Pattern name Pattern combinations
Composition patterns
CP1 SEQ Sequence (1)
CP2 AND Parallel split (2) + synchronization (3)
CP3 XOR Exclusive choice (4) + simple merge

(5)
CP4 OR Multi choice (6) + synchronizing merge

(7)
CP5 LOOP-COND Simple loop(10)
CP6 LOOP-ITER Simple loop (10)
Selection patterns
SP1 AND-DISC Parallel split (2) + sequential

discriminator (9)
SP2 OR-DISC Multi choice (6) + sequential

discriminator (9)

Table 2. Selection and composition abstract
patterns.

The reason to combine such abstract patterns is that
some of them cannot be individually applied to model
reusable services. It is important to keep in mind that the
ultimate goal of abstract patterns is to serve as
composition operators and that reusable services are the
unique building blocks in the composition process. It is
obvious that a given reusable service will generate a
hierarchical, tree-based structure in which each node
represents the different reusable services involved in such
a composition. Abstract patterns connect parent and direct
children nodes. For this reason, it is necessary to pair the
abstract pattern set considered in section 3.2 instead of

EATIS 2007

treating them individually. Then, abstract patterns are
grouped into two categories: selection patterns that place
emphasis on flexibility feature whereas composition
pattern on reusability and service orchestration. Table 2
summarizes the resulting selection (SP1-2) and
composition patterns (CP1-6).

Composition patterns. Because the reusable service’s
hierarchical structure is traversed in a depth-first
algorithm (children nodes are first reached than parent),
we consider split patterns for the children nodes (that are
first reached) and the join patterns for the parent nodes.
Thus, three split patterns (2, 4 and 6 in Table 1) may be
combined with three join patterns (3, 5 and 7 in Table 1).
However, only some of these combinations match. In
particular, the split and join patterns are compatible only
if both express the same logical function (AND XOR,
OR). Therefore, appropriate combinations of split and
join patterns lead to three composition patterns (CP2-4 in
Table 2).

The specification of the sequence pattern (1) is
immediate because it can be applied individually to
reusable services. Then sequence pattern (1) becomes the
composition pattern SEQ (CP1 in Table 2).

Two kinds of simple loop-based patterns are derived
from simple loop pattern (9) for reusable services. On one
hand, a conditional loop or COND-LOOP (CP5 in Table
2) can be used to repeat a reusable service until a
condition cond is fulfilled. It is important to point out that
this condition has to be specified in terms of internal data
values described within the reusable service’s data flow
(bindings aspects), preserving thus the autonomy and
independence. On other hand, an iterative loop or ITER-
LOOP (CP6 in Table 2) iterates n times (known at
design-time) on a certain reusable service.

Selection patterns. The sequential discriminator
pattern (9) acts as a join pattern because it allows us to
select the result of one web service from a potential web
service set. As in the case of CP-2-4 patterns, we need to
add a split pattern due to the hierarchical structure defined
by a reusable service. The split pattern deals with the
candidate web services set whereas the join pattern refers
to the parent reusable service. Furthermore, adding
parallel split (2 in Table 1) or multi choice (6 in Table 1)
as a split pattern to the sequential discriminator leads to
two selection patterns named AND-DISC (SP1 in Table
2) and OR-DISC (SP2 in Table 2) respectively. The
former is suitable when all candidate web services are
considered initially. For the latter the user explicitly
includes some conditions to discard some web services
from the initial web service set.

Selection patterns strive to provide a solution for
operation-level mismatching mentioned in section 2. For

instance several web service operations under the same
reusable service operation are modeled by the AND-
DISC selection pattern, what means that if the first web
service operation in the list fails, the selection pattern
logic takes the second one and so on, until any of the web
service operations is successfully completed.

4. Model-driven framework

At this stage, once the model is defined, it is desirable

to provide a framework to facilitate managing the model
presented here: reusable services and abstract patterns.
This section describes the framework architecture and
some key implementation features.

4.1. Architecture

Existing composition languages for web services like

WSBPEL follow a two-level architecture split into the
application level (processes) and the concrete services
level (web services). In order to provide the required
levels of flexibility and reusability, we rely on the
abstraction and decomposition ideas to simplify and
structure more easily the proposed architecture [19, 21].
Our reusable services reside in the abstract services level,
an additional layer between the other two layers.

The key principle in the abstract services level is that a
decomposition relationship is defined between different
reusable services, where a certain reusable service is
decomposed (or implemented) by the reusable services at
lower level which in turn implement it. A reusable service
is then implemented by simpler reusable services at lower
levels. This relationship between adjacent levels produces
a hierarchical structure in which, given a reusable service
(parent node), direct children nodes are reusable services
at lower level. By simply traversing the structure it eases
to find out the functionality offered by a reusable service
because children nodes are the functional decomposition
of a parent node. Therefore, the role of the abstract
services level is to convert web service compositions
(lower level) into executable processes (higher level) but
at the same time increasing the levels of reusability and
flexibility in the target processes.

4.2. Implementation

The model-driven framework, which aligns with the

earlier layered architecture, has been implemented in a
Java-based prototype as a set of plug-ins on top of the
Eclipse platform. The main components are described
briefly as follows:

EATIS 2007

Figure 1. User interface for composing reusable services using abstract patterns.

Model creation and representation components are

concerned both with creating reusable services (model)
and with generating the corresponding descriptions that
represent a reusable service. All of the reusable service’s
aspects (descriptive, functional, structural and bindings)
are encoded in an XML-based description (private
interface), and only functional aspects are publicly
available in a WSDL-S description [4].

Reusable service management and composition
components are responsible for constructing complex
reusable services by incrementally aggregating and
reusing existing ones taken from the repository. Figure 1
illustrates our prototype to compose graphically reusable
services. The left side of the figure shows the abstract
patterns palette that allows users to select the proper
abstract pattern (composition pattern SEQ in Figure 1).
The graphical editor is in the center with boxes
representing reusable service operations (black border),
input and output parameters (blue border), and abstract
patterns (red border). The Library view, in the right side,
permits users to inspect the service operations available of
registered reusable services. Reusing an exiting reusable
service is as easy as dragging it from the Library view
and dropping it into the graphical editor.

Model-driven transformation components maps
reusable services and abstract patterns into a WSBPEL
process. At this stage we could model this task manually
using directly WSBPEL constructs in any existing editor.
Yet, the model-driven transformation components permits
generating WSBPEL processes (code ready to be
executed not only skeletons) from reusable services
(model), as for example the WSBPEL description
generated in Figure 2.

Figure 2. Excerpt of generated WSBPEL process.

Our prototype has been validated in real scenarios. In

prior research we have investigated the notion of reusable
service applied to a practical emergency management use
case [9]. Also, this prototype has been part of a tool set to
jointly carry out service discovery and composition to
generate a risk map of potentially hazardous substances
[11]. In this paper, we have described the abstract patterns
and explored the use of reusable services with selection
patterns involved in larger compositions by creating a

EATIS 2007

gazetteer reusable service from two operation-level
mismatching web services such as the ArcWeb Place
Finder service (http://www.esri.com/software/aws-
publicservices/index.html) and the Alexandria Digital
Library Gazetteer (http://middleware.alexandria.uscb.edu
/client/gaz/adl/index.jsp), which provide the same
functionality but have different operation and parameters
names. Using the Java-based prototype, such a gazetteer
service with selection pattern can be automatically
transformed in a process document by means of
combinations of WSBPEL constructs, validating then the
usefulness of our model-driven approach.

5. Related work

Benatallah et al. [6] propose a model-driven

framework for web services life-cycle management, by
analyzing and managing web service business protocols.
They introduce the notions of compatibility and
replaceability to validate whether two service protocols
can syntactically interact and how. This work is focused
on business protocols or service choreography while our
approach takes place on service orchestration. In addition,
they do not directly emphasize the service reusability goal
as do the proposed abstract patterns and the reusable
service concept.

From the component-based software perspective,
Yang and Papazoglou [21] treat services as components
in order to support basic software development principles
such as reuse, specialization, and extension. The main
idea is to encapsulate composite-logic information inside
a class definition, which represents a web component.
This concept has similarities with our reusable service
model. However, we explore a wider variety of selection
and composition patterns, for example loop or patterns
based on split with join combinations, and their
relationships to the reusability and flexibility features.

Regarding workflow pattern-based approaches, Jaeger
et al. [10] propose an abstract model using workflow
patterns that emphasize the aggregation of service
properties regarding quality of service dimensions. The
workflow pattern analysis is similar although it is applied
to the goal of quality of service instead of service reuse.
Moreover, we use both selection and composition
patterns as part of the model (along with the reusable
service) for defining the structural aspects, considering
reusable services as building blocks for developing web
applications. Medeiros et al. [12] propose an interesting
approach to annotate and reuse scientific workflows. The
authors present WOODSS, an infrastructure to help
scientists to specify and annotate their experiment as well
as documenting shared scientific activities. Their main
goal is also workflow reuse and they define the concept

of digital content components (DCC) as a reuse unit for
encapsulating annotated workflows. DCC is similar to our
notion of reusable service as it is composed, reused, and
serialized into a WSBPEL process description. However
DCC units are composed by keeping the original
WSBPEL constructs. As discussed throughout this paper,
the proposed abstract pattern set minimizes workflow
constructs avoiding overlapping and redundant workflow
patterns, leading to a straightforward and structured
composition process.

Examples addressing the specification of services
using model-driven development can be found in [5, 7].
The work of Anzböck & Dustdar [5] is focused on
modeling medical web services. The authors look into
coordination, transaction, and security aspects for web
services instead of service reuse. They propose the
definition of WSBPEL process documents from Unified
Modeling Language (UML) use case models. Therefore it
is similar to our approach, that allows us to generate
WSBPEL process descriptions from reusable services
expressed as high-level designs. Gannod et al. [7] present
a tool set based on model-driven techniques to assist in
the creation of semantic web services described in OWL-
S –an upper ontology that provides a mechanism for
describing service semantics in a standard manner. Users
first create descriptions of web services in a UML model;
next an interactive tool transforms these model
descriptions into OWL-S descriptions. Although outputs
are different, since an OWL-S description is generated in
[7], both approaches use a model-driven approach
demonstrating how the use of model-driven tools may
facilitate the creation of complex specifications such as
OWL-S and WSBPEL.

6. Conclusions and future work

Integration of distributed software and components has

become a recent trend in the web services field. From a
user’s perspective, adopting a language such as WSBPEL
to directly model web service composition may be
difficult because of the learning curve and complexity.
On the positive side the WSBPEL specification is in
widespread use due to the presence of several editors and
workflow engines that support it. Because of that, our
model-driven approach presented here allows users and
service developers to focus on creating a model in terms
of proper reusable services that suit their needs rather
than on solving syntactical issues of the WSBPEL
specification.

The core of this work is based on creating a simple but
expressive model for simplifying the design of complex
and customized web applications and enabling high-level
reuse and flexibility. The model for the proposed model-

EATIS 2007

driven approach relies on the reusable service model, to
represent and manipulate service descriptions and to place
emphasis on service reusability, and abstract patterns for
reusable services orchestration to facilitate the creation of
flexible services. Reusable services stored in repositories
are subsequently transformed for execution according to
the model-driven transformation components. This allows
users also keep their own indexed lists of useful reusable
services, which are likely to be used for certain clients or
providers. Although the approach has been tested for
combining geo-services, we believe that it is independent-
domain enough to be applicable to other contexts. Indeed,
the capability of reusing existing compositions permits
users to exploit past experiences to solve similar problems
in other domains.

We are planning to continue integrating model-driven
mechanisms and web services to add additional features
for discovery and composition of web services, such as
security and semantics. We are also investigating the use
of novel model-driven mechanisms and architectures to
minimize the network data transfer for data-intensive web
service compositions as in the case of geographic
information services.

7. References

[1] W.M.P. van der Aalst, “Don`t go with the flow: Web
services composition standards exposed”, IEEE
Intelligent Systems, 18(1): 72-76, 2003.
[2] W. M. P. van der Aalst, A. H. M. ter Hofstede, B.
Kiepuszewski, A. P. Barros, “Workflow Patterns”,
Distributed and Parallel Databases, 14(1): 5-51, 2003.
[3] S. Aissi, P. Malu, and K. Srinavasan, “E-Business
Process Modeling: The Next Big Step”, IEEE Computer
Magazine, 35(5), 55-62, 2002.
[4] R. Akkiraju, J. Farrel, J. Miller, M. Nagarajan, M-T
Schmidt, A. Sheth, and K. Verma, “Web Services
Semantics – WSDL-S”, v. 1.0, W3C Member
Submission, November 2005, http://www.w3.org/
Submission/WSDL-S/ (accessed December 2006).
[5] R. Anzböck and S. Dustdar, “Modeling and
implementing medical Web services, Data & Knowledge
Engineering, 55(2): 203-236, 2005.
[6] B. Benatallah, H. Reza, M. Nezhad, F. Casati, F.
Toumani, and J. Ponge, “Service Mosaic: A Model-
Driven Framework for Web Services Life-Cycle
Management”, IEEE Internet Computing, 10(4): 55-63,
2006.
[7] G. C. Gannod, J. T. E. Timm, and R. J. Brodie,
“Facilitating the Specification of Semantic Web Services
Using Model-Driven Development”, Intl. Journal of Web
Services Research, 3(3): 61-81, 2006.

[8] A. Gómez-Perez, R. Gónzalez.Cabero, and M. Lama,
“ODE SWS: A Framework for Designing and Composing
Semantic Web Services”, IEEE Intelligent Systems, 19(4):
24-31, 2004.
[9] C. Granell, M. Gould, R. Gronmo, D. Skogan,
“Improving Reuse of Web Service Compositions”, Proc.
E-Commerce and Web Technologies – EC-Web 2005.
Springer LNCS 3590, 358-368, 2005.
[10] M. C. Jaeger, G. Rojec-Goldmann, and G. Mühl,
“QoS Aggregation for Web Service Composition using
Workflow Patterns”, Proc. IEEE Enterprise Distributed
Object Computing Conference – EDOC 2004. IEEE CS
Press, 149-159, 2004.
[11] R. Lemmens, A. Wytzisk, R. de By, C. Granell, M.
Gould, and P. van Oosterom, “Integrating Semantics and
Syntactic Descriptions to Chain Geographic Services”,
IEEE Internet Computing, 10(5): 42-52, 2006.
[12] C. B. Medeiros, J. Perez-Alzacar, L. Digiampietri, G.
Z. Pastorello, A. Santanche, R. S. Torres, E. Madeira, and
E. Bacarin, “WOODS and the Web: annotating and
reusing scientific workflows”, SIGMOD Records, 34(3):
18-23, 2005.
[13] M. Milanovic and M. Malek, “Current Solutions for
Web Service Compositions”, IEEE Internet Computing,
8(6): 51-59, 2004.
[14] R. Milner, Communicating and Mobile Systems: the
Pi-Calculus, Cambridge University Press, 1999.
[15] C. Pautasso, A Flexible System for Visual Service
Composition, PhD dissertation number 15608,
Department of Computer Science, ETH Zurich, Zurich
(Switzerland), 2004.
[16] K. Sycara, P. Paolucci, A. Ankolekar, and N.
Srinivasan, “Automated Discovery, Interaction and
Composition of Semantic Web Services”, Journal of Web
Semantics, 1(1): 27-46, 2003.
[17] C. Szyperski, Component Software. Beyond Object-
Oriented Programming, Addisson-Wesley, 1998.
[18] M. Vasko and S. Dustdar, “An analysis of Web
Services Workflow Pattern in Collaxa”, Proc. Web
Services: European Conference – ECOWS 2004. Springer
LNCS 3250, 1-14, 2004.
[19] A. Voisard and H Schweppe, “Abstraction and
decomposition in interoperable GIS”, Intl. Journal of
Geographical Information Science, 12(4): 315-333, 1998.
[20] P. Wohed, W. M. P .van der Aalst, Dumas, A. H. M.
ter Hofstede, “Analysis of web services composition
languages: The case of BPEL4WS”, Proc. Conceptual
Modeling – ER 2003. Springer LNCS 2813, 200-215,
2003.
[21] J Yang, M. P. Papazoglou, “Web Components: A
Substrate for Web Service Reuse and Composition”,
Proc. of CAiSE 2002. Springer LNCS 2348, 21-36, 2002.

